9/22/2015 1 runge 2 nd order method major: all engineering majors authors: autar kaw, charlie...

19
07/04/22 http:// numericalmethods.eng.usf.edu 1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker http://numericalmethods.eng.u sf.edu Transforming Numerical Methods Education for STEM Undergraduates

Upload: trevor-hutchinson

Post on 12-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

04/21/23http://

numericalmethods.eng.usf.edu 1

Runge 2nd Order Method

Major: All Engineering Majors

Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.eduTransforming Numerical Methods Education for STEM

Undergraduates

Page 2: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

Runge-Kutta 2nd Order Method

http://numericalmethods.eng.usf.edu

Page 3: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu3

Runge-Kutta 2nd Order Method

Runge Kutta 2nd order method is given by

hkakayy ii 22111

where

ii yxfk ,1

hkqyhpxfk ii 11112 ,

For0)0(),,( yyyxf

dx

dy

Page 4: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu4

Heun’s Method

x

y

xi xi+1

yi+1, predicted

yi

Figure 1 Runge-Kutta 2nd order method (Heun’s method)

hkyhxfSlope ii 1,

iiii yxfhkyhxfSlopeAverage ,,2

1 1

ii yxfSlope ,

Heun’s method

2

11 a

11 p

111 q

resulting in

hkkyy ii

211 2

1

2

1

where

ii yxfk ,1

hkyhxfk ii 12 ,

Here a2=1/2 is chosen

Page 5: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu5

Midpoint MethodHere 12 a is chosen, giving

01 a

2

11 p

2

111 q

resulting in

hkyy ii 21

where

ii yxfk ,1

hkyhxfk ii 12 2

1,

2

1

Page 6: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu6

Ralston’s MethodHere

3

22 a is chosen, giving

3

11 a

4

31 p

4

311 q

resulting in

hkkyy ii

211 3

2

3

1

where ii yxfk ,1

hkyhxfk ii 12 4

3,

4

3

Page 7: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu7

How to write Ordinary Differential Equation

Example

50,3.12 yeydx

dy x

is rewritten as

50,23.1 yyedx

dy x

In this case

yeyxf x 23.1,

How does one write a first order differential equation in the form of

yxfdx

dy,

Page 8: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu8

ExampleA ball at 1200K is allowed to cool down in air at an ambient temperature of 300K. Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by

Kdt

d12000,1081102067.2 8412

Find the temperature at 480t seconds using Heun’s method. Assume a step size of

240h seconds.

8412 1081102067.2

dt

d

8412 1081102067.2, tf

hkkii

211 2

1

2

1

Page 9: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu9

SolutionStep 1: Kti 1200)0(,0,0 00

5579.4

10811200102067.2

1200,0

,

8412

01

f

tfk o

017595.0

108109.106102067.2

09.106,240

2405579.41200,2400

,

8412

1002

f

f

hkhtfk

K

hkk

16.655

2402702.21200

240017595.02

15579.4

2

11200

2

1

2

12101

Page 10: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu10

Solution Cont

Step 2: Khtti 16.655,2402400,1 101

38869.0

108116.655102067.2

16.655,240

,

8412

111

f

tfk

20206.0

108187.561102067.2

87.561,480

24038869.016.655,240240

,

8412

1112

f

f

hkhtfk

K

hkk

27.584

24029538.016.655

24020206.02

138869.0

2

116.655

2

1

2

12112

Page 11: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu11

Solution Cont

The exact solution of the ordinary differential equation is given by the solution of a non-linear equation as

9282.21022067.00033333.0tan8519.1300

300ln92593.0 31

t

The solution to this nonlinear equation at t=480 seconds is

K57.647)480(

Page 12: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu12

Comparison with exact results

Figure 2. Heun’s method results for different step sizes

-400

0

400

800

1200

0 100 200 300 400 500

Time, t(sec)

Tem

per

atu

re,θ

(K) Exact h=120

h=240

h=480

Page 13: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu13

Effect of step size

Table 1. Temperature at 480 seconds as a function of step size, h

Step size, h (480) Et |єt|%

4802401206030

−393.87584.27651.35649.91648.21

1041.463.304

−3.7762−2.3406

−0.63219

160.829.7756

0.583130.36145

0.097625

K57.647)480( (exact)

Page 14: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu14

Effects of step size on Heun’s Method

Figure 3. Effect of step size in Heun’s method

-400

-200

0

200

400

600

800

0 100 200 300 400 500Step size, h

Tem

per

atu

re,

θ(48

0)

Page 15: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

Step size,h

(480)

Euler Heun Midpoint Ralston

4802401206030

−987.84110.32546.77614.97632.77

−393.87584.27651.35649.91648.21

1208.4976.87690.20654.85649.02

449.78690.01667.71652.25648.61

http://numericalmethods.eng.usf.edu15

Comparison of Euler and Runge-Kutta 2nd Order

MethodsTable 2. Comparison of Euler and the Runge-Kutta methods

K57.647)480( (exact)

Page 16: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu16

Comparison of Euler and Runge-Kutta 2nd Order

Methods

Table 2. Comparison of Euler and the Runge-Kutta methods

Step size,h Euler Heun Midpoint Ralston

480

240

120

60

30

252.54

82.964

15.566

5.0352

2.2864

160.82

9.7756

0.58313

0.36145

0.097625

86.61250.8516.58231.1239

0.22353

30.5446.55373.1092

0.722990.15940

K57.647)480( (exact)

%t

Page 17: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu17

Comparison of Euler and Runge-Kutta 2nd Order

Methods

Figure 4. Comparison of Euler and Runge Kutta 2nd order methods with exact results.

500

600

700

800

900

1000

1100

1200

0 100 200 300 400 500 600

Time, t (sec)

Tem

pera

ture

,

Analytical

Ralston

Midpoint

Euler

Heun

θ(K

)

Page 18: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

Additional ResourcesFor all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/runge_kutta_2nd_method.html

Page 19: 9/22/2015  1 Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker

THE END

http://numericalmethods.eng.usf.edu