9 thermodynamics 2 - penn state universitycourses.chem.psu.edu/chem112/summer/lecture...

15
!"#$ &' $"( )(*#+,-'"&. /($0((- 1234567 829 :6523821;37< HYPOTHESIS: if !S is positive, the reaction will be spontaneous. => ?,@#- A"(B CCD C !"#! !%&# %'()!%"#&# *+,-+ ./ 0+121 34.-12212 541 23.60561.72 52 84,916: ;' E: .,'&+F( ,) -(G#+F(< H D 5I!J I#$ DKLJ M H D 5IGJ 8G N I#OJ N A* P I#OJ M 8GA*I'J =GI'J N Q 5 D IGJ M =G5I'J !"#$ &' !: R,)S =GI!JNQ5 D I"J M =G5I!J C #$BT DUV W A#- !: /( X'(Y $, 9($()B&-( 4(#Z+,- :.,-$#-(&$[<< D A"(B CCD A#*ZX*#$( X'&-G #/',*X$( (-$),.[ E :L\ : , I=G5J \ D]^V >_B,*`W : , I=GJ \ aD^] >_B,*`W : , I5 D J \ DbK^b >_B,*`W 9, [,X $"&-c $"&' )(#Z+,- &' '.,-$#-(,X'< ;'-d$ $"&' # Z,-$)#Y&Z+,- $, $"( '(Z,-Y *#0 ,R $"()B,Y[-#B&Z'< => ?,@#-

Upload: trinhlien

Post on 15-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

!"#$%&'%$"(%)(*#+,-'"&.%/($0((-%%1234567%829%:6523821;37<%

HYPOTHESIS: if !S is positive, the reaction will be spontaneous.%

=>%?,@#-% A"(B%CCD% C%

!"#!$!%&#$%'()!%"#&#$*+,-+$./$0+121$34.-12212$541$23.60561.72$52$84,916:$

;'%E:%.,'&+F(%,)%-(G#+F(<%HD5I!J%I#$%DKLJ%M%HD5IGJ%%8GNI#OJ%N%A*PI#OJ%M%8GA*I'J%%=GI'J%N%Q%5DIGJ%M%=G5I'J%%

!"#$%&'%!:%R,)S%%%=GI!J%N%Q%5DI"J%M%=G5I!J%%%%C%#$BT%DUV%W%

%%%

A#-%!:%/(%X'(Y%$,%9($()B&-(%4(#Z+,-%:.,-$#-(&$[<<%%

D%A"(B%CCD%

A#*ZX*#$(%X'&-G%#/',*X$(%(-$),.[ %E%:L\%%:,%I=G5J%\%D]^V%>_B,*`W%%:,%I=GJ%\%aD^]%>_B,*`W%%:,%I5DJ%\%DbK^b%>_B,*`W%

9,%[,X%$"&-c%$"&'%)(#Z+,-%&'%'.,-$#-(,X'<%%;'-d$%$"&'%#%Z,-$)#Y&Z+,-%$,%$"(%'(Z,-Y%*#0%,R%$"()B,Y[-#B&Z'<%%

=>%?,@#-%

Page 2: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

1-$),.[%,R%$"(%'X)),X-Y&-G'%BX'$%/(%Z,-'&Y()(Y^%

3"(%(-$),.[%Z"#-G(%,R%=GI!J%N%Q%5DI"J%M%=G5I!J%&'%-,$%$"(%,-*[%(-$),.[%Z"#-G(%0"&Z"%,ZZX)'^%%3"&'%&'%,-*[%E:'['$(B%e%

a%A"(B%CCD%

4(B(B/()%$"(%D-Y%f#0S%

H,0%Y,%;%g-Y%E:'X)),X-Y&-G'%<%

3"(%'X)),X-Y&-G'%0&**%#/',)/%#%OX#-+$[%,R%"(#$T%O'X))%(OX#*%$,%$"(%"(#$%(-()G[%G&F(-%,h%/[%$"(%)(#Z+,-S%%%

O'X))%\%PO'['%\%PE#!$!%I#$%Z,-'$#-$%3%#-Y%#$B,'."()&Z%6J%%%%%%%E:'X))%\%

%

=>%?,@#-%

A#*ZX*#$(%I,)%*,,c%X.J%E#%R,)%$"(%)(#Z+,-S%%=GI!J%N%Q%5DI"J%M%=G5I!J % %E#&L%I=G5J%\%i]bC^V%c>_B,*%% % % % % %3"&'%)(#Z+,-%&'%1j53H14=;A%

%

k%A"(B%CCD%

E:'X)),X-Y&-G'%\%iE#!$!%_%3%%\%%

% % % %%E%:X-&F()'(%\%E:'['$(B%N%E:'X)),X-Y&-G'%l%b%% % %%

%3"(%'(Z,-Y%*#0%,R%$"()B,Y[-#B&Z'%&'%,/([(Ye%

=>%?,@#-%

1-$),.[%,R%$"(%'X)),X-Y&-G'%BX'$%/(%Z,-'&Y()(Y^%

Page 3: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

A4;314;8%m54%:6523821;37S%-((Y%#%$"()B,Y[-#B&Z%RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/(%X'(Y%$,%.)(Y&Z$%

'.,-$#-(&$[^%Spontaneity depends on two thermodynamic functions: !H

Exothermic reactions (!H <0) are usually spontaneous. !S

Spontaneous if %!Ssystem + !Ssurroundings > 0

$

=>%?,@#-% A"(B%CCD% K%

%>^%!&**#)Y%n&//'%.),.,'(Y%#%-(0%'$#$(%RX-Z+,-S%n&//'d%R)((%(-()G[%

InJ%$"#$%Z#-%/(%X'(Y%$,%.)(Y&Z$%$"(%'.,-$#-(&$[%,R%#%)(#Z+,-^%%%

n&//d'%AX$(%3)&Zc%

%:,%-,0S%%o:X-&F%\%o:'['$(B%i%oH'['$(B%_%3%

%=X*+.*[%/,$"%'&Y('%/[%Ii3JS%

i%3o:X-&F%\%oH'['$(B%i%3o:'['$(B%

:(Z,-Y%f#0%,R%3"()B,Y[-#B&Z'S%o:X-&F%\%o:'['$(B%N%o:'X)),X-Y&-G'%l%b%I'.,-$#-(,X'J%

8$%Z,-'$#-$%$(B.()#$X)(%#-Y%.)(''X)(S%o:'X)),X-Y&-G'%\%i%O'['_3%\%i%oH'['$(B%_%3%

?[%n&//d'%Y(g-&+,-S%on'['$(B%\%oH'['$(B%i%3o:'['$(B%

3"()(R,)(T%#$%Z,-'$#-$%3(B.()#$X)(%#-Y%6)(''X)(S%on'['$(B%\%i%3o:X-&F%%

=>%?,@#-% A"(B%CCD% ]%

Page 4: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

En'['%Z#-%/(%X'(Y%$,%Y(F(*,.%%A4;314;8%m54%:6523821;37%

Criteria for spontaneity: on'['$(B%\%i%3o:X-&F%%%',%

!G < 0 Spontaneous !G > 0 Not spontaneous !G = 0 System at equilibrium.

Thermodynamic function that determines the amount of energy available to do work: called FREE ENERGY

%%!G = !H " T!S

T is absolute temperature (in K). !G refers to a reaction at constant T and P.

=>%?,@#-% A"(B%CCD% p%

3"&-c%,R%m)((%1-()G[%,R%#%)(#Z+,-%*&c(%6,$(-+#*%1-()G[%YX(%$,%G)#F&$[^%

=>%?,@#-% A"(B%CCD% V%

Page 5: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

!Gf° is the :3829849%m411%1214n7%5m%m54=83;52!!Gf° Free energy change in forming one mole of a compound from its elements each in their standard states.

Units: !Gf°: kJ/mole !Hf°: kJ/mole S°: J/mole-K

=>%?,@#-% A"(B%CCD% U%

#056;54;$#05012$3(B.()#$X)(%\%DKLA%

:,*&Y% 6X)(%',*&Y f&OX&Y %% 6X)(%*&OX&Y%n#'% C%#$B%.)(''X)( :,*X+,-% C=%',*X+,- 1*(B(-$'% EnRL%\%b

q'&-G%$#/X*#$(Y%F#*X('%,R%EnRL%#$%DUVWT%$"(%:3829849%m411%1214n7%5m%418A3;52%Z#-%/(%

Z#*ZX*#$(Y%

!G°rxn = #!Gf°(prods) ' #!Gf°(reactants)

1r#B.*(%

!"#$%&'%EnL)r-%R,)S$$$ $8GA*I'J% %8GNI#OJ%N%A*PI#OJ%

on&,%%%%%PCbU^p %%%%%%%%%%Npp^C%%%%%%%%%%%%%%PCaC^D%%%%%%%Ic>_B,*J%%%%%R),B%8..(-Y&r%A%

=>%?,@#-% A"(B%CCD% Cb%

Page 6: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

!"#$%&R%0(%0#-$%$,%c-,0%En%#$%#%%$(B.()#$X)(%,$"()%$"#-%DUVW<%%

!H° and !S° do not vary much with T, BUT !G° does!!!

For other temperatures: !G°rxn " !H°rxn # T!S°rxn

Use tables of %!Hf° and S° to find !H°rxn and !S°rxn

and plug in to $ !G°rxn at a specific T. %

=>%?,@#-% A"(B%CCD% CC%

Use !G = !H " T!S !H and !S do not change substantially with temperature,

but %G does.

Be able to qualitatively predict the EFFECT OF TEMPERATURE ON FREE ENERGY%

=>%?,@#-% A"(B%CCD% CD%

$'&G-%,R% #3.60561.72<'=>?:$"&G"%3%%%,)%%%%%%*,0%3%EH% E:% E%n%

C%D% %

%a% %

%k%

Page 7: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

;'%&$%:.,-$#-(,X'<%!G = !H " T!S%

1.  2C8H18(!J+ 25O2(g)M 16CO2(g) + 18H2O(g) Burning gasoline

!H,%

%!S,%%%

En%%%b%

`%

N%

En%%%b%

`%

N%2. Heat + CaCO3 (s) M CaO (s) + CO2 (g)%%

limestone lime !H,%%

E:,%

=>%?,@#-% A"(B%CCD% Ca%

3. 2 H2(g) + O2 (g) M 2H2O (g)%%Fuel cell

!%H,%%

! :,%

En%%%b%

`%

N%

En%%%b%

`%

N%4. 3 O2(g) M 2 O3(g)%oxygen ozone

!%H,%%

!%:,%

=>%?,@#-% A"(B%CCD% Ck%

;'%&$%:.,-$#-(,X'<%%!G = !H " T!S%

Page 8: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

Q. Is this reaction spontaneous at 298 K? At 1100 oC? CaCO3(s) !CaO(s) + CO2(g) So 92.88 39.75 213.6 (J/mol K)

! Hfo #1207.1 #635.3 #393.5

(kJ/mol)

=>%?,@#-% A"(B%CCD% CK%

A,B/X'+,-%,R%:XZ),'(%@AB%BB)AA<2?$$C$$D$E@F)G<2?$M$AB$@)B<H?$$C$$AA$%B)<!?$$C$$D$E@F<2?$

&2$0+,2$415-I.6$23.60561.72:$$$$%

%.8$;.12$%B#)J$5K1-0$0+1$415-I.6:%

*+50$541$08.$3.22,LF1$4152.62$/.4$72,6H$+,H+$!$0.$-544M$.70$5$415-I.6:%%

=>%?,@#-% A"(B%CCD% C]%

Page 9: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

!"#$%"#..(-'%YX)&-G%."#'(%$)#-'&+,-'<%•  During phase changes temperature is a constant. (Heat

transfer is reversible: qrev) •  !S for a phase transition is predictable: for example it is

always positive at melting or boiling. (Disorder increases.) What about !G = ??? at equilibrium

Entropy and heat: !Strans = qrev = !Htrans T T

e.g., for melting ice, !Sfus = !Hfus/273 K (endothermic) " " " + + m.p.= 0°C

=>%?,@#-% A"(B%CCD% Cp%

4(B(B/()%$"(%m)((%1-()G[%#$%1OX&*&/)&XB%\%b^%

Calculate the boiling point of bromine.

!Hovap = 31.0 (kJ/mol)

!Sovap = 92.9 (J/mol-K)

%

=>%?,@#-% A"(B%CCD% CV%

Page 10: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

So far we have considered only standard conditions ($Ho, $So, $Go) and how to estimate $Go at different T.

What happens under other conditions?

!G = !G° + RT ln Q !G = !G° + 2.303 RT log10Q aA + bB cC + dD

REACTION QUOTIENT !

Q = C[ ]c D[ ]d

A[ ]a B[ ]b

=>%?,@#-% A"(B%CCD% CU%

!(%Z#-%X'(%En%$,%.)(Y&Z$%$"(%(r$(-$%,R%#%)(#Z+,-^%

!G = !G° + RT lnQ

How do concentrations affect Q and !G?

=>%?,@#-% A"(B%CCD% Db%

sX#*&$#+F(*[S%!(%Z#-%X'(%En%$,%.)(Y&Z$%$"(%(r$(-$%,R%#%)(#Z+,-^%

Is this consistent with LeChatelier’s Principle?

N0$OP1;$!$ Q$ RS$ 4P6$;,41-I.6$

8YY%B,)(%)(#Z$#-$'%

3#c(%#0#[%.),YXZ$'%

3#c(%#0#[%)(#Z$#-$'%

Q = NH 3[ ]2

N2[ ] H2[ ]3N2 (g) + 3 H2(g) NH3 (g)

Page 11: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

AgCl(s) Ag+(aq) + Cl#(aq)

1) Is this spontaneous under standard conditions?

!G°rxn = +55.6 kJ/mol 2) What if [Ag+] = [Cl"] = 1 & 10"10 M at 298K?

!Grxn = !G° + RT ln Q

=>%?,@#-% A"(B%CCD% DC%

!"(-%Z,-Z(-$)#+,-'%#)(%-,%*,-G()%'$#-Y#)YT%Z#*ZX*#$(%En%#-Y%.)(Y&Z$%$"(%Y&)(Z+,-%,R%)(#Z+,-^%

AgCl(s) Ag+(aq) + Cl#(aq) 3) What if [Ag+] = [Cl#] = 1.34 % 10#5 M at 298K?

!G = !G° + RT ln Q

=>%?,@#-% A"(B%CCD% DD%

!"(-%$"(%'['$(B%&'%#$%(OX&*&/)&XB%En%&'%t(),^%

!"#$%(*'(%Y,%0(%c-,0<%

Page 12: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

!G° > 0 Keq < 1 !G° < 0 Keq > 1 !G° = 0 Keq = 1

3"()(%&'%#%41f83;52:H;6%?13!112%%En° 829%W(O%

!G = !G° + RT ln Q

At equilibrium, !G = Q =

=>%?,@#-% A"(B%CCD% Da%

What is the solubility product constant Ksp of AgBr at 25oC? AgBr(s) Ag+(aq) + Br"(aq)

!Gf

o Ag+ (aq) 77.1 kJ/mol !Gf

o Br# (aq) #104 kJ/mol !Gf

o AgBr (s) #96.9 kJ/mol

=>%?,@#-% A"(B%CCD% Dk%

:#B.*(%(OX&*&/)&XB%Z,-'$#-$%Z#*ZX*#+,-%%

Page 13: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

6,$(-+#*%(-()G[%.*,$'%#)(%X'(Y%$,%B#c(%$"(%Z,--(Z+,-%/($0((-%EnT%EnL%#-Y%(OX&*&/)&XB%

=>%?,@#-% A"(B%CCD% DK%

At equilibrium point, !G = 0 for interconverting

reactants M products

Note:

This does NOT mean !Go = 0

For a spontaneous process, !G = Wmax = The maximum work that can be obtained from a process at constant T and P. For a non-spontaneous process, !G = Wmin = The minimum work that must be done to make a process go at constant T and P.

What is “free” about Free Energy? !G is how much work can be done by a process and is the portion of the energy change of a spontaneous reaction that is free to do useful work. But in actuality, not all of this “free energy” will be able to be used to do work. Some the energy enters the environment as heat. =>%?,@#-% A"(B%CCD% D]%

RELATIONSHIP BETWEEN !G AND WORK

Page 14: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

Calculate the maximum energy available from the oxidation of octane at 25 oC and 1 atm.

%%%%%%%%%%%%@D%AD<!?$C$ABTU$)B<H? M$D@)B<H?C$V%B)<!?%!Gf

o 17.3 0 "394.4 "237.2 kJ/mol

=>%?,@#-% A"(B%CCD% Dp%

Calculate the work done in a combustion reaction.

6)(Y&Z+-G%3"(%:&G-%,R%EH%

1)  Combustion (burning) = exo 2)  Breaking multiple bonds = endo 3)  Forming bonds = exo 4)  Phase changes s M ! M g = endo 5)  Opposite processes (g #% ! M s) = exo 6)  Measured T #% OR heat given off = exo 7)  Measured T $% OR heat added = endo

%A#*ZX*#$(%EH%R,)%,$"()%'&$X#+,-'^%

%

=>%?,@#-% A"(B%CCD% DV%

Page 15: 9 Thermodynamics 2 - Penn State Universitycourses.chem.psu.edu/chem112/Summer/Lecture Notes/9_Thermodynamics...RX-Z+,-%5m%3H1%:7:31=%$"#$%Z#-%/ ... @AB%BB)AA

!S is positive (disorder increases) when: 1)  # molecules of gas #% during a reaction 2)  Phase changes%s M% ! M% g 3)  Solid dissolves in solution 4)  # particles #% during a reaction 5)  # atoms in a molecule is larger 6)  T increases 7)  V increases

=>%?,@#-% A"(B%CCD% DU%

6)(Y&Z+-G%3"(%:&G-%,R%E:%

6)(Y&Z+-G%3"(%:&G-%,R%Enrxn%I:.,-$#-(&$[J%

CJ  ;R%[,X%Z#-%.)(Y&Z$%$"(%'&G-'%,R%EH%#-Y%E%:T%Y)#0%#-%(-()G[%

Y&#G)#B^%%;'%En%.,'&+F(%,)%-(G#+F(%#$%#**%$(B.()#$X)('<%%%

DJ  ;R%[,X%Z#-d$%.)(Y&Z$%$"(%'&G-'%,R%EH)r-%#-Y%E%:)r-T%Z#*ZX*#$(%

$"(B%X'&-G%EH,R%#-Y%E%:,R%&-%$"(%#..(-Y&r^%

aJ  A#*ZX*#$(%En)r-%X'&-G%$"(%Z#*ZX*#$(Y%EH)r-%#-Y%E%:)r-u%&'%&$%

.,'&+F(%,)%-(G#+F(<%

kJ  8$%(OX&*&/)&XBT%En)r-\b^%

=>%?,@#-% A"(B%CCD% ab%