965 - institute of physics · 05 ± 0. 18) × 10 − 3 d 28 +→ η e ν e (1. 14 ± 0 10) × 10...

283
± ± ± ± ± ± ∗± ∗± ± . ± . . ± . . ± . . ± . . ± . . ± . . ± . . ± . . ± . ± . ± ψ . ± . ± . π . ± . . ••• ••• ± ± ± . ± . . ± . ± . . ± . . ± π ± π ± ψ ± > × ± . ± . ± . γ . ± . . . ± ± π π ••• ••• ± ± γ π π ± ± γ π π π ± ± ± ± . ± . μ . ± . . ± . ± . ± . ± ± < . η . ± . η . ± . φ . ± . ν < . × μ ν μ . ± . × τ ν τ < . × ν . ± . μ ν μ . ± . π ν . ± . ν π . ± . π wave ν . ± . × ν π < × ν π < × π ν < × π μ ν μ . ± . μ ν μ π . ± . π μ ν μ . ± . × π πμ ν μ < . × π ν . ± . × η ν . ± . × ρ ν . . . × ρμ ν μ . ± . × ω ν . ± . × η ν . ± . × φ ν < × ν . ± . μ ν μ . ± . μ ν μ < . × μ ν μ < . × π . ± . π . ± . π . ± . π π . ± . π π π π . ± . π π . ± . π π π π . ± . × π π . ± . × π I . ± . π π π . ± . ρ . ± . π π . ± . π π ± × π π . ± . π π . ± . π π . ± . × π π π . ± . × ρπ π . ± . × . ± . × π π ρ π

Upload: others

Post on 20-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 965965965965See key on page 547 MesonPartile ListingsD±CHARMED MESONSCHARMED MESONSCHARMED MESONSCHARMED MESONS(C = ±1)(C = ±1)(C = ±1)(C = ±1)D+ = d , D0 = u, D0 = u, D− = d, similarly for D∗'sD± I (JP ) = 12 (0−)D± MASSD± MASSD± MASSD± MASSThe �t inludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�erene measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1869.61± 0.10 OUR FIT1869.61± 0.10 OUR FIT1869.61± 0.10 OUR FIT1869.61± 0.10 OUR FIT Error inludes sale fator of 1.1.1869.5 ± 0.4 OUR AVERAGE1869.5 ± 0.4 OUR AVERAGE1869.5 ± 0.4 OUR AVERAGE1869.5 ± 0.4 OUR AVERAGE1869.53± 0.49±0.20 110 ± 15 ANASHIN 10A KEDR e+ e− at ψ(3770)1870.0 ± 0.5 ±1.0 317 BARLAG 90C ACCM π−Cu 230 GeV1869.4 ± 0.6 1 TRILLING 81 RVUE e+ e− 3.77 GeV• • • We do not use the following data for averages, �ts, limits, et. • • •1875 ±10 9 ADAMOVICH 87 EMUL Photoprodution1860 ±16 6 ADAMOVICH 84 EMUL Photoprodution1863 ± 4 DERRICK 84 HRS e+ e− 29 GeV1868.4 ± 0.5 1 SCHINDLER 81 MRK2 e+ e− 3.77 GeV1874 ± 5 GOLDHABER 77 MRK1 D0, D+ reoil spetra1868.3 ± 0.9 1 PERUZZI 77 LGW e+ e− 3.77 GeV1874 ±11 PICCOLO 77 MRK1 e+ e− 4.03, 4.41 GeV1876 ±15 50 PERUZZI 76 MRK1 K∓π±π±1PERUZZI 77 and SCHINDLER 81 errors do not inlude the 0.13% unertainty in theabsolute SPEAR energy alibration. TRILLING 81 uses the high preision J/ψ(1S) and

    ψ(2S) measurements of ZHOLENTZ 80 to determine this unertainty and ombines thePERUZZI 77 and SCHINDLER 81 results to obtain the value quoted.D± MEAN LIFED± MEAN LIFED± MEAN LIFED± MEAN LIFEMeasurements with an error > 100×10−15 s have been omitted from theListings.VALUE (10−15 s) EVTS DOCUMENT ID TECN COMMENT1040 ± 7 OUR AVERAGE1040 ± 7 OUR AVERAGE1040 ± 7 OUR AVERAGE1040 ± 7 OUR AVERAGE1039.4± 4.3± 7.0 110k LINK 02F FOCS γ nuleus, ≈ 180 GeV1033.6±22.1+ 9.9−12.7 3777 BONVICINI 99 CLEO e+ e− ≈ �(4S)1048 ±15 ±11 9k FRABETTI 94D E687 D+ → K−π+π+

    • • • We do not use the following data for averages, �ts, limits, et. • • •1075 ±40 ±18 2455 FRABETTI 91 E687 γ Be, D+ → K−π+π+1030 ±80 ±60 200 ALVAREZ 90 NA14 γ, D+ → K−π+π+1050 +77−72 317 1 BARLAG 90C ACCM π−Cu 230 GeV1050 ±80 ±70 363 ALBRECHT 88I ARG e+ e− 10 GeV1090 ±30 ±25 2992 RAAB 88 E691 Photoprodution1BARLAG 90C estimates the systemati error to be negligible.D+ DECAY MODESD+ DECAY MODESD+ DECAY MODESD+ DECAY MODESMost deay modes (other than the semileptoni modes) that involve a neu-tral K meson are now given as K0S modes, not as K0 modes. Nearly alwaysit is a K0S that is measured, and interferene between Cabibbo-allowedand doubly Cabibbo-suppressed modes an invalidate the assumption that2 �(K0S ) = �(K0). Sale fator/Mode Fration (�i /�) Con�dene levelInlusive modesInlusive modesInlusive modesInlusive modes�1 D+ → e+ semileptoni (16.07±0.30) %�2 D+ → µ+ anything (17.6 ±3.2 ) %�3 D+ → K− anything (25.7 ±1.4 ) %�4 D+ → K0 anything + K0 any-thing (61 ±5 ) %�5 D+ → K+anything ( 5.9 ±0.8 ) %�6 D+ → K∗(892)− anything ( 6 ±5 ) %�7 D+ → K∗(892)0 anything (23 ±5 ) %�8 D+ → K∗(892)0 anything < 6.6 % CL=90%�9 D+ → η anything ( 6.3 ±0.7 ) %�10 D+ → η′ anything ( 1.04±0.18) %�11 D+ → φ anything ( 1.03±0.12) %

    Leptoni and semileptoni modesLeptoni and semileptoni modesLeptoni and semileptoni modesLeptoni and semileptoni modes�12 D+ → e+ νe < 8.8 × 10−6 CL=90%�13 D+ → µ+ νµ ( 3.82±0.33) × 10−4�14 D+ → τ+ ντ < 1.2 × 10−3 CL=90%�15 D+ → K0 e+νe ( 8.83±0.22) %�16 D+ → K0µ+νµ ( 9.2 ±0.6 ) %�17 D+ → K−π+ e+νe ( 4.00±0.10) %�18 D+ → K∗(892)0 e+ νe ,K∗(892)0 → K−π+ ( 3.68±0.10) %�19 D+ → (K−π+)S−wave e+νe ( 2.32±0.10) × 10−3�20 D+ → K∗(1410)0 e+νe ,K∗(1410)0 → K−π+ < 6 × 10−3 CL=90%�21 D+ → K∗2(1430)0 e+νe ,K∗2(1430)0 → K−π+ < 5 × 10−4 CL=90%�22 D+ →K−π+ e+νe nonresonant < 7 × 10−3 CL=90%�23 D+ → K−π+µ+νµ ( 3.8 ±0.4 ) %�24 D+ → K∗(892)0µ+ νµ ,K∗(892)0 → K−π+ ( 3.52±0.10) %�25 D+ →K−π+µ+νµ nonresonant ( 2.0 ±0.5 ) × 10−3�26 D+ → K−π+π0µ+νµ < 1.6 × 10−3 CL=90%�27 D+ → π0 e+ νe ( 4.05±0.18) × 10−3�28 D+ → ηe+ νe ( 1.14±0.10) × 10−3�29 D+ → ρ0 e+νe ( 2.18+0.17−0.25)× 10−3�30 D+ → ρ0µ+νµ ( 2.4 ±0.4 ) × 10−3�31 D+ → ω e+ νe ( 1.82±0.19) × 10−3�32 D+ → η′(958)e+ νe ( 2.2 ±0.5 ) × 10−4�33 D+ → φe+ νe < 9 × 10−5 CL=90%Frations of some of the following modes with resonanes have alreadyappeared above as submodes of partiular harged-partile modes.�34 D+ → K∗(892)0 e+ νe ( 5.52±0.15) %�35 D+ → K∗(892)0µ+ νµ ( 5.28±0.15) %�36 D+ → K∗0(1430)0µ+νµ < 2.4 × 10−4 CL=90%�37 D+ → K∗(1680)0µ+νµ < 1.5 × 10−3 CL=90%Hadroni modes with a K or K K KHadroni modes with a K or K K KHadroni modes with a K or K K KHadroni modes with a K or K K K�38 D+ → K0S π+ ( 1.47±0.07) % S=2.0�39 D+ → K0Lπ+ ( 1.46±0.05) %�40 D+ → K−2π+ [a℄ ( 9.13±0.19) %�41 D+ → (K−π+)S−waveπ+ ( 7.32±0.19) %�42 D+ → K∗0(800)0π+ ,K∗0(800) → K−π+�43 D+ → K∗0(1430)0π+ ,K∗0(1430)0 → K−π+ [b℄ ( 1.21±0.06) %�44 D+ → K∗(892)0π+ ,K∗(892)0 → K−π+ ( 1.01±0.11) %�45 D+ → K∗(1410)0π+ ,K∗0 → K−π+ not seen�46 D+ → K∗2(1430)0π+ ,K∗2(1430)0 → K−π+ [b℄ ( 2.2 ±0.7 ) × 10−4�47 D+ → K∗(1680)0π+ ,K∗(1680)0 → K−π+ [b℄ ( 2.1 ±1.1 ) × 10−4�48 D+ → K− (2π+)I=2 ( 1.41±0.26) %�49 D+ → K−2π+ nonresonant�50 D+ → K0S π+π0 [a℄ ( 6.99±0.27) %�51 D+ → K0S ρ+ ( 4.8 ±1.0 ) %�52 D+ → K∗(892)0π+ ,K∗(892)0 → K0S π0 ( 1.3 ±0.6 ) %�53 D+ → K0S π+π0 nonresonant ( 9 ±7 ) × 10−3�54 D+ → K−2π+π0 [℄ ( 5.99±0.18) %�55 D+ → K0S 2π+π− [℄ ( 3.12±0.11) %�56 D+ → K−3π+π− [a℄ ( 5.6 ±0.5 ) × 10−3 S=1.1�57 D+ → K∗(892)0 2π+π− ,K∗(892)0 → K−π+ ( 1.2 ±0.4 ) × 10−3�58 D+ → K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+ ( 2.2 ±0.4 ) × 10−3�59 D+ →K∗(892)0 a1(1260)+ [d℄ ( 9.0 ±1.8 ) × 10−3�60 D+ →K∗(892)0 2π+π− no-ρ,K∗(892)0 → K−π+

  • 966966966966Meson Partile ListingsD±�61 D+ → K−ρ0 2π+ ( 1.68±0.27) × 10−3�62 D+ →K−3π+π− nonresonant ( 3.9 ±2.9 ) × 10−4�63 D+ → K+2K0S ( 4.5 ±2.0 ) × 10−3�64 D+ → K+K−K0S π+ ( 2.4 ±0.6 ) × 10−4Pioni modesPioni modesPioni modesPioni modes�65 D+ → π+π0 ( 1.19±0.06) × 10−3�66 D+ → 2π+π− ( 3.18±0.18) × 10−3�67 D+ → ρ0π+ ( 8.1 ±1.5 ) × 10−4�68 D+ → π+ (π+π−)S−wave ( 1.78±0.16) × 10−3�69 D+ → σπ+ , σ → π+π− ( 1.34±0.12) × 10−3�70 D+ → f0(980)π+ ,f0(980) → π+π− ( 1.52±0.33) × 10−4�71 D+ → f0(1370)π+ ,f0(1370) → π+π− ( 8 ±4 ) × 10−5�72 D+ → f2(1270)π+ ,f2(1270) → π+π− ( 4.9 ±0.9 ) × 10−4�73 D+ → ρ(1450)0π+ ,ρ(1450)0 → π+π− < 8 × 10−5 CL=95%�74 D+ → f0(1500)π+ ,f0(1500) → π+π− ( 1.1 ±0.4 ) × 10−4�75 D+ → f0(1710)π+ ,f0(1710) → π+π− < 5 × 10−5 CL=95%�76 D+ → f0(1790)π+ ,f0(1790) → π+π− < 6 × 10−5 CL=95%�77 D+ → (π+π+)S−waveπ− < 1.2 × 10−4 CL=95%�78 D+ → 2π+π− nonresonant < 1.1 × 10−4 CL=95%�79 D+ → π+ 2π0 ( 4.6 ±0.4 ) × 10−3�80 D+ → 2π+π−π0 ( 1.13±0.08) %�81 D+ → ηπ+ , η → π+π−π0 ( 8.0 ±0.5 ) × 10−4�82 D+ → ωπ+ , ω → π+π−π0 < 3 × 10−4 CL=90%�83 D+ → 3π+2π− ( 1.61±0.16) × 10−3Frations of some of the following modes with resonanes have alreadyappeared above as submodes of partiular harged-partile modes.�84 D+ → ηπ+ ( 3.53±0.21) × 10−3�85 D+ → ηπ+π0 ( 1.38±0.35) × 10−3�86 D+ → ωπ+ < 3.4 × 10−4 CL=90%�87 D+ → η′(958)π+ ( 4.67±0.29) × 10−3�88 D+ → η′(958)π+π0 ( 1.6 ±0.5 ) × 10−3Hadroni modes with a K K pairHadroni modes with a K K pairHadroni modes with a K K pairHadroni modes with a K K pair�89 D+ → K+K0S ( 2.83±0.16) × 10−3 S=2.2�90 D+ → K+K−π+ [a℄ ( 9.54±0.26) × 10−3 S=1.1�91 D+ → φπ+ , φ → K+K− ( 2.65+0.08−0.09)× 10−3�92 D+ → K+K∗(892)0 ,K∗(892)0 → K−π+ ( 2.45+0.09−0.14)× 10−3�93 D+ → K+K∗0(1430)0 ,K∗0(1430)0 → K−π+ ( 1.79±0.34) × 10−3�94 D+ → K+K∗2(1430)0,K∗2 → K−π+ ( 1.6 +1.2−0.8 )× 10−4�95 D+ → K+K∗0(800), K∗0 →K−π+ ( 6.7 +3.4−2.1 )× 10−4�96 D+ → a0(1450)0π+, a00 →K+K− ( 4.4 +7.0−1.8 )× 10−4�97 D+ → φ(1680)π+, φ →K+K− ( 4.9 +4.0−1.9 )× 10−5�98 D+ →K+K−π+ nonresonant not seen�99 D+ → K+K0S π+π− ( 1.75±0.18) × 10−3�100 D+ → K0S K−2π+ ( 2.40±0.18) × 10−3�101 D+ → K+K−2π+π− ( 2.2 ±1.2 ) × 10−4A few poorly measured branhing frations:�102 D+ → φπ+π0 ( 2.3 ±1.0 ) %�103 D+ → φρ+ < 1.5 % CL=90%�104 D+ → K+K−π+π0 non-φ ( 1.5 +0.7−0.6 ) %�105 D+ → K∗(892)+K0S ( 1.6 ±0.7 ) %

    Doubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modesDoubly Cabibbo-suppressed modes�106 D+ → K+π0 ( 1.83±0.26) × 10−4 S=1.4�107 D+ → K+η ( 1.08±0.17) × 10−4�108 D+ → K+η′(958) ( 1.76±0.22) × 10−4�109 D+ → K+π+π− ( 5.27±0.23) × 10−4�110 D+ → K+ρ0 ( 2.0 ±0.5 ) × 10−4�111 D+ → K∗(892)0π+ ,K∗(892)0 → K+π− ( 2.5 ±0.4 ) × 10−4�112 D+ → K+ f0(980),f0(980) → π+π− ( 4.7 ±2.8 ) × 10−5�113 D+ → K∗2(1430)0π+ ,K∗2(1430)0 → K+π− ( 4.2 ±2.9 ) × 10−5�114 D+ → K+π+π− nonreso-nant not seen�115 D+ → 2K+K− ( 8.7 ±2.0 ) × 10−5�C = 1 weak neutral urrent (C1) modes, or�C = 1 weak neutral urrent (C1) modes, or�C = 1 weak neutral urrent (C1) modes, or�C = 1 weak neutral urrent (C1) modes, orLepton Family number (LF ) or Lepton number (L) violating modesLepton Family number (LF ) or Lepton number (L) violating modesLepton Family number (LF ) or Lepton number (L) violating modesLepton Family number (LF ) or Lepton number (L) violating modes�116 D+ → π+ e+ e− C1 < 1.1 × 10−6 CL=90%�117 D+ → π+φ , φ →e+ e− [e℄ ( 1.7 +1.4−0.9 )× 10−6�118 D+ → π+µ+µ− C1 < 7.3 × 10−8 CL=90%�119 D+ → π+φ, φ →µ+µ− [e℄ ( 1.8 ±0.8 ) × 10−6�120 D+ → ρ+µ+µ− C1 < 5.6 × 10−4 CL=90%�121 D+ → K+ e+ e− [f ℄ < 1.0 × 10−6 CL=90%�122 D+ → K+µ+µ− [f ℄ < 4.3 × 10−6 CL=90%�123 D+ → π+ e+µ− LF < 2.9 × 10−6 CL=90%�124 D+ → π+ e−µ+ LF < 3.6 × 10−6 CL=90%�125 D+ → K+ e+µ− LF < 1.2 × 10−6 CL=90%�126 D+ → K+ e−µ+ LF < 2.8 × 10−6 CL=90%�127 D+ → π− 2e+ L < 1.1 × 10−6 CL=90%�128 D+ → π− 2µ+ L < 2.2 × 10−8 CL=90%�129 D+ → π− e+µ+ L < 2.0 × 10−6 CL=90%�130 D+ → ρ− 2µ+ L < 5.6 × 10−4 CL=90%�131 D+ → K−2e+ L < 9 × 10−7 CL=90%�132 D+ → K−2µ+ L < 1.0 × 10−5 CL=90%�133 D+ → K− e+µ+ L < 1.9 × 10−6 CL=90%�134 D+ → K∗(892)− 2µ+ L < 8.5 × 10−4 CL=90%�135 Una

    ounted deay modes (51.2 ±1.0 ) %[a℄ The branhing fration for this mode may di�er from the sum of thesubmodes that ontribute to it, due to interferene e�ets. See therelevant papers.[b℄ These subfrations of the K−2π+ mode are unertain: see the PartileListings.[ ℄ Submodes of the D+ → K−2π+π0 and K0S 2π+π− modes were studiedby ANJOS 92C and COFFMAN 92B, but with at most 142 events for the�rst mode and 229 for the seond { not enough for preise results. Withnothing new for 18 years, we refer to our 2008 edition, Physis LettersB667B667B667B667 1 (2008), for those results.[d ℄ The unseen deay modes of the resonanes are inluded.[e℄ This is not a test for the �C=1 weak neutral urrent, but leads to the

    π+ ℓ+ ℓ− �nal state.[f ℄ This mode is not a useful test for a �C=1 weak neutral urrent beauseboth quarks must hange avor in this deay.CONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONCONSTRAINED FIT INFORMATIONAn overall �t to 22 branhing ratios uses 31 measurements andone onstraint to determine 15 parameters. The overall �t has aχ2 = 32.0 for 17 degrees of freedom.The following o�-diagonal array elements are the orrelation oeÆients

    δxiδxj〉/(δxi·δxj), in perent, from the �t to the branhing frations, xi ≡�i/�total. The �t onstrains the xi whose labels appear in this array to sum toone.

  • 967967967967See key on page 547 MesonPartile ListingsD±x29 0x34 0 0x35 22 0 0x38 6 0 0 1x40 15 0 0 3 44x50 5 0 0 1 14 31x54 6 0 0 1 18 40 56x55 7 0 0 2 22 50 50 0x56 3 0 0 1 10 24 7 10 12x83 3 0 0 1 10 22 7 9 11 76x89 6 0 0 1 75 38 12 15 19 9x90 10 0 0 2 29 66 24 38 36 16x106 2 0 0 0 6 13 4 5 6 3x135 −75 −2 −15 −32 −32 −58 −54 −48 −42 −20x16 x29 x34 x35 x38 x40 x50 x54 x55 x56x89 8x90 14 25x106 3 5 9x135 −18 −27 −43 −8x83 x89 x90 x106D+ BRANCHING RATIOSD+ BRANCHING RATIOSD+ BRANCHING RATIOSD+ BRANCHING RATIOSSome now-obsolete measurements have been omitted from these Listings.-quark deays-quark deays-quark deays-quark deays�( → e+anything)/�( → anything)�( → e+anything)/�( → anything)�( → e+anything)/�( → anything)�( → e+anything)/�( → anything)For the Summary Table, we only use the average of e+ and µ+ measurements fromZ0 → deays; see the seond data blok below.VALUE EVTS DOCUMENT ID TECN COMMENT0.103±0.009+0.009−0.0080.103±0.009+0.009−0.0080.103±0.009+0.009−0.0080.103±0.009+0.009−0.008 378 1 ABBIENDI 99K OPAL Z0 → 1ABBIENDI 99K uses the exess of right-sign over wrong-sign leptons opposite reon-struted D∗(2010)+ → D0π+ deays in Z0 → .�( → µ+anything)/�( → anything)�( → µ+anything)/�( → anything)�( → µ+anything)/�( → anything)�( → µ+anything)/�( → anything)For the Summary Table, we only use the average of e+ and µ+ measurements fromZ0 → deays; see the next data blok.VALUE EVTS DOCUMENT ID TECN COMMENT0.082±0.005 OUR AVERAGE0.082±0.005 OUR AVERAGE0.082±0.005 OUR AVERAGE0.082±0.005 OUR AVERAGE0.073±0.008±0.002 73 KAYIS-TOPAK...05 CHRS νµ emulsion0.095±0.007+0.014−0.013 2829 ASTIER 00D NOMD νµFe → µ−µ+X0.090±0.007+0.007−0.006 476 1 ABBIENDI 99K OPAL Z0 → 0.086±0.017+0.008−0.007 69 2 ALBRECHT 92F ARG e+ e− ≈ 10 GeV0.078±0.009±0.012 ONG 88 MRK2 e+ e− 29 GeV0.078±0.015±0.02 BARTEL 87 JADE e+ e− 34.6 GeV0.082±0.012+0.02−0.01 ALTHOFF 84G TASS e+ e− 34.5 GeV

    • • • We do not use the following data for averages, �ts, limits, et. • • •0.093±0.009±0.009 88 KAYIS-TOPAK...02 CHRS See KAYIS-TOPAKSU 050.089±0.018±0.025 BARTEL 85J JADE See BARTEL 871ABBIENDI 99K uses the exess of right-sign over wrong-sign leptons opposite reon-struted D∗(2010)+ → D0π+ deays in Z0 → .2ALBRECHT 92F uses the exess of right-sign over wrong-sign leptons in a sample ofevents tagged by fully reonstruted D∗(2010)+ → D0π+ deays.�( → ℓ+anything)/�( → anything)�( → ℓ+anything)/�( → anything)�( → ℓ+anything)/�( → anything)�( → ℓ+anything)/�( → anything)This is an average (not a sum) of e+ and µ+ measurements.VALUE EVTS DOCUMENT ID TECN COMMENT0.096 ±0.004 OUR AVERAGE0.096 ±0.004 OUR AVERAGE0.096 ±0.004 OUR AVERAGE0.096 ±0.004 OUR AVERAGE0.0958±0.0042±0.0028 1828 1 ABREU 00O DLPH Z0 → 0.095 ±0.006 +0.007−0.006 854 2 ABBIENDI 99K OPAL Z0 → 1ABREU 00O uses leptons opposite fully reonstruted D∗(2010)+, D+, or D0 mesons.2ABBIENDI 99K uses the exess of right-sign over wrong-sign leptons opposite reon-struted D∗(2010)+ → D0π+ deays in Z0 → .�( → D∗(2010)+ anything)/�( → anything)�( → D∗(2010)+ anything)/�( → anything)�( → D∗(2010)+anything)/�( → anything)�( → D∗(2010)+anything)/�( → anything)VALUE EVTS DOCUMENT ID TECN COMMENT0.255±0.015±0.0080.255±0.015±0.0080.255±0.015±0.0080.255±0.015±0.008 2371 1 ABREU 00O DLPH Z0 → 1ABREU 00O uses slow pions opposite fully reonstruted D∗(2010)+, D+, or D0 mesonsas a signal of D∗(2010)− prodution.

    Inlusive modesInlusive modesInlusive modesInlusive modes�(e+ semileptoni)/�total �1/��(e+ semileptoni)/�total �1/��(e+ semileptoni)/�total �1/��(e+ semileptoni)/�total �1/�The sum of our K0 e+ νe , K∗(892)0 e+ νe , π0 e+ νe , ηe+ νe , ρ0 e+ νe , and ωe+ νebranhing frations is 15.3 ± 0.4%.VALUE (%) EVTS DOCUMENT ID TECN COMMENT16.07±0.30 OUR AVERAGE16.07±0.30 OUR AVERAGE16.07±0.30 OUR AVERAGE16.07±0.30 OUR AVERAGE16.13±0.10±0.29 26.2±0.2k 1 ASNER 10 CLEO e+ e− at 3774 MeV15.2 ±0.9 ±0.8 521 ± 32 ABLIKIM 07G BES2 e+ e− ≈ ψ(3770)• • • We do not use the following data for averages, �ts, limits, et. • • •16.13±0.20±0.33 8798± 105 2 ADAM 06A CLEO See ASNER 1017.0 ±1.9 ±0.7 158 BALTRUSAIT...85B MRK3 e+ e− 3.77 GeV1Using the D+ and D0 lifetimes, ASNER 10 �nds that the ratio of the D+ and D0semileptoni widths is 0.985 ± 0.015 ± 0.024.2Using the D+ and D0 lifetimes, ADAM 06A �nds that the ratio of the D+ and D0inlusive e+ widths is 0.985 ± 0.028 ± 0.015, onsistent with the isospin-invarianepredition of 1.�(µ+anything)/�total �2/��(µ+anything)/�total �2/��(µ+anything)/�total �2/��(µ+anything)/�total �2/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT17.6±2.7±1.817.6±2.7±1.817.6±2.7±1.817.6±2.7±1.8 100 ± 12 1 ABLIKIM 08L BES2 e+ e− ≈ ψ(3772)1ABLIKIM 08L �nds the ratio of D+ → µ+X and D0 → µ+X branhing frations tobe 2.59 ± 0.70 ± 0.25, in a

    ord with the ratio of D+ and D0 lifetimes, 2.54 ± 0.02.�(K− anything)/�total �3/��(K− anything)/�total �3/��(K− anything)/�total �3/��(K− anything)/�total �3/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT25.7±1.4 OUR AVERAGE25.7±1.4 OUR AVERAGE25.7±1.4 OUR AVERAGE25.7±1.4 OUR AVERAGE24.7±1.3±1.2 631 ± 33 ABLIKIM 07G BES2 e+ e− ≈ ψ(3770)27.8+3.6

    −3.1 BARLAG 92C ACCM π− Cu 230 GeV27.1±2.3±2.4 COFFMAN 91 MRK3 e+ e− 3.77 GeV[�(K0 anything)+�(K0 anything)]/�total �4/�[�(K0 anything)+�(K0 anything)]/�total �4/�[�(K0anything)+�(K0 anything)]/�total �4/�[�(K0anything)+�(K0 anything)]/�total �4/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT61 ±5 OUR AVERAGE61 ±5 OUR AVERAGE61 ±5 OUR AVERAGE61 ±5 OUR AVERAGE60.5±5.5±3.3 244 ± 22 ABLIKIM 06U BES2 e+ e− at 3773 MeV61.2±6.5±4.3 COFFMAN 91 MRK3 e+ e− 3.77 GeV�(K+anything)/�total �5/��(K+anything)/�total �5/��(K+anything)/�total �5/��(K+anything)/�total �5/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT5.9±0.8 OUR AVERAGE5.9±0.8 OUR AVERAGE5.9±0.8 OUR AVERAGE5.9±0.8 OUR AVERAGE6.1±0.9±0.4 189 ± 27 ABLIKIM 07G BES2 e+ e− ≈ ψ(3770)5.5±1.3±0.9 COFFMAN 91 MRK3 e+ e− 3.77 GeV�(K∗(892)− anything)/�total �6/��(K∗(892)− anything)/�total �6/��(K∗(892)− anything)/�total �6/��(K∗(892)− anything)/�total �6/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT5.7±5.2±0.75.7±5.2±0.75.7±5.2±0.75.7±5.2±0.7 7.2 ± 6.5 ABLIKIM 06U BES2 e+ e− at 3773 MeV�(K∗(892)0 anything)/�total �7/��(K∗(892)0 anything)/�total �7/��(K∗(892)0 anything)/�total �7/��(K∗(892)0 anything)/�total �7/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT23.2±4.5±3.023.2±4.5±3.023.2±4.5±3.023.2±4.5±3.0 189 ± 36 ABLIKIM 05P BES e+ e− ≈ 3773 MeV�(K∗(892)0 anything)/�total �8/��(K∗(892)0 anything)/�total �8/��(K∗(892)0 anything)/�total �8/��(K∗(892)0 anything)/�total �8/�VALUE (%) CL% DOCUMENT ID TECN COMMENT

  • 968968968968MesonPartile ListingsD±�(µ+νµ)/�total �13/��(µ+νµ)/�total �13/��(µ+νµ)/�total �13/��(µ+νµ)/�total �13/�See the note on \Deay Constants of Charged Pseudosalar Mesons" in the D+sListings.VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT3.82± 0.32±0.093.82± 0.32±0.093.82± 0.32±0.093.82± 0.32±0.09 150 ± 12 1 EISENSTEIN 08 CLEO e+ e− at ψ(3770)• • • We do not use the following data for averages, �ts, limits, et. • • •12.2 +11.1

    − 5.3 ±1.0 3 2 ABLIKIM 05D BES e+ e− ≈ 3.773 GeV4.40± 0.66+0.09−0.12 47 ± 7 3 ARTUSO 05A CLEO See EISENSTEIN 083.5 ± 1.4 ±0.6 7 4 BONVICINI 04A CLEO Inl. in ARTUSO 05A8 +16

    − 5 +5−2 1 5 BAI 98B BES e+ e− → D∗+D−1EISENSTEIN 08, using the D+ lifetime and assuming ∣∣Vd ∣∣ = ∣∣Vus ∣∣, gets fD+ =(205.8 ± 8.5 ± 2.5) MeV from this measurement.2ABLIKIM 05D �nds a bakground-subtrated 2.67 ± 1.74 D+ → µ+ νµ events, andfrom this obtains fD+ = 371+129−119 ± 25 MeV.3ARTUSO 05A obtains fD+ = 222.6 ± 16.7+2.8−3.4 MeV from this measurement.4BONVICINI 04A �nds eight events with an estimated bakground of one, and from thebranhing fration obtains fD+ = 202 ± 41 ± 17 MeV.5BAI 98B obtains fD+ = (300+180−150+80−40) MeV from this measurement.�(τ+ ντ )/�total �14/��(τ+ ντ )/�total �14/��(τ+ ντ )/�total �14/��(τ+ ντ )/�total �14/�VALUE CL% DOCUMENT ID TECN COMMENT

  • 969969969969See key on page 547 MesonPartile ListingsD±�(π0 e+ νe)/�total �27/��(π0 e+ νe)/�total �27/��(π0 e+ νe)/�total �27/��(π0 e+ νe)/�total �27/�VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.405±0.016±0.0090.405±0.016±0.0090.405±0.016±0.0090.405±0.016±0.009 838 1 BESSON 09 CLEO e+ e− at ψ(3770)• • • We do not use the following data for averages, �ts, limits, et. • • •0.373±0.022±0.013 2 DOBBS 08 CLEO See BESSON 090.44 ±0.06 ±0.03 63 ± 9 HUANG 05B CLEO See DOBBS 081See the form-fator parameters near the end of this D+ Listing.2DOBBS 08 establishes ∣∣V dV s · f π+(0)f K+(0) ∣∣ = 0.188 ± 0.008 ± 0.002 from the D+ and D0deays to K e+ νe and πe+ νe . It �nds �(D0 → π− e+ νe ) / �(D+ → π0 e+ νe ) =2.03 ± 0.14 ± 0.08; isospin invariane predits the ratio is 2.0.�(ηe+ νe)/�total �28/��(ηe+ νe)/�total �28/��(ηe+ νe)/�total �28/��(ηe+ νe)/�total �28/�VALUE (units 10−4) EVTS DOCUMENT ID TECN COMMENT11.4±0.9±0.411.4±0.9±0.411.4±0.9±0.411.4±0.9±0.4 YELTON 11 CLEO e+ e− at ψ(3770)• • • We do not use the following data for averages, �ts, limits, et. • • •13.3±2.0±0.6 46 ± 8 MITCHELL 09B CLEO See YELTON 11�(ρ0 e+νe)/�total �29/��(ρ0 e+νe)/�total �29/��(ρ0 e+νe)/�total �29/��(ρ0 e+νe)/�total �29/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT2.18+0.17

    −0.25 OUR FIT2.18+0.17−0.25 OUR FIT2.18+0.17−0.25 OUR FIT2.18+0.17−0.25 OUR FIT2.17±0.12+0.12−0.222.17±0.12+0.12−0.222.17±0.12+0.12−0.222.17±0.12+0.12−0.22 447 ± 25 1 DOBBS 13 CLEO e+ e− at ψ(3770)

    • • • We do not use the following data for averages, �ts, limits, et. • • •2.1 ±0.4 ±0.1 27 ± 6 2 HUANG 05B CLEO See DOBBS 131DOBBS 13 �nds �(D0 → ρ− e+ νe ) / 2 �(D+ → ρ0 e+ νe ) = 1.03 ± 0.09+0.08−0.02;isospin invariane predits the ratio is 1.0.2HUANG 05B �nds �(D0 → ρ− e+ νe ) / 2 �(D+ → ρ0 e+ νe ) = 1.2+0.4−0.3 ± 0.1;isospin invariane predits the ratio is 1.0.�(ρ0 e+νe)/�(K∗(892)0 e+ νe) �29/�34�(ρ0 e+νe)/�(K∗(892)0 e+ νe) �29/�34�(ρ0 e+νe)/�(K∗(892)0 e+ νe) �29/�34�(ρ0 e+νe)/�(K∗(892)0 e+ νe) �29/�34VALUE EVTS DOCUMENT ID TECN COMMENT0.0396+0.0033−0.0050 OUR FIT0.0396+0.0033−0.0050 OUR FIT0.0396+0.0033−0.0050 OUR FIT0.0396+0.0033−0.0050 OUR FIT0.045 ±0.014 ±0.0090.045 ±0.014 ±0.0090.045 ±0.014 ±0.0090.045 ±0.014 ±0.009 49 1 AITALA 97 E791 π− nuleus, 500 GeV1AITALA 97 expliitly subtrats D+ → η′ e+ νe and other bakgrounds to get this result.�(ρ0µ+νµ)/�(K∗(892)0µ+ νµ) �30/�35�(ρ0µ+νµ)/�(K∗(892)0µ+ νµ) �30/�35�(ρ0µ+νµ)/�(K∗(892)0µ+ νµ) �30/�35�(ρ0µ+νµ)/�(K∗(892)0µ+ νµ) �30/�35VALUE EVTS DOCUMENT ID TECN COMMENT0.045±0.007 OUR AVERAGE0.045±0.007 OUR AVERAGE0.045±0.007 OUR AVERAGE0.045±0.007 OUR AVERAGE Error inludes sale fator of 1.1.0.041±0.006±0.004 320 ± 44 LINK 06B FOCS γ A, Eγ ≈ 180 GeV0.051±0.015±0.009 54 1 AITALA 97 E791 π− nuleus, 500 GeV0.079±0.019±0.013 39 2 FRABETTI 97 E687 γ Be, Eγ ≈ 220 GeV1AITALA 97 expliitly subtrats D+ → η′µ+ νµ and other bakgrounds to get thisresult.2Beause the reonstrution eÆieny for photons is low, this FRABETTI 97 result alsoinludes any D+ → η′µ+ νµ → γ ρ0µ+ νµ events in the numerator.�(ω e+νe)/�total �31/��(ω e+νe)/�total �31/��(ω e+νe)/�total �31/��(ω e+νe)/�total �31/�VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT1.82±0.18±0.071.82±0.18±0.071.82±0.18±0.071.82±0.18±0.07 129 ± 13 DOBBS 13 CLEO e+ e− at ψ(3770)

    • • • We do not use the following data for averages, �ts, limits, et. • • •1.6 +0.7−0.6 ±0.1 7.6+3.3−2.7 HUANG 05B CLEO See DOBBS 13�(η′(958)e+νe)/�total �32/��(η′(958)e+νe)/�total �32/��(η′(958)e+νe)/�total �32/��(η′(958)e+νe)/�total �32/�VALUE (units 10−4) CL% DOCUMENT ID TECN COMMENT2.16±0.53±0.072.16±0.53±0.072.16±0.53±0.072.16±0.53±0.07 YELTON 11 CLEO e+ e− at ψ(3770)

    • • • We do not use the following data for averages, �ts, limits, et. • • •

  • 970970970970MesonPartile ListingsD±�(K∗0(1430)0π+ ,K∗0(1430)0 → K−π+)/�(K−2π+) �43/�40�(K∗0(1430)0π+ ,K∗0(1430)0 → K−π+)/�(K−2π+) �43/�40�(K∗0(1430)0π+ ,K∗0(1430)0 → K−π+)/�(K−2π+) �43/�40�(K∗0(1430)0π+ ,K∗0(1430)0 → K−π+)/�(K−2π+) �43/�40This is the \�t fration" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.1330±0.00620.1330±0.00620.1330±0.00620.1330±0.0062 BONVICINI 08A CLEO QMIPWA �t, 141k evts• • • We do not use the following data for averages, �ts, limits, et. • • •0.125 ±0.014 ±0.005 AITALA 02 E791 See AITALA 060.284 ±0.022 ±0.059 FRABETTI 94G E687 Dalitz �t, 8800 evts0.248 ±0.019 ±0.017 ANJOS 93 E691 γBe 90{260 GeV�(K∗2(1430)0π+ ,K∗2(1430)0 → K−π+)/�(K−2π+) �46/�40�(K∗2(1430)0π+ ,K∗2(1430)0 → K−π+)/�(K−2π+) �46/�40�(K∗2(1430)0π+ ,K∗2(1430)0 → K−π+)/�(K−2π+) �46/�40�(K∗2(1430)0π+ ,K∗2(1430)0 → K−π+)/�(K−2π+) �46/�40This is the \�t fration" from the Dalitz-plot analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.24 ±0.08 OUR AVERAGE0.24 ±0.08 OUR AVERAGE0.24 ±0.08 OUR AVERAGE0.24 ±0.08 OUR AVERAGE Error inludes sale fator of 2.2. See the ideogram below.0.58 ±0.10 ±0.06 LINK 09 FOCS MIPWA �t, 53k evts0.204±0.040 BONVICINI 08A CLEO QMIPWA �t, 141k evts0.2 ±0.1 ±0.1 AITALA 06 E791 Dalitz �t, 15.1k events• • • We do not use the following data for averages, �ts, limits, et. • • •0.39 ±0.09 ±0.05 LINK 07B FOCS See LINK 090.5 ±0.1 ±0.2 AITALA 02 E791 See AITALA 06

    WEIGHTED AVERAGE0.24±0.08 (Error scaled by 2.2)

    AITALA 06 E791 0.1BONVICINI 08A CLEO 0.8LINK 09 FOCS 8.5

    χ2

    9.4(Confidence Level = 0.0091)

    -0.2 0 0.2 0.4 0.6 0.8 1 1.2�(K∗2(1430)0π+ , K∗2(1430)0 → K−π+)/�(K− 2π+) �46/�40(units 10−2)�(K∗(1680)0π+ ,K∗(1680)0 → K−π+)/�(K−2π+) �47/�40�(K∗(1680)0π+ ,K∗(1680)0 → K−π+)/�(K−2π+) �47/�40�(K∗(1680)0π+ ,K∗(1680)0 → K−π+)/�(K−2π+) �47/�40�(K∗(1680)0π+ ,K∗(1680)0 → K−π+)/�(K−2π+) �47/�40This is the \�t fration" from the Dalitz-plot analysis.VALUE (units 10−2) DOCUMENT ID TECN COMMENT0.23 ±0.12 OUR AVERAGE0.23 ±0.12 OUR AVERAGE0.23 ±0.12 OUR AVERAGE0.23 ±0.12 OUR AVERAGE1.75 ±0.62 ±0.54 LINK 09 FOCS MIPWA �t, 53k evts0.196±0.118 BONVICINI 08A CLEO QMIPWA �t, 141k evts1.2 ±0.6 ±1.2 AITALA 06 E791 Dalitz �t, 15.1k events• • • We do not use the following data for averages, �ts, limits, et. • • •1.90 ±0.63 ±0.43 LINK 07B FOCS See LINK 092.5 ±0.7 ±0.3 AITALA 02 E791 See AITALA 064.7 ±0.6 ±0.7 FRABETTI 94G E687 Dalitz �t, 8800 evts3.0 ±0.4 ±1.3 ANJOS 93 E691 γBe 90{260 GeV�(K− (2π+)I=2)/�(K−2π+) �48/�40�(K− (2π+)I=2)/�(K−2π+) �48/�40�(K− (2π+)I=2)/�(K−2π+) �48/�40�(K− (2π+)I=2)/�(K−2π+) �48/�40VALUE DOCUMENT ID TECN COMMENT0.155±0.0280.155±0.0280.155±0.0280.155±0.028 BONVICINI 08A CLEO QMIPWA �t, 141k evts�(K−2π+ nonresonant)/�(K−2π+) �49/�40�(K−2π+ nonresonant)/�(K−2π+) �49/�40�(K−2π+ nonresonant)/�(K−2π+) �49/�40�(K−2π+ nonresonant)/�(K−2π+) �49/�40This is the \�t fration" from the Dalitz-plot analysis. Later analyses �nd little needfor this deay mode.VALUE DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, �ts, limits, et. • • •0.130±0.058±0.044 AITALA 02 E791 See AITALA 060.998±0.037±0.072 FRABETTI 94G E687 Dalitz �t, 8800 evts0.838±0.088±0.275 ANJOS 93 E691 γBe 90{260 GeV0.79 ±0.07 ±0.15 ADLER 87 MRK3 e+ e− 3.77 GeV�(K0S π+π0)/�total �50/��(K0S π+π0)/�total �50/��(K0S π+π0)/�total �50/��(K0S π+π0)/�total �50/�VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT6.99±0.27 OUR FIT6.99±0.27 OUR FIT6.99±0.27 OUR FIT6.99±0.27 OUR FIT6.99±0.09±0.256.99±0.09±0.256.99±0.09±0.256.99±0.09±0.25 1 DOBBS 07 CLEO e+ e− at ψ(3770)• • • We do not use the following data for averages, �ts, limits, et. • • •7.2 ±0.2 ±0.4 5090± 100 1 HE 05 CLEO See DOBBS 075.1 ±1.3 ±0.8 159 ADLER 88C MRK3 e+ e− 3.77 GeV1DOBBS 07 and HE 05 use single- and double-tagged events in an overall �t. DOBBS 07supersedes HE 05.�(K0S ρ+)/�(K0S π+π0) �51/�50�(K0S ρ+)/�(K0S π+π0) �51/�50�(K0S ρ+)/�(K0S π+π0) �51/�50�(K0S ρ+)/�(K0S π+π0) �51/�50This is the \�t fration" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.68±0.08±0.120.68±0.08±0.120.68±0.08±0.120.68±0.08±0.12 ADLER 87 MRK3 e+ e− 3.77 GeV

    �(K∗(892)0π+ ,K∗(892)0 → K0S π0)/�(K0S π+π0) �52/�50�(K∗(892)0π+ ,K∗(892)0 → K0S π0)/�(K0S π+π0) �52/�50�(K∗(892)0π+ ,K∗(892)0 → K0S π0)/�(K0S π+π0) �52/�50�(K∗(892)0π+ ,K∗(892)0 → K0S π0)/�(K0S π+π0) �52/�50This is the \�t fration" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.19±0.06±0.060.19±0.06±0.060.19±0.06±0.060.19±0.06±0.06 ADLER 87 MRK3 e+ e− 3.77 GeV�(K0S π+π0 nonresonant)/�(K0S π+π0) �53/�50�(K0S π+π0 nonresonant)/�(K0S π+π0) �53/�50�(K0S π+π0 nonresonant)/�(K0S π+π0) �53/�50�(K0S π+π0 nonresonant)/�(K0S π+π0) �53/�50This is the \�t fration" from the Dalitz-plot analysis.VALUE DOCUMENT ID TECN COMMENT0.13±0.07±0.080.13±0.07±0.080.13±0.07±0.080.13±0.07±0.08 ADLER 87 MRK3 e+ e− 3.77 GeV�(K−2π+π0)/�total �54/��(K−2π+π0)/�total �54/��(K−2π+π0)/�total �54/��(K−2π+π0)/�total �54/�See our 2008 Review (Physis Letters B667B667B667B667 1 (2008)) for measurements of submodesof this mode. There is nothing new sine 1992, and the two papers, ANJOS 92C, with91 ± 12 events above bakground, and COFFMAN 92B, with 142 ± 20 suh events,ould not determine submode frations with muh a

    uray.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT5.99±0.18 OUR FIT5.99±0.18 OUR FIT5.99±0.18 OUR FIT5.99±0.18 OUR FIT5.98±0.08±0.165.98±0.08±0.165.98±0.08±0.165.98±0.08±0.16 1 DOBBS 07 CLEO e+ e− at ψ(3770)• • • We do not use the following data for averages, �ts, limits, et. • • •6.0 ±0.2 ±0.2 4840± 100 1 HE 05 CLEO See DOBBS 075.8 ±1.2 ±1.2 142 COFFMAN 92B MRK3 e+ e− 3.77 GeV6.3 +1.4

    −1.3 ±1.2 175 BALTRUSAIT...86E MRK3 See COFFMAN 92B1DOBBS 07 and HE 05 use single- and double-tagged events in an overall �t. DOBBS 07supersedes HE 05.�(K0S 2π+π−)/�total �55/��(K0S 2π+π−)/�total �55/��(K0S 2π+π−)/�total �55/��(K0S 2π+π−)/�total �55/�See our 2008 Review (Physis Letters B667B667B667B667 1 (2008)) for measurements of submodesof this mode. There is nothing new sine 1992, and the two papers, ANJOS 92C, with229 ± 17 events above bakground, and COFFMAN 92B, with 209 ± 20 suh events,ould not determine submode frations with muh a

    uray.VALUE (units 10−2) EVTS DOCUMENT ID TECN COMMENT3.12 ±0.11 OUR FIT3.12 ±0.11 OUR FIT3.12 ±0.11 OUR FIT3.12 ±0.11 OUR FIT3.122±0.046±0.0963.122±0.046±0.0963.122±0.046±0.0963.122±0.046±0.096 1 DOBBS 07 CLEO e+ e− at ψ(3770)• • • We do not use the following data for averages, �ts, limits, et. • • •3.2 ±0.1 ±0.2 3210 ± 85 1 HE 05 CLEO See DOBBS 072.1 +1.0

    −0.9 2 BARLAG 92C ACCM π− Cu 230 GeV3.3 ±0.8 ±0.2 168 ADLER 88C MRK3 e+ e− 3.77 GeV1DOBBS 07 and HE 05 use single- and double-tagged events in an overall �t. DOBBS 07supersedes HE 05.2BARLAG 92C omputes the branhing fration by topologial normalization.�(K−3π+π−)/�(K−2π+) �56/�40�(K−3π+π−)/�(K−2π+) �56/�40�(K−3π+π−)/�(K−2π+) �56/�40�(K−3π+π−)/�(K−2π+) �56/�40VALUE EVTS DOCUMENT ID TECN COMMENT0.061±0.005 OUR FIT0.061±0.005 OUR FIT0.061±0.005 OUR FIT0.061±0.005 OUR FIT Error inludes sale fator of 1.1.0.062±0.008 OUR AVERAGE0.062±0.008 OUR AVERAGE0.062±0.008 OUR AVERAGE0.062±0.008 OUR AVERAGE Error inludes sale fator of 1.3.0.058±0.002±0.006 2923 LINK 03D FOCS γ A, Eγ ≈ 180 GeV0.077±0.008±0.010 239 FRABETTI 97C E687 γBe, Eγ ≈ 200 GeV• • • We do not use the following data for averages, �ts, limits, et. • • •0.09 ±0.01 ±0.01 113 ANJOS 90D E691 Photoprodution�(K∗(892)0 2π+π− ,K∗(892)0 → K−π+)/�(K−3π+π−) �57/�56�(K∗(892)0 2π+π− ,K∗(892)0 → K−π+)/�(K−3π+π−) �57/�56�(K∗(892)0 2π+π− ,K∗(892)0 → K−π+)/�(K−3π+π−) �57/�56�(K∗(892)0 2π+π− ,K∗(892)0 → K−π+)/�(K−3π+π−) �57/�56VALUE DOCUMENT ID TECN COMMENT0.21±0.04±0.060.21±0.04±0.060.21±0.04±0.060.21±0.04±0.06 LINK 03D FOCS γ A, Eγ ≈ 180 GeV�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−3π+π−) �58/�56�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−3π+π−) �58/�56�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−3π+π−) �58/�56�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−3π+π−) �58/�56VALUE DOCUMENT ID TECN COMMENT0.40±0.03±0.060.40±0.03±0.060.40±0.03±0.060.40±0.03±0.06 LINK 03D FOCS γ A, Eγ ≈ 180 GeV�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−2π+) �58/�40�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−2π+) �58/�40�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−2π+) �58/�40�(K∗(892)0 ρ0π+ ,K∗(892)0 → K−π+)/�(K−2π+) �58/�40VALUE DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, �ts, limits, et. • • •0.016±0.007±0.004 FRABETTI 97C E687 γBe, Eγ ≈ 200 GeV�(K∗(892)0 2π+π− no-ρ,K∗(892)0 → K−π+)/�(K−2π+) �60/�40�(K∗(892)0 2π+π− no-ρ,K∗(892)0 → K−π+)/�(K−2π+) �60/�40�(K∗(892)0 2π+π− no-ρ,K∗(892)0 → K−π+)/�(K−2π+) �60/�40�(K∗(892)0 2π+π− no-ρ,K∗(892)0 → K−π+)/�(K−2π+) �60/�40VALUE DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, �ts, limits, et. • • •0.032±0.010±0.008 FRABETTI 97C E687 γBe, Eγ ≈ 200 GeV�(K−ρ0 2π+)/�(K−3π+π−) �61/�56�(K−ρ0 2π+)/�(K−3π+π−) �61/�56�(K−ρ0 2π+)/�(K−3π+π−) �61/�56�(K−ρ0 2π+)/�(K−3π+π−) �61/�56VALUE DOCUMENT ID TECN COMMENT0.30±0.04±0.010.30±0.04±0.010.30±0.04±0.010.30±0.04±0.01 LINK 03D FOCS γ A, Eγ ≈ 180 GeV�(K−ρ0 2π+)/�(K−2π+) �61/�40�(K−ρ0 2π+)/�(K−2π+) �61/�40�(K−ρ0 2π+)/�(K−2π+) �61/�40�(K−ρ0 2π+)/�(K−2π+) �61/�40VALUE DOCUMENT ID TECN COMMENT• • • We do not use the following data for averages, �ts, limits, et. • • •0.034±0.009±0.005 FRABETTI 97C E687 γBe, Eγ ≈ 200 GeV�(K∗(892)0 a1(1260)+)/�(K−2π+) �59/�40�(K∗(892)0 a1(1260)+)/�(K−2π+) �59/�40�(K∗(892)0 a1(1260)+)/�(K−2π+) �59/�40�(K∗(892)0 a1(1260)+)/�(K−2π+) �59/�40Unseen deay modes of the K∗(892)0 and a1(1260)+ are inluded.VALUE DOCUMENT ID TECN COMMENT0.099±0.008±0.0180.099±0.008±0.0180.099±0.008±0.0180.099±0.008±0.018 LINK 03D FOCS γ A, Eγ ≈ 180 GeV

  • 971971971971See key on page 547 MesonPartile ListingsD±�(K−3π+π− nonresonant)/�(K−3π+π−) �62/�56�(K−3π+π− nonresonant)/�(K−3π+π−) �62/�56�(K−3π+π− nonresonant)/�(K−3π+π−) �62/�56�(K−3π+π− nonresonant)/�(K−3π+π−) �62/�56VALUE CL% DOCUMENT ID TECN COMMENT0.07 ±0.05±0.010.07 ±0.05±0.010.07 ±0.05±0.010.07 ±0.05±0.01 LINK 03D FOCS γ A, Eγ ≈ 180 GeV• • • We do not use the following data for averages, �ts, limits, et. • • •

  • 972972972972MesonPartile ListingsD±�(ρ(1450)0π+ , ρ(1450)0 → π+π−)/�(2π+π−) �73/�66�(ρ(1450)0π+ , ρ(1450)0 → π+π−)/�(2π+π−) �73/�66�(ρ(1450)0π+ , ρ(1450)0 → π+π−)/�(2π+π−) �73/�66�(ρ(1450)0π+ , ρ(1450)0 → π+π−)/�(2π+π−) �73/�66This is the \�t fration" from the Dalitz-plot analysis.VALUE CL% DOCUMENT ID TECN COMMENT

  • 973973973973See key on page 547 MesonPartile ListingsD±�(K+K∗2(1430)0, K∗2 → K−π+)/�(K+K−π+) �94/�90�(K+K∗2(1430)0, K∗2 → K−π+)/�(K+K−π+) �94/�90�(K+K∗2(1430)0, K∗2 → K−π+)/�(K+K−π+) �94/�90�(K+K∗2(1430)0, K∗2 → K−π+)/�(K+K−π+) �94/�90This is the \�t fration" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT1.7±0.4+1.2−0.71.7±0.4+1.2−0.71.7±0.4+1.2−0.71.7±0.4+1.2−0.7 RUBIN 08 CLEO Dalitz �t, 19,458±163 evts�(K+K∗0(800), K∗0 → K−π+)/�(K+K−π+) �95/�90�(K+K∗0(800), K∗0 → K−π+)/�(K+K−π+) �95/�90�(K+K∗0(800), K∗0 → K−π+)/�(K+K−π+) �95/�90�(K+K∗0(800), K∗0 → K−π+)/�(K+K−π+) �95/�90This is the \�t fration" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT7.0±0.8+3.5−2.07.0±0.8+3.5−2.07.0±0.8+3.5−2.07.0±0.8+3.5−2.0 RUBIN 08 CLEO Dalitz �t, 19,458±163 evts�(a0(1450)0π+, a00 → K+K−)/�(K+K−π+) �96/�90�(a0(1450)0π+, a00 → K+K−)/�(K+K−π+) �96/�90�(a0(1450)0π+, a00 → K+K−)/�(K+K−π+) �96/�90�(a0(1450)0π+, a00 → K+K−)/�(K+K−π+) �96/�90This is the \�t fration" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT4.6±0.6+7.2−1.84.6±0.6+7.2−1.84.6±0.6+7.2−1.84.6±0.6+7.2−1.8 RUBIN 08 CLEO Dalitz �t, 19,458±163 evts�(φ(1680)π+, φ→ K+K−)/�(K+K−π+) �97/�90�(φ(1680)π+, φ→ K+K−)/�(K+K−π+) �97/�90�(φ(1680)π+, φ→ K+K−)/�(K+K−π+) �97/�90�(φ(1680)π+, φ→ K+K−)/�(K+K−π+) �97/�90This is the \�t fration" from the Dalitz-plot analysis.VALUE (%) DOCUMENT ID TECN COMMENT0.51±0.11+0.37

    −0.160.51±0.11+0.37−0.160.51±0.11+0.37−0.160.51±0.11+0.37−0.16 RUBIN 08 CLEO Dalitz �t, 19,458±163 evts�(K∗(892)+K0S)/�(K0S π+) �105/�38�(K∗(892)+K0S)/�(K0S π+) �105/�38�(K∗(892)+K0S)/�(K0S π+) �105/�38�(K∗(892)+K0S)/�(K0S π+) �105/�38Unseen deay modes of the K∗(892)+ are inluded.VALUE EVTS DOCUMENT ID TECN COMMENT1.1±0.3±0.41.1±0.3±0.41.1±0.3±0.41.1±0.3±0.4 67 FRABETTI 95 E687 γBe Eγ ≈ 200 GeV�(φπ+π0)/�total �102/��(φπ+π0)/�total �102/��(φπ+π0)/�total �102/��(φπ+π0)/�total �102/�Unseen deay modes of the φ are inluded.VALUE DOCUMENT ID TECN COMMENT0.023±0.0100.023±0.0100.023±0.0100.023±0.010 1 BARLAG 92C ACCM π− Cu 230 GeV1BARLAG 92C omputes the branhing fration using topologial normalization.�(φρ+)/�(K−2π+) �103/�40�(φρ+)/�(K−2π+) �103/�40�(φρ+)/�(K−2π+) �103/�40�(φρ+)/�(K−2π+) �103/�40Unseen deay modes of the φ are inluded.VALUE CL% DOCUMENT ID TECN COMMENT

  • 974974974974MesonPartile ListingsD±�(π+µ+µ−)/�total �118/��(π+µ+µ−)/�total �118/��(π+µ+µ−)/�total �118/��(π+µ+µ−)/�total �118/�A test for the �C = 1 weak neutral urrent. Allowed by higher-order eletroweakinterations.VALUE CL% DOCUMENT ID TECN COMMENT

  • 975975975975See key on page 547 Meson Partile ListingsD±ACP (K0S π±) in D± → K0S π±ACP (K0S π±) in D± → K0S π±ACP (K0S π±) in D± → K0S π±ACP (K0S π±) in D± → K0S π±VALUE (%) EVTS DOCUMENT ID TECN COMMENT−0.41 ±0.09 OUR AVERAGE−0.41 ±0.09 OUR AVERAGE−0.41 ±0.09 OUR AVERAGE−0.41 ±0.09 OUR AVERAGE−0.363±0.094±0.067 1738k 1 KO 12A BELL e+ e− ≈ �(nS)−0.44 ±0.13 ±0.10 807k DEL-AMO-SA...11H BABR e+ e− ≈ �(4S)−1.3 ±0.7 ±0.3 30k MENDEZ 10 CLEO e+ e− at 3774 MeV−1.6 ±1.5 ±0.9 10.6k 2 LINK 02B FOCS γ nuleus, Eγ ≈ 180 GeV• • • We do not use the following data for averages, �ts, limits, et. • • •−0.71 ±0.19 ±0.20 KO 10 BELL See KO 12A−0.6 ±1.0 ±0.3 DOBBS 07 CLEO See MENDEZ 101KO 12A �nds that after subtrating the ontribution due to K0 − K0 mixing, the CPasymmetry due to the hange of harm is (−0.024 ± 0.094 ± 0.067)%, onsistent withzero.2 LINK 02B measures N(D+ → K0S π+)/N(D+ → K−π+π+), the ratio of numbersof events observed, and similarly for the D−.ACP (K∓2π±) in D+ → K−2π+, D− → K+2π−ACP (K∓2π±) in D+ → K−2π+, D− → K+2π−ACP (K∓2π±) in D+ → K−2π+, D− → K+2π−ACP (K∓2π±) in D+ → K−2π+, D− → K+2π−VALUE (%) EVTS DOCUMENT ID TECN COMMENT−0.1±0.4±0.9−0.1±0.4±0.9−0.1±0.4±0.9−0.1±0.4±0.9 231k MENDEZ 10 CLEO e+ e− at 3774 MeV• • • We do not use the following data for averages, �ts, limits, et. • • •−0.5±0.4±0.9 DOBBS 07 CLEO See MENDEZ 10ACP (K∓π±π±π0) in D+ → K−π+π+π0, D− → K+π−π−π0ACP (K∓π±π±π0) in D+ → K−π+π+π0, D− → K+π−π−π0ACP (K∓π±π±π0) in D+ → K−π+π+π0, D− → K+π−π−π0ACP (K∓π±π±π0) in D+ → K−π+π+π0, D− → K+π−π−π0VALUE (%) DOCUMENT ID TECN COMMENT+1.0±0.9±0.9+1.0±0.9±0.9+1.0±0.9±0.9+1.0±0.9±0.9 DOBBS 07 CLEO e+ e− at ψ(3770)ACP (K0S π±π0) in D+ → K0S π+π0, D− → K0S π−π0ACP (K0S π±π0) in D+ → K0S π+π0, D− → K0S π−π0ACP (K0S π±π0) in D+ → K0S π+π0, D− → K0S π−π0ACP (K0S π±π0) in D+ → K0S π+π0, D− → K0S π−π0VALUE (%) DOCUMENT ID TECN COMMENT+0.3±0.9±0.3+0.3±0.9±0.3+0.3±0.9±0.3+0.3±0.9±0.3 DOBBS 07 CLEO e+ e− at ψ(3770)ACP (K0S π±π+π−) in D+ → K0S π+π+π−, D− → K0S π−π−π+ACP (K0S π±π+π−) in D+ → K0S π+π+π−, D− → K0S π−π−π+ACP (K0S π±π+π−) in D+ → K0S π+π+π−, D− → K0S π−π−π+ACP (K0S π±π+π−) in D+ → K0S π+π+π−, D− → K0S π−π−π+VALUE (%) DOCUMENT ID TECN COMMENT+0.1±1.1±0.6+0.1±1.1±0.6+0.1±1.1±0.6+0.1±1.1±0.6 DOBBS 07 CLEO e+ e− at ψ(3770)ACP (π±π0) in D± → π±π0ACP (π±π0) in D± → π±π0ACP (π±π0) in D± → π±π0ACP (π±π0) in D± → π±π0VALUE (%) EVTS DOCUMENT ID TECN COMMENT+2.9±2.9±0.3+2.9±2.9±0.3+2.9±2.9±0.3+2.9±2.9±0.3 2.6k MENDEZ 10 CLEO e+ e− at 3774 MeVACP (π± η) in D± → π± ηACP (π± η) in D± → π± ηACP (π± η) in D± → π± ηACP (π± η) in D± → π± ηVALUE (%) EVTS DOCUMENT ID TECN COMMENT1.0 ±1.5 OUR AVERAGE1.0 ±1.5 OUR AVERAGE1.0 ±1.5 OUR AVERAGE1.0 ±1.5 OUR AVERAGE Error inludes sale fator of 1.4.+1.74±1.13±0.19 WON 11 BELL e+ e− ≈ �(4S)−2.0 ±2.3 ±0.3 2.9k MENDEZ 10 CLEO e+ e− at 3774 MeVACP (π± η′(958)) in D± → π± η′(958)ACP (π± η′(958)) in D± → π± η′(958)ACP (π± η′(958)) in D± → π± η′(958)ACP (π± η′(958)) in D± → π± η′(958)VALUE (%) EVTS DOCUMENT ID TECN COMMENT−0.5 ±1.2 OUR AVERAGE−0.5 ±1.2 OUR AVERAGE−0.5 ±1.2 OUR AVERAGE−0.5 ±1.2 OUR AVERAGE Error inludes sale fator of 1.1.−0.12±1.12±0.17 WON 11 BELL e+ e− ≈ �(4S)−4.0 ±3.4 ±0.3 1.0k MENDEZ 10 CLEO e+ e− at 3774 MeVACP (K0S K±) in D± → K0S K±ACP (K0S K±) in D± → K0S K±ACP (K0S K±) in D± → K0S K±ACP (K0S K±) in D± → K0S K±VALUE (%) EVTS DOCUMENT ID TECN COMMENT−0.11±0.25 OUR AVERAGE−0.11±0.25 OUR AVERAGE−0.11±0.25 OUR AVERAGE−0.11±0.25 OUR AVERAGE−0.25±0.28±0.14 277k 1 KO 13 BELL e+ e− at �(nS)0.13±0.36±0.25 159k 2 LEES 13E BABR e+ e− at �(4S)−0.2 ±1.5 ±0.9 5.2k MENDEZ 10 CLEO e+ e− at 3774 MeV7.1 ±6.1 ±1.2 949 3 LINK 02B FOCS γ nuleus, Eγ ≈ 180 GeV• • • We do not use the following data for averages, �ts, limits, et. • • •−0.16±0.58±0.25 KO 10 BELL e+ e− ≈ �(4S)6.9 ±6.0 ±1.5 949 4 LINK 02B FOCS γ nuleus, Eγ ≈ 180 GeV1KO 13 �nds that after subtrating the ontribution due to K0 − K0 mixing, the CPasymmetry is (+0.08 ± 0.28 ± 0.14)%.2 LEES 13E �nds that after subtrating the ontribution due to K0 −K0 mixing, the CPasymmetry is (+0.46 ± 0.36 ± 0.25)%.3 LINK 02B measures N(D+ → K0S K+)/N(D+ → K0S π+), the ratio of numbers ofevents observed, and similarly for the D−.4 LINK 02B measures N(D+ → K0S K+)/N(D+ → K−π+π+), the ratio of numbersof events observed, and similarly for the D−.ACP (K+K−π±) in D± → K+K−π±ACP (K+K−π±) in D± → K+K−π±ACP (K+K−π±) in D± → K+K−π±ACP (K+K−π±) in D± → K+K−π±See also AAIJ 11G for a searh for CP asymmetry in the D± → K+K−π± Dalitzplots using 370k deays and four di�erent binning shemes. No evidene for CPasymmetry was found.VALUE (%) EVTS DOCUMENT ID TECN COMMENT0.36±0.29 OUR AVERAGE0.36±0.29 OUR AVERAGE0.36±0.29 OUR AVERAGE0.36±0.29 OUR AVERAGE0.37±0.30±0.15 224k 1 LEES 13F BABR e+ e− at �(4S)−0.03±0.84±0.29 RUBIN 08 CLEO e+ e− at 3774 MeV−0.1 ±1.5 ±0.8 DOBBS 07 CLEO e+ e− at ψ(3770)+1.4 ±1.0 ±0.8 43k 2 AUBERT 05S BABR e+ e− at �(4S)+0.6 ±1.1 ±0.5 14k 3 LINK 00B FOCS−1.4 ±2.9 3 AITALA 97B E791 −0.062

  • 976976976976MesonPartile ListingsD± D+-D− T-VIOLATING DECAY-RATE ASYMMETRIESD+-D− T-VIOLATING DECAY-RATE ASYMMETRIESD+-D− T-VIOLATING DECAY-RATE ASYMMETRIESD+-D− T-VIOLATING DECAY-RATE ASYMMETRIESATviol (K0S K±π+π−) in D± → K0S K±π+π−ATviol (K0S K±π+π−) in D± → K0S K±π+π−ATviol (K0S K±π+π−) in D± → K0S K±π+π−ATviol (K0S K±π+π−) in D± → K0S K±π+π−CT ≡ ~pK+ · (~pπ+ × ~pπ− ) is a parity-odd orrelation of the K+, π+, and π−momenta for the D+. CT ≡ ~pK− · (~pπ− ×~pπ+) is the orresponding quantity forthe D−. ThenAT ≡ [�(CT > 0)− �(CT < 0)℄ / [�(CT > 0)+ �(CT < 0)℄, andAT ≡ [�(−CT > 0)− �(−CT < 0)℄ / [�(−CT > 0)+ �(−CT < 0)℄, andATviol ≡ 12 (AT − AT ). CT and CT are ommonly referred to as T-odd mo-ments, beause they are odd under T reversal. However, the T-onjugate proessK0S K±π+π− → D± is not a

    essible, while the P-onjugate proess is.VALUE (units 10−3) EVTS DOCUMENT ID TECN COMMENT−12.0±10.0± 4.6−12.0±10.0± 4.6−12.0±10.0± 4.6−12.0±10.0± 4.6 21.2±0.4k LEES 11E BABR e+ e− ≈ �(4S)• • • We do not use the following data for averages, �ts, limits, et. • • •23 ±62 ±22 523 ± 32 LINK 05E FOCS γ A, Eγ≈ 180 GeVD+ → (K0 /π0 /η/ρ0 /K∗0 )ℓ+ νℓ FORM FACTORSD+ → (K0 /π0 /η/ρ0 /K∗0 )ℓ+ νℓ FORM FACTORSD+ → (K0 /π0 /η/ρ0 /K∗0 )ℓ+ νℓ FORM FACTORSD+ → (K0 /π0 /η/ρ0 /K∗0 )ℓ+ νℓ FORM FACTORSf+(0)∣∣Vcs∣∣ in D+ → K0 ℓ+νℓf+(0)∣∣Vcs∣∣ in D+ → K0 ℓ+νℓf+(0)∣∣Vcs∣∣ in D+ → K0 ℓ+νℓf+(0)∣∣Vcs∣∣ in D+ → K0 ℓ+νℓVALUE DOCUMENT ID TECN COMMENT0.707±0.010±0.0090.707±0.010±0.0090.707±0.010±0.0090.707±0.010±0.009 BESSON 09 CLEO K0 e+ νe 3-parameter �tr1 ≡ a1/a0 in D+ → K0 ℓ+νℓr1 ≡ a1/a0 in D+ → K0 ℓ+νℓr1 ≡ a1/a0 in D+ → K0 ℓ+νℓr1 ≡ a1/a0 in D+ → K0 ℓ+νℓVALUE DOCUMENT ID TECN COMMENT−1.66±0.44±0.10−1.66±0.44±0.10−1.66±0.44±0.10−1.66±0.44±0.10 BESSON 09 CLEO K0 e+ νe 3-parameter �tr2 ≡ a2/a0 in D+ → K0 ℓ+νℓr2 ≡ a2/a0 in D+ → K0 ℓ+νℓr2 ≡ a2/a0 in D+ → K0 ℓ+νℓr2 ≡ a2/a0 in D+ → K0 ℓ+νℓVALUE DOCUMENT ID TECN COMMENT−14±11±1−14±11±1−14±11±1−14±11±1 BESSON 09 CLEO K0 e+ νe 3-parameter �tf+(0)∣∣Vcd∣∣ in D+ → π0 ℓ+νℓf+(0)∣∣Vcd∣∣ in D+ → π0 ℓ+νℓf+(0)∣∣Vcd∣∣ in D+ → π0 ℓ+νℓf+(0)∣∣Vcd∣∣ in D+ → π0 ℓ+νℓVALUE DOCUMENT ID TECN COMMENT0.146±0.007±0.0020.146±0.007±0.0020.146±0.007±0.0020.146±0.007±0.002 BESSON 09 CLEO π0 e+ νe 3-parameter �tr1 ≡ a1/a0 in D+ → π0 ℓ+νℓr1 ≡ a1/a0 in D+ → π0 ℓ+νℓr1 ≡ a1/a0 in D+ → π0 ℓ+νℓr1 ≡ a1/a0 in D+ → π0 ℓ+νℓVALUE DOCUMENT ID TECN COMMENT−1.37±0.88±0.24−1.37±0.88±0.24−1.37±0.88±0.24−1.37±0.88±0.24 BESSON 09 CLEO π0 e+ νe 3-parameter �tr2 ≡ a2/a0 in D+ → π0 ℓ+νℓr2 ≡ a2/a0 in D+ → π0 ℓ+νℓr2 ≡ a2/a0 in D+ → π0 ℓ+νℓr2 ≡ a2/a0 in D+ → π0 ℓ+νℓVALUE DOCUMENT ID TECN COMMENT−4±5±1−4±5±1−4±5±1−4±5±1 BESSON 09 CLEO π0 e+ νe 3-parameter �tf+(0)∣∣Vcd∣∣ in D+ → ηe+ νef+(0)∣∣Vcd∣∣ in D+ → ηe+ νef+(0)∣∣Vcd∣∣ in D+ → ηe+ νef+(0)∣∣Vcd∣∣ in D+ → ηe+ νeVALUE DOCUMENT ID TECN COMMENT0.086±0.006±0.0010.086±0.006±0.0010.086±0.006±0.0010.086±0.006±0.001 YELTON 11 CLEO z expansionr1 ≡ a1/a0 in D+ → ηe+ νer1 ≡ a1/a0 in D+ → ηe+ νer1 ≡ a1/a0 in D+ → ηe+ νer1 ≡ a1/a0 in D+ → ηe+ νeVALUE DOCUMENT ID TECN COMMENT−1.83±2.23±0.28−1.83±2.23±0.28−1.83±2.23±0.28−1.83±2.23±0.28 YELTON 11 CLEO z expansionrv ≡ V(0)/A1(0) in D+,D0 → ρe+νerv ≡ V(0)/A1(0) in D+,D0 → ρe+νerv ≡ V(0)/A1(0) in D+,D0 → ρe+νerv ≡ V(0)/A1(0) in D+,D0 → ρe+νeVALUE DOCUMENT ID TECN COMMENT1.48±0.15±0.051.48±0.15±0.051.48±0.15±0.051.48±0.15±0.05 1 DOBBS 13 CLEO e+ e− at ψ(3770)1Uses both D+ and D0 events. Using PDG 10 values of Vd and lifetimes, DOBBS 13gets A1(0) = 0.56 ± 0.01+0.02−0.03, A2(0) = 0.47 ± 0.06 ± 0.04, and V(0) = 0.84 ±0.09+0.05

    −0.06.r2 ≡ A2(0)/A1(0) in D+,D0 → ρe+ νer2 ≡ A2(0)/A1(0) in D+,D0 → ρe+ νer2 ≡ A2(0)/A1(0) in D+,D0 → ρe+ νer2 ≡ A2(0)/A1(0) in D+,D0 → ρe+ νeVALUE DOCUMENT ID TECN COMMENT0.83±0.11±0.040.83±0.11±0.040.83±0.11±0.040.83±0.11±0.04 1 DOBBS 13 CLEO e+ e− at ψ(3770)1Uses both D+ and D0 events. Using PDG 10 values of Vd and lifetimes, DOBBS 13gets A1(0) = 0.56 ± 0.01+0.02−0.03, A2(0) = 0.47 ± 0.06 ± 0.04, and V(0) = 0.84 ±0.09+0.05−0.06.rv ≡ V(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓrv ≡ V(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓrv ≡ V(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓrv ≡ V(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓSee also BRIERE 10 for K∗ ℓ+ νℓ heliity-basis form-fator measurements.VALUE EVTS DOCUMENT ID TECN COMMENT1.51 ±0.07 OUR AVERAGE1.51 ±0.07 OUR AVERAGE1.51 ±0.07 OUR AVERAGE1.51 ±0.07 OUR AVERAGE Error inludes sale fator of 2.2. See the ideogram below.1.463±0.017±0.031 1 DEL-AMO-SA...11I BABR1.504±0.057±0.039 15k 2 LINK 02L FOCS K∗(892)0µ+ νµ1.45 ±0.23 ±0.07 763 ADAMOVICH 99 BEAT K∗(892)0µ+ νµ1.90 ±0.11 ±0.09 3000 3 AITALA 98B E791 K∗(892)0 e+ νe1.84 ±0.11 ±0.09 3034 AITALA 98F E791 K∗(892)0µ+ νµ1.74 ±0.27 ±0.28 874 FRABETTI 93E E687 K∗(892)0µ+ νµ2.00 +0.34

    −0.32 ±0.16 305 KODAMA 92 E653 K∗(892)0µ+ νµ• • • We do not use the following data for averages, �ts, limits, et. • • •2.0 ±0.6 ±0.3 183 ANJOS 90E E691 K∗(892)0 e+ νe

    1DEL-AMO-SANCHEZ 11I �nds the pole mass mA = (2.63 ± 0.10 ± 0.13) GeV (mV is�xed at 2 GeV).2 LINK 02L inludes the e�ets of interferene with an S-wave bakground. This muhimproves the goodness of �t, but does not muh shift the values of the form fators.3This is slightly di�erent from the AITALA 98B value: see ref. [5℄ in AITALA 98F.WEIGHTED AVERAGE1.51±0.07 (Error scaled by 2.2)

    KODAMA 92 E653FRABETTI 93E E687AITALA 98F E791 5.4AITALA 98B E791 7.5ADAMOVICH 99 BEATLINK 02L FOCS 0.0DEL-AMO-SA... 11I BABR 1.8

    χ2

    14.7(Confidence Level = 0.0021)

    1 1.5 2 2.5 3rv ≡ V(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓr2 ≡ A2(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓr2 ≡ A2(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓr2 ≡ A2(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓr2 ≡ A2(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓSee also BRIERE 10 for K∗ ℓ+ νℓ heliity-basis form-fator measurements.VALUE EVTS DOCUMENT ID TECN COMMENT0.807±0.025 OUR AVERAGE0.807±0.025 OUR AVERAGE0.807±0.025 OUR AVERAGE0.807±0.025 OUR AVERAGE0.801±0.020±0.020 1 DEL-AMO-SA...11I BABR0.875±0.049±0.064 15k 2 LINK 02L FOCS K∗(892)0µ+ νµ1.00 ±0.15 ±0.03 763 ADAMOVICH 99 BEAT K∗(892)0µ+ νµ0.71 ±0.08 ±0.09 3000 AITALA 98B E791 K∗(892)0 e+ νe0.75 ±0.08 ±0.09 3034 AITALA 98F E791 K∗(892)0µ+ νµ0.78 ±0.18 ±0.10 874 FRABETTI 93E E687 K∗(892)0µ+ νµ0.82 +0.22−0.23 ±0.11 305 KODAMA 92 E653 K∗(892)0µ+ νµ

    • • • We do not use the following data for averages, �ts, limits, et. • • •0.0 ±0.5 ±0.2 183 ANJOS 90E E691 K∗(892)0 e+ νe1DEL-AMO-SANCHEZ 11I �nds the pole mass mA = (2.63 ± 0.10 ± 0.13) GeV (mV is�xed at 2 GeV).2 LINK 02L inludes the e�ets of interferene with an S-wave bakground. This muhimproves the goodness of �t, but does not muh shift the values of the form fators.r3 ≡ A3(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓr3 ≡ A3(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓr3 ≡ A3(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓr3 ≡ A3(0)/A1(0) in D+ → K∗(892)0 ℓ+νℓSee also BRIERE 10 for K∗ ℓ+ νℓ heliity-basis form-fator measurements.VALUE EVTS DOCUMENT ID TECN COMMENT0.04±0.33±0.290.04±0.33±0.290.04±0.33±0.290.04±0.33±0.29 3034 AITALA 98F E791 K∗(892)0µ+ νµ�L/�T in D+ → K∗(892)0 ℓ+νℓ�L/�T in D+ → K∗(892)0 ℓ+νℓ�L/�T in D+ → K∗(892)0 ℓ+νℓ�L/�T in D+ → K∗(892)0 ℓ+νℓSee also BRIERE 10 for K∗ ℓ+ νℓ heliity-basis form-fator measurements.VALUE EVTS DOCUMENT ID TECN COMMENT1.13±0.08 OUR AVERAGE1.13±0.08 OUR AVERAGE1.13±0.08 OUR AVERAGE1.13±0.08 OUR AVERAGE1.09±0.10±0.02 763 ADAMOVICH 99 BEAT K∗(892)0µ+ νµ1.20±0.13±0.13 874 FRABETTI 93E E687 K∗(892)0µ+ νµ1.18±0.18±0.08 305 KODAMA 92 E653 K∗(892)0µ+ νµ• • • We do not use the following data for averages, �ts, limits, et. • • •1.8 +0.6

    −0.4 ±0.3 183 ANJOS 90E E691 K∗(892)0 e+ νe�+/�− in D+ → K∗(892)0 ℓ+νℓ�+/�− in D+ → K∗(892)0 ℓ+νℓ�+/�− in D+ → K∗(892)0 ℓ+νℓ�+/�− in D+ → K∗(892)0 ℓ+νℓSee also BRIERE 10 for K∗ ℓ+ νℓ heliity-basis form-fator measurements.VALUE EVTS DOCUMENT ID TECN COMMENT0.22±0.06 OUR AVERAGE0.22±0.06 OUR AVERAGE0.22±0.06 OUR AVERAGE0.22±0.06 OUR AVERAGE Error inludes sale fator of 1.6.0.28±0.05±0.02 763 ADAMOVICH 99 BEAT K∗(892)0µ+ νµ0.16±0.05±0.02 305 KODAMA 92 E653 K∗(892)0µ+ νµ• • • We do not use the following data for averages, �ts, limits, et. • • •0.15+0.07

    −0.05±0.03 183 ANJOS 90E E691 K∗(892)0 e+ νe

  • 977977977977See key on page 547 MesonPartile ListingsD±,D0D± REFERENCESD± REFERENCESD± REFERENCESD± REFERENCESAAIJ 14C PL B728 585 R. Aaij et al. (LHCb Collab.)AAIJ 13AF PL B724 203 R. Aaij et al. (LHCb Collab.)AAIJ 13W JHEP 1306 112 R. Aaij et al. (LHCb Collab.)DOBBS 13 PRL 110 131802 S. Dobbs et al. (CLEO Collab.)KO 13 JHEP 1302 098 B.R. Ko et al. (BELLE Collab.)LEES 13E PR D87 052012 J.P. Lees et al. (BABAR Collab.)LEES 13F PR D87 052010 J.P. Lees et al. (BABAR Collab.)KO 12A PRL 109 119903 (errat) B.R. Ko et al. (BELLE Collab.)Also PRL 109 021601 B.R. Ko et al. (BELLE Collab.)STARIC 12 PRL 108 071801 M. Stari et al. (BELLE Collab.)AAIJ 11G PR D84 112008 R. Aaij et al. (LHCb Collab.)DEL-AMO-SA... 11H PR D83 071103 P. del Amo Sanhez et al. (BABAR Collab.)DEL-AMO-SA... 11I PR D83 072001 P. del Amo Sanhez et al. (BABAR Collab.)LEES 11E PR D84 031103 J.P. Lees et al. (BABAR Collab.)LEES 11G PR D84 072006 J.P. Lees et al. (BABAR Collab.)WON 11 PRL 107 221801 E. Won et al. (BELLE Collab.)YELTON 11 PR D84 032001 J. Yelton et al. (CLEO Collab.)ANASHIN 10A PL B686 84 V.V. Anashin et al. (VEPP-4M KEDR Collab.)ASNER 10 PR D81 052007 D.M. Asner et al. (CLEO Collab.)BRIERE 10 PR D81 112001 R.A. Briere et al. (CLEO Collab.)KO 10 PRL 104 181602 B.R. Ko et al. (BELLE Collab.)MENDEZ 10 PR D81 052013 H. Mendez et al. (CLEO Collab.)PDG 10 JP G37 075021 K. Nakamura et al. (PDG Collab.)RUBIN 10 PR D82 092007 P. Rubin et al. (CLEO Collab.)BESSON 09 PR D80 032005 D. Besson et al. (CLEO Collab.)Also PR D79 052010 J.Y. Ge et al. (CLEO Collab.)KO 09 PRL 102 221802 B.R. Ko et al. (BELLE Collab.)LINK 09 PL B681 14 J.M. Link et al. (FNAL FOCUS Collab.)MITCHELL 09B PRL 102 081801 R.E. Mithell et al. (CLEO Collab.)WON 09 PR D80 111101 E. Won et al. (BELLE Collab.)ABAZOV 08D PRL 100 101801 V.M. Abazov et al. (D0 Collab.)ABLIKIM 08L PL B665 16 M. Ablikim et al. (BES Collab.)ARTUSO 08 PR D77 092003 M. Artuso et al. (CLEO Collab.)BONVICINI 08 PR D77 091106 G. Bonviini et al. (CLEO Collab.)BONVICINI 08A PR D78 052001 G. Bonviini et al. (CLEO Collab.)DOBBS 08 PR D77 112005 S. Dobbs et al. (CLEO Collab.)Also PRL 100 251802 D. Cronin-Hennessy et al. (CLEO Collab.)EISENSTEIN 08 PR D78 052003 B.I. Eisenstein et al. (CLEO Collab.)HE 08 PRL 100 091801 Q. He et al. (CLEO Collab.)PDG 08 PL B667 1 C. Amsler et al. (PDG Collab.)RUBIN 08 PR D78 072003 P. Rubin et al. (CLEO Collab.)ABLIKIM 07 PL B644 20 M. Ablikim et al. (BES Collab.)ABLIKIM 07G PL B658 1 M. Ablikim et al. (BES Collab.)BONVICINI 07 PR D76 012001 G. Bonviini et al. (CLEO Collab.)DOBBS 07 PR D76 112001 S. Dobbs et al. (CLEO Collab.)LINK 07B PL B653 1 J.M. Link et al. (FNAL FOCUS Collab.)ABLIKIM 06O EPJ C47 31 M. Ablikim et al. (BES Collab.)ABLIKIM 06P EPJ C47 39 M. Ablikim et al. (BES Collab.)ABLIKIM 06U PL B643 246 M. Ablikim et al. (BES Collab.)ADAM 06A PRL 97 251801 N.E. Adam et al. (CLEO Collab.)AITALA 06 PR D73 032004 E.M. Aitala et al. (FNAL E791 Collab.)Also PR D74 059901 (errat.) E.M. Aitala et al. (FNAL E791 Collab.)AUBERT,B 06F PR D74 011107 B. Aubert et al. (BABAR Colla.b)DYTMAN 06 PR D74 071102 S.A. Dytman et al. (CLEO Collab.)HUANG 06B PR D74 112005 G.S. Huang et al. (CLEO Collab.)LINK 06B PL B637 32 J.M. Link et al. (FNAL FOCUS Collab.)RUBIN 06 PRL 96 081802 P. Rubin et al. (CLEO Collab.)RUBIN 06A PR D73 112005 P. Rubin et al. (CLEO Collab.)ABLIKIM 05A PL B608 24 M. Ablikim et al. (BES Collab.)ABLIKIM 05D PL B610 183 M. Ablikim et al. (BES Collab.)ABLIKIM 05F PL B622 6 M. Ablikim et al. (BES Collab.)ABLIKIM 05P PL B625 196 M. Ablikim et al. (BES Collab.)ARTUSO 05A PRL 95 251801 M. Artuso et al. (CLEO Collab.)AUBERT 05S PR D71 091101 B. Aubert et al. (BABAR Collab.)HE 05 PRL 95 121801 Q. He et al. (CLEO Collab.)Also PRL 96 199903 (errat.) Q. He et al. (CLEO Collab.)HE 05A PRL 95 221802 Q. He et al. (CLEO Collab.)HUANG 05B PRL 95 181801 G.S. Huang et al. (CLEO Collab.)KAYIS-TOPAK...05 PL B626 24 A. Kayis-Topaksu et al. (CERN CHORUS Collab.)LINK 05E PL B622 239 J.M. Link et al. (FNAL FOCUS Collab.)LINK 05I PL B621 72 J.M. Link et al. (FNAL FOCUS Collab.)ABLIKIM 04C PL B597 39 M. Ablikim et al. (BEPC BES Collab.)ARMS 04 PR D69 071102 K. Arms et al. (CLEO Collab.)BONVICINI 04A PR D70 112004 G. Bonviini et al. (CLEO Collab.)LINK 04 PL B585 200 J.M. Link et al. (FNAL FOCUS Collab.)LINK 04E PL B598 33 J.M. Link et al. (FNAL FOCUS Collab.)LINK 04F PL B601 10 J.M. Link et al. (FNAL FOCUS Collab.)ANISOVICH 03 EPJ A16 229 V.V. Anisovih et al.LINK 03D PL B561 225 J.M. Link et al. (FNAL FOCUS Collab.)LINK 03F PL B572 21 J.M. Link et al. (FNAL FOCUS Collab.)AITALA 02 PRL 89 121801 E.M. Aitala et al. (FNAL E791 Collab.)BRANDENB... 02 PRL 89 222001 G. Brandenburg et al. (CLEO Collab.)KAYIS-TOPAK...02 PL B549 48 A. Kayis-Topaksu et al. (CERN CHORUS Collab.)LINK 02B PRL 88 041602 J.M. Link et al. (FNAL FOCUS Collab.)Also PRL 88 159903 (errat) J.M. Link et al. (FNAL FOCUS Collab.)LINK 02E PL B535 43 J.M. Link et al. (FNAL FOCUS Collab.)LINK 02F PL B537 192 J.M. Link et al. (FNAL FOCUS Collab.)LINK 02I PL B541 227 J.M. Link et al. (FNAL FOCUS Collab.)LINK 02J PL B541 243 J.M. Link et al. (FNAL FOCUS Collab.)LINK 02L PL B544 89 J.M. Link et al. (FNAL FOCUS Collab.)AITALA 01B PRL 86 770 E.M. Aitala et al. (FNAL E791 Collab.)LINK 01C PRL 87 162001 J.M. Link et al. (FNAL FOCUS Collab.)ABREU 00O EPJ C12 209 P. Abreu et al. (DELPHI Collab.)ASTIER 00D PL B486 35 P. Astier et al. (CERN NOMAD Collab.)JUN 00 PRL 84 1857 S.Y. Jun et al. (FNAL SELEX Collab.)LINK 00B PL B491 232 J.M. Link et al. (FNAL FOCUS Collab.)Also PL B495 443 (errat) J.M. Link et al. (FNAL FOCUS Collab.)ABBIENDI 99K EPJ C8 573 G. Abbiendi et al. (OPAL Collab.)ADAMOVICH 99 EPJ C6 35 M. Adamovih et al. (CERN BEATRICE Collab.)AITALA 99G PL B462 401 E.M. Aitala et al. (FNAL E791 Collab.)BONVICINI 99 PRL 82 4586 G. Bonviini et al. (CLEO Collab.)AITALA 98B PRL 80 1393 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 98C PL B421 405 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 98F PL B440 435 E.M. Aitala et al. (FNAL E791 Collab.)BAI 98B PL B429 188 J.Z. Bai et al. (BEPC BES Collab.)AITALA 97 PL B397 325 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 97B PL B403 377 E.M. Aitala et al. (FNAL E791 Collab.)AITALA 97C PL B404 187 E.M. Aitala et al. (FNAL E791 Collab.)BISHAI 97 PRL 78 3261 M. Bishai et al. (CLEO Collab.)FRABETTI 97 PL B391 235 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 97B PL B398 239 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 97C PL B401 131 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 97D PL B407 79 P.L. Frabetti et al. (FNAL E687 Collab.)AITALA 96 PRL 76 364 E.M. Aitala et al. (FNAL E791 Collab.)FRABETTI 95 PL B346 199 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 95B PL B351 591 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 95E PL B359 403 P.L. Frabetti et al. (FNAL E687 Collab.)KODAMA 95 PL B345 85 K. Kodama et al. (FNAL E653 Collab.)ALBRECHT 94I ZPHY C64 375 H. Albreht et al. (ARGUS Collab.)BALEST 94 PRL 72 2328 R. Balest et al. (CLEO Collab.)

    FRABETTI 94D PL B323 459 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 94G PL B331 217 P.L. Frabetti et al. (FNAL E687 Collab.)FRABETTI 94I PR D50 R2953 P.L. Frabetti et al. (FNAL E687 Collab.)AKERIB 93 PRL 71 3070 D.S. Akerib et al. (CLEO Collab.)ANJOS 93 PR D48 56 J.C. Anjos et al. (FNAL E691 Collab.)FRABETTI 93E PL B307 262 P.L. Frabetti et al. (FNAL E687 Collab.)ALBRECHT 92F PL B278 202 H. Albreht et al. (ARGUS Collab.)ANJOS 92C PR D46 1941 J.C. Anjos et al. (FNAL E691 Collab.)BARLAG 92C ZPHY C55 383 S. Barlag et al. (ACCMOR Collab.)Also ZPHY C48 29 S. Barlag et al. (ACCMOR Collab.)COFFMAN 92B PR D45 2196 D.M. Co�man et al. (Mark III Collab.)DAOUDI 92 PR D45 3965 M. Daoudi et al. (CLEO Collab.)KODAMA 92 PL B274 246 K. Kodama et al. (FNAL E653 Collab.)KODAMA 92C PL B286 187 K. Kodama et al. (FNAL E653 Collab.)ADAMOVICH 91 PL B268 142 M.I. Adamovih et al. (WA82 Collab.)ALBRECHT 91 PL B255 634 H. Albreht et al. (ARGUS Collab.)ALVAREZ 91B ZPHY C50 11 M.P. Alvarez et al. (CERN NA14/2 Collab.)AMMAR 91 PR D44 3383 R. Ammar et al. (CLEO Collab.)BAI 91 PRL 66 1011 Z. Bai et al. (Mark III Collab.)COFFMAN 91 PL B263 135 D.M. Co�man et al. (Mark III Collab.)FRABETTI 91 PL B263 584 P.L. Frabetti et al. (FNAL E687 Collab.)ALVAREZ 90 ZPHY C47 539 M.P. Alvarez et al. (CERN NA14/2 Collab.)ANJOS 90C PR D41 2705 J.C. Anjos et al. (FNAL E691 Collab.)ANJOS 90D PR D42 2414 J.C. Anjos et al. (FNAL E691 Collab.)ANJOS 90E PRL 65 2630 J.C. Anjos et al. (FNAL E691 Collab.)BARLAG 90C ZPHY C46 563 S. Barlag et al. (ACCMOR Collab.)WEIR 90B PR D41 1384 A.J. Weir et al. (Mark II Collab.)ANJOS 89 PRL 62 125 J.C. Anjos et al. (FNAL E691 Collab.)ANJOS 89B PRL 62 722 J.C. Anjos et al. (FNAL E691 Collab.)ANJOS 89E PL B223 267 J.C. Anjos et al. (FNAL E691 Collab.)ADLER 88C PRL 60 89 J. Adler et al. (Mark III Collab.)ALBRECHT 88I PL B210 267 H. Albreht et al. (ARGUS Collab.)HAAS 88 PRL 60 1614 P. Haas et al. (CLEO Collab.)ONG 88 PRL 60 2587 R.A. Ong et al. (Mark II Collab.)RAAB 88 PR D37 2391 J.R. Raab et al. (FNAL E691 Collab.)ADAMOVICH 87 EPL 4 887 M.I. Adamovih et al. (Photon Emulsion Collab.)ADLER 87 PL B196 107 J. Adler et al. (Mark III Collab.)BARTEL 87 ZPHY C33 339 W. Bartel et al. (JADE Collab.)BALTRUSAIT... 86E PRL 56 2140 R.M. Baltrusaitis et al. (Mark III Collab.)BALTRUSAIT... 85B PRL 54 1976 R.M. Baltrusaitis et al. (Mark III Collab.)BALTRUSAIT... 85E PRL 55 150 R.M. Baltrusaitis et al. (Mark III Collab.)BARTEL 85J PL 163B 277 W. Bartel et al. (JADE Collab.)ADAMOVICH 84 PL 140B 119 M.I. Adamovih et al. (CERN WA58 Collab.)ALTHOFF 84G ZPHY C22 219 M. Altho� et al. (TASSO Collab.)DERRICK 84 PRL 53 1971 M. Derrik et al. (HRS Collab.)SCHINDLER 81 PR D24 78 R.H. Shindler et al. (Mark II Collab.)TRILLING 81 PRPL 75 57 G.H. Trilling (LBL, UCB) JZHOLENTZ 80 PL 96B 214 A.A. Zholents et al. (NOVO)Also SJNP 34 814 A.A. Zholents et al. (NOVO)Translated from YAF 34 1471.GOLDHABER 77 PL 69B 503 G. Goldhaber et al. (Mark I Collab.)PERUZZI 77 PRL 39 1301 I. Peruzzi et al. (LGW Collab.)PICCOLO 77 PL 70B 260 M. Pi

    olo et al. (Mark I Collab.)PERUZZI 76 PRL 37 569 I. Peruzzi et al. (Mark I Collab.)OTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSOTHER RELATED PAPERSRICHMAN 95 RMP 67 893 J.D. Rihman, P.R. Burhat (UCSB, STAN)ROSNER 95 CNPP 21 369 J. Rosner (CHIC)D0 I (JP ) = 12 (0−)D0 MASSD0 MASSD0 MASSD0 MASSThe �t inludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�erene measurements.VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT1864.84 ± 0.07 OUR FIT1864.84 ± 0.07 OUR FIT1864.84 ± 0.07 OUR FIT1864.84 ± 0.07 OUR FIT Error inludes sale fator of 1.1.1864.84 ± 0.07 OUR AVERAGE1864.84 ± 0.07 OUR AVERAGE1864.84 ± 0.07 OUR AVERAGE1864.84 ± 0.07 OUR AVERAGE1864.75 ± 0.15 ±0.11 AAIJ 13V LHCB D0 →K+2K−π+1864.841± 0.048±0.063 4.3k 1 LEES 13S BABR e+ e− at �(4S)1865.30 ± 0.33 ±0.23 98 ± 13 ANASHIN 10A KEDR e+ e−at ψ(3770)1864.847± 0.150±0.095 319 ± 18 CAWLFIELD 07 CLEO D0 → K0S φ• • • We do not use the following data for averages, �ts, limits, et. • • •1864.6 ± 0.3 ±1.0 641 BARLAG 90C ACCM π−Cu 230 GeV1852 ± 7 16 ADAMOVICH 87 EMUL Photoprodution1856 ±36 22 ADAMOVICH 84B EMUL Photoprodution1861 ± 4 DERRICK 84 HRS e+ e− 29 GeV1847 ± 7 1 FIORINO 81 EMUL γN → D0 +1863.8 ± 0.5 2 SCHINDLER 81 MRK2 e+ e− 3.77 GeV1864.7 ± 0.6 2 TRILLING 81 RVUE e+ e− 3.77 GeV1863.0 ± 2.5 238 ASTON 80E OMEG γ p → D01860 ± 2 143 3 AVERY 80 SPEC γN → D∗+1869 ± 4 35 3 AVERY 80 SPEC γN → D∗+1854 ± 6 94 3 ATIYA 79 SPEC γN → D0D01850 ±15 64 BALTAY 78C HBC νN → K0ππ1863 ± 3 GOLDHABER 77 MRK1 D0, D+ reoilspetra1863.3 ± 0.9 2 PERUZZI 77 LGW e+ e− 3.77 GeV1868 ±11 PICCOLO 77 MRK1 e+ e− 4.03, 4.41GeV1865 ±15 234 GOLDHABER 76 MRK1 K π and K 3π1The largest soure of error in the LEES 13S value is from the unertainty of the K+mass. The quoted systemati error is in fat ±0.043 + 3 (mK+ − 493.677), in MeV.2PERUZZI 77 and SCHINDLER 81 errors do not inlude the 0.13% unertainty in theabsolute SPEAR energy alibration. TRILLING 81 uses the high preision J/ψ(1S) and

    ψ(2S) measurements of ZHOLENTZ 80 to determine this unertainty and ombines thePERUZZI 77 and SCHINDLER 81 results to obtain the value quoted. TRILLING 81

  • 978978978978Meson Partile ListingsD0enters the �t in the D± mass, and PERUZZI 77 and SCHINDLER 81 enter in themD± − mD0 , below.3Error does not inlude possible systemati mass sale shift, estimated to be less than 5MeV. mD± − mD0mD± − mD0mD± − mD0mD± − mD0The �t inludes D±, D0, D±s , D∗±, D∗0, D∗±s , D1(2420)0, D∗2(2460)0,and Ds1(2536)± mass and mass di�erene measurements.VALUE (MeV) DOCUMENT ID TECN COMMENT4.77±0.08 OUR FIT4.77±0.08 OUR FIT4.77±0.08 OUR FIT4.77±0.08 OUR FIT4.76±0.12 OUR AVERAGE4.76±0.12 OUR AVERAGE4.76±0.12 OUR AVERAGE4.76±0.12 OUR AVERAGE4.76±0.12±0.07 AAIJ 13V LHCB D+ → K+K−π+4.7 ±0.3 1 SCHINDLER 81 MRK2 e+ e− 3.77 GeV5.0 ±0.8 1 PERUZZI 77 LGW e+ e− 3.77 GeV1See the footnote on TRILLING 81 in the D0 and D± setions on the mass.D0 MEAN LIFED0 MEAN LIFED0 MEAN LIFED0 MEAN LIFEMeasurements with an error > 10× 10−15 s have been omitted from theaverage.VALUE (10−15 s) EVTS DOCUMENT ID TECN COMMENT410.1± 1.5 OUR AVERAGE410.1± 1.5 OUR AVERAGE410.1± 1.5 OUR AVERAGE410.1± 1.5 OUR AVERAGE409.6± 1.1± 1.5 210k LINK 02F FOCS γ nuleus, ≈ 180 GeV407.9± 6.0± 4.3 10k KUSHNIR... 01 SELX K−π+, K−π+π+π−413 ± 3 ± 4 35k AITALA 99E E791 K−π+408.5± 4.1+ 3.5− 3.4 25k BONVICINI 99 CLE2 e+ e− ≈ �(4S)413 ± 4 ± 3 16k FRABETTI 94D E687 K−π+, K−π+π+π−

    • • • We do not use the following data for averages, �ts, limits, et. • • •424 ±11 ± 7 5118 FRABETTI 91 E687 K−π+, K−π+π+π−417 ±18 ±15 890 ALVAREZ 90 NA14 K−π+, K−π+π+π−388 +23−21 641 1 BARLAG 90C ACCM π−Cu 230 GeV480 ±40 ±30 776 ALBRECHT 88I ARG e+ e− 10 GeV422 ± 8 ±10 4212 RAAB 88 E691 Photoprodution420 ±50 90 BARLAG 87B ACCM K− and π− 200 GeV1BARLAG 90C estimate systemati error to be negligible.

    D0–D0 MIXING

    Revised May 2014 by D. M. Asner (Pacific Northwest NationalLaboratory)

    The detailed formalism for D0 − D0 mixing is presented in

    the note on “CP Violation in Meson Decays” in this Review. For

    completeness, we present an overview here. The time evolution

    of the D0–D0 system is described by the Schrödinger equation

    i∂

    ∂t

    (

    D0(t)

    D0(t)

    )

    =(

    M− i2Γ

    )

    (

    D0(t)

    D0(t)

    )

    , (1)

    where the M and Γ matrices are Hermitian, and CPT invari-

    ance requires that M11 = M22 ≡ M and Γ11 = Γ22 ≡ Γ. The

    off-diagonal elements of these matrices describe the dispersive

    and absorptive parts of the mixing.

    Because CP violation is expected to be quite small here, it

    is convenient to label the mass eigenstates by the CP quantum

    number in the limit of CP conservation. Thus, we write

    |D1,2〉 = p|D0〉 ± q|D0〉 , (2)

    where(

    q

    p

    )2

    =M∗12 −

    i2Γ∗12

    M12 −i2Γ12

    . (3)

    The normalization condition is |p|2 + |q|2 = 1. Our phase con-

    vention is CP |D0〉 = +|D0〉, and the sign is chosen so that D1

    has CP even, or nearly so.

    The corresponding eigenvalues are

    ω1,2 ≡ m1,2 −i

    2Γ1,2 =

    (

    M − i2Γ)

    ±q

    p

    (

    M12 −i

    2Γ12

    )

    , (4)

    where m1,2 and Γ1,2 are the masses and widths of the D1,2.

    We define dimensionless mixing parameters x and y by

    x ≡ (m1 − m2)/Γ = ∆m/Γ (5)

    and

    y ≡ (Γ1 − Γ2)/2Γ = ∆Γ/2Γ , (6)

    where Γ ≡ (Γ1 + Γ2)/2. If CP is conserved, then M12 and Γ12

    are real, ∆m = 2M12, ∆Γ = 2Γ12, and p = q = 1/√

    2. The

    signs of ∆m and ∆Γ are to be determined experimentally.

    The parameters x and y are measured in several ways. The

    most precise values are obtained using the time dependence of

    D decays. Since D0–D0 mixing is a small effect, the identifying

    tag of the initial particle as a D0 or a D0 must be extremely

    accurate. The usual tag is the charge of the distinctive slow pion

    in the decay sequence D∗+→D0π+ or D∗− → D0π−. In current

    experiments, the probability of mistagging is about 0.1%. The

    large data samples produced at the B-factories allow the produc-

    tion flavor to also be determined by fully reconstructing charm

    on the “other side” of the event—significantly reducing the

    mistag rate [1]. Another tag of comparable accuracy is identifi-

    cation of one of the D’s produced from ψ(3770)→D0D0 decays.

    Although time-dependent analyses are not possible at symmet-

    ric charm-threshold facilities (the D0 and D0 do not travel

    far enough), the quantum-coherent C = −1 ψ(3770) → D0D0

    state provides time-integrated sensitivity [2,3].

    Time-Dependent Analyses: We extend the formalism of

    this Review’s note on “CP Violation in Meson Decays.” In

    addition to the “right-sign” instantaneous decay amplitudes

    Af ≡ 〈f |H|D0〉 and A

    f≡ 〈f |H|D0〉 for final states f =

    K+π−, ... and their CP conjugate f = K−π+, ..., we include

    “wrong-sign” amplitudes Af≡ 〈f |H|D0〉 and Af ≡ 〈f |H|D

    0〉.

    It is conventional to normalize the wrong-sign decay distri-

    butions to the integrated rate of right-sign decays and to express

    time in units of the precisely measured neutral D-meson mean

    lifetime, τD0 = 1/Γ = 2/(Γ1 + Γ2). Starting from a pure |D0〉

    or |D0〉 state at t = 0, the time-dependent rates of decay

    to wrong-sign final states relative to the integrated right-sign

    decay rates are, to leading order:

    r(t) ≡

    ∣〈f |H|D0(t)〉∣

    2

    ∣Af∣

    2 =

    q

    p

    2 ∣∣

    ∣g+(t) λ

    −1f + g−(t)

    2, (7)

    and

    r(t) ≡

    ∣〈f |H|D0(t)〉∣

    2

    ∣A

    f

    2 =

    p

    q

    2 ∣∣

    ∣g+(t) λf + g−(t)

    2. (8)

    where

    λf ≡ qAf/pAf , λf̄ ≡ qAf̄/pAf̄ , (9)

    and

    g±(t) =1

    2

    (

    e−iz1t ± e−iz2t)

    , z1,2 =ω1,2Γ

    . (10)

    Note that a change in the convention for the relative phase of

    D0 and D0 would cancel between q/p and Af/Af and leave

  • 979979979979See key on page 547 Meson Partile ListingsD0λf unchanged. We expand r(t) and r(t) to second order in

    x and y for modes in which the ratio of decay amplitudes,

    RD = |Af/Af |2, is very small.

    Semileptonic decays: Consider the final state f = K+ℓ−ν̄ℓ,

    where Af = Af = 0 in the Standard Model. The final state f is

    only accessible through mixing and r(t) is

    r(t) = |g−(t)|2

    q

    p

    2

    ≈e−t

    4(x2 + y2) t2

    q

    p

    2

    . (11)

    For r(t) q/p is replaced by p/q. In the Standard Model, CP

    violation in charm mixing is small and |q/p| ≈ 1. In the limit of

    CP conservation, r(t) = r(t), and the time-integrated mixing

    rate relative to the time-integrated right-sign decay rate for

    semileptonic decays is

    RM =

    0r(t)dt =

    q

    p

    2x2 + y2

    2 + x2 − y2≈

    1

    2(x2 + y2) . (12)

    Table 1: Results for RM in D0 semileptonic decays.

    Year Exper. Final state(s) RM (×10−3) 90% C.L.

    2008 Belle [4] K(∗)+e−νe 0.13±0.22±0.20 < 0.61 × 10−3

    2007 BaBar [1] K(∗)+e−νe 0.04+0.70−0.60 (−1.3, 1.2)× 10

    −3

    2005∗ Belle [5] K(∗)+e−νe 0.02±0.47±0.14 < 1.0 × 10−3

    2005 CLEO [6] K(∗)+e−νe 1.6±2.9±2.9 < 7.8 × 10−3

    2004∗ BaBar [7] K(∗)+e−νe 2.3±1.2±0.4 < 4.2 × 10−3

    2002∗ FOCUS [8] K+µ−νµ −0.76+0.99−0.93 < 1.01 × 10

    −3

    1996 E791 [9] K+ℓ−νℓ (1.1+3.0−2.7) × 10

    −3 < 5.0 × 10−3

    HFAG [10] 0.13 ± 0.27

    *These measurements are excluded from the HFAG average.

    The FOCUS result is unpublished, the statistical correlation of

    the BaBar result with Ref. 1 has not been established, and the

    Belle result is superseded by Ref. 4.

    Table 1 summarizes results for RM from semileptonic de-

    cays; the world average from the Heavy Flavor Averaging Group

    (HFAG) [10] is RM = (1.30 ± 2.69) × 10−4.

    Wrong-sign decays to hadronic non-CP eigenstates:

    Consider the final state f = K+π−, where Af is doubly

    Cabibbo-suppressed. The ratio of decay amplitudes is

    Af

    Af= −

    RD e−iδf ,

    Af

    Af

    ∼ O(tan2 θc) , (13)

    where RD is the doubly Cabibbo-suppressed (DCS) decay rate

    relative to the Cabibbo-favored (CF) rate, δf is the strong

    phase difference between DCS and CF processes, and θc is the

    Cabibbo angle. The minus sign originates from the sign of Vus

    relative to Vcd.

    We characterize the violation of CP with the real-valued

    parameters AM , AD, and φ. We adopt the parametrization

    (see Refs. 11 and 12)

    q

    p

    2

    =

    1 + AM1 − AM

    , (14)

    λ−1f

    ≡pAf

    qAf= −

    RD

    (

    (1 + AD)(1 − AM )

    (1 − AD)(1 + AM )

    )1/4

    e−i(δf +φ) ,

    (15)

    λf≡

    qAf

    pAf

    = −√

    RD

    (

    (1 − AD)(1 + AM )

    (1 + AD)(1 − AM )

    )1/4

    e−i(δf−φ) ,

    (16)

    and AD is a measure of direct CP violation, while AM is a

    measure of CP violation in mixing. From these relations, we

    obtain√

    1 + AD1 − AD

    =|Af/Af |

    |Af/A

    f|

    , (17)

    The angle φ measures CP violation in interference between

    mixing and decay. While AM is independent of the decay

    process, AD and φ, in general, depend on f .

    In general, λf

    and λ−1f are independent complex numbers.

    More detail on CP violation in meson decays can be found in

    Ref. 13. To leading order, for AD and AM ≪ 1,

    r(t)=e−t[

    RD(1 + AD) +√

    RD(1 + AM )(1 + AD) y′

    −t

    +1

    2(1 + AM )RM t

    2

    ]

    (18)

    and

    r(t) = e−t[

    RD(1 − AD) +√

    RD(1 − AM )(1 − AD) y′

    +t

    +1

    2(1 − AM )RM t

    2]

    (19)

    Here

    y′± ≡ y′ cos φ ± x′ sin φ

    = y cos(δKπ ∓ φ) − x sin(δKπ ∓ φ) , (20)

    where

    x′ ≡ x cos δKπ + y sin δKπ,

    y′ ≡ y cos δKπ − x sin δKπ , (21)

    and RM =(

    x2 + y2)

    /2 =(

    x′2 + y′2)

    /2 is the mixing rate

    relative to the time-integrated Cabibbo-favored rate.

    The three terms in Eq. (18) and Eq. (19) probe the three

    fundamental types of CP violation. In the limit of CP conser-

    vation, AM , AD, and φ are all zero. Then

    r(t) = r(t) = e−t(

    RD +√

    RD y′t +

    1

    2RM t

    2

    )

    , (22)

    and the time-integrated wrong-sign rate relative to the inte-

    grated right-sign rate is

    R =

    0r(t) dt = RD +

    RD y′ + RM . (23)

    The ratio R is the most readily accessible experimental

    quantity. In Table 2 are reported the measurements of R, RDand AD in D

    0 → K+π−, and their HFAG average [24] from

    a general fit; that allows for both mixing and CP violation.

    Typically, the fit parameters are RD, x′2, and y′. Table 3

    summarizes the results for x′2 and y′. Allowing for CP violation,

    the separate contributions to R can be extracted by fitting the

    D0→K+π− and D0→K−π+ decay rates.

  • 980980980980Meson Partile ListingsD0Table 2: Results for R, RD, and AD in D

    0→K+π−.

    Year Exper. R(×10−3) RD(×10−3) AD(%)

    2014 Belle [14] 3.86±0.06 3.53±0.13 —

    2013 LHCb [15] — 3.57±0.07 −0.7±1.9

    2013 CDF [16] 4.30±0.05 3.51±0.35 —

    2012∗ LHCb [17] 4.25±0.04 3.52±0.15 —

    2007∗ CDF [18] 4.15±0.10 3.04±0.55 —

    2007 BaBar [19] 3.53±0.08±0.04 3.03±0.16±0.10 −2.1±5.2±1.5

    2006∗ Belle [20] 3.77±0.08±0.05 3.64±0.17 2.3±4.7

    2005† FOCUS [21] 4.29+0.63−0.61±0.28 5.17

    +1.47−1.58±0.76 13

    +33−25±10

    2000† CLEO [22] 3.32+0.63−0.65±0.40 4.8±1.2±0.4 −1

    +16−17±1

    1998† E791 [23] 6.8+3.4−3.3±0.7 — —

    Average 4.13±0.03 3.49±0.04 [24] −0.90±1.00 [24]

    ∗These measurements are excluded from the HFAG average of

    RD. The CDF result is superseded by Ref. 16 and the LHCb

    is superseded by Ref. 15. The LHCb result is included in the

    average of R. The Belle result for R and RD is superseded by

    Ref. 14.†These measurements are excluded from the HFAG average due

    to poor precision.

    Table 3: Results on the time-dependence of r(t) in D0 → K+π−

    and D0 → K−π+ decays. The Belle 2014, LHCb and CDF resultsassume no CP violation. The FOCUS, CLEO, and Belle 2006results restrict x′2 to the physical region. The confidence intervalsfrom FOCUS, CLEO, and BaBar are obtained from the fit, whereasBelle uses a Feldman-Cousins method, and CDF uses a Bayesianmethod.

    Year Exper. y′ (%) x′ 2 (×10−3)

    2014∗† Belle [14] 0.46±0.34 0.09±0.22

    2013 LHCb [15] 0.48±0.10 0.055±0.049

    2013 CDF [16] 0.43±0.43 0.08±0.18

    2012∗ LHCb [17] 0.72±0.24 −0.09±0.13

    2007∗ CDF [18] 0.85±0.76 −0.12±0.35

    2007 BaBar [19] 0.97±0.44±0.31 −0.22±0.30±0.21

    2006† Belle [20] −2.8 < y′ < 2.1 < 0.72 (95% C.L.)

    2005∗ FOCUS [21] −11.2 < y′ < 6.7 < 8.0 (95% C.L.)

    2000∗ CLEO [22] −5.8 < y′ < 1.0 < 0.81 (95% C.L.)

    ∗These measurements are excluded from the HFAG average.

    The CDF result is superseded by Ref. 16 and the LHCb result

    has been superseded by Ref. 15. The CLEO and FOCUS results

    are excluded due to poor precision.† This Belle rseult allows for CP violation. HFAG uses this

    result for the CP -violation allowed fit. This result is not super-

    seded by Ref. 14.∗† This Belle result does not allow for CP violation. HFAG

    uses this result for the CP -conserving fit. This result does not

    supersede Ref. 20.

    Extraction of the mixing parameters x and y from the

    results in Table 3 requires knowledge of the relative strong phase

    δKπ. An interference effect that provides useful sensitivity to

    δKπ arises in the decay chain ψ(3770)→D0D0→(fCP )(K

    +π−),

    where fCP denotes a CP -even or -odd eigenstate from D0

    decay, such as K+K− or K0Sπ0, respectively [27]. Here, the

    amplitude relation

    √2 A(D± → K

    −π+) = A(D0 → K−π+) ± A(D0 → K−π+).

    (24)

    where D± denotes a CP -even or -odd eigenstate, implies that

    cos δKπ =|A(D+ → K

    −π+)|2 − |A(D− → K−π+)|2

    2√

    RD |A(D0 → K−π+)|2. (25)

    This neglects CP violation and uses√

    RD ≪ 1.

    For multibody final states, Eqs. (13)–(23) apply separately

    to each point in phase-space. Although x and y do not vary

    across the space, knowledge of the resonant substructure is

    needed to extrapolate the strong phase difference δ from point

    to point to determine x and y.

    A time-dependent analysis of the process D0 → K+π−π0

    from BaBar [25,26] determines the relative strong phase varia-

    tion across the Dalitz plot and reports x′′ = (2.61+0.57−0.68±0.39)%,

    and y′′ = (−0.06+0.55−0.64 ± 0.34)%, where x

    ′′ and y′′ are defined as

    x′′ ≡ x cos δKππ0 + y sin δKππ0 ,

    y′′ ≡ y cos δKππ0 − x sin δKππ0, (26)

    in parallel to x′, y′, and δKπ of Eq. (21). Here δKππ0 is the

    remaining strong phase difference between the DCS D0 →

    K+ρ− and the CF D0 → K+ρ− amplitudes and does not vary

    across the Dalitz plot. Both strong phases, δKπ and δKππ0,

    can be determined from time-integrated CP asymmetries in

    correlated D0D0 produced at the ψ(3770) [27,28].

    Both the sign and magnitude of x and y without phase

    or sign ambiguity may be measured using the time-dependent

    resonant substructure of multibody D0 decays [29,30]. In

    D0 → K0Sπ+π−, the DCS and CF decay amplitudes populate

    the same Dalitz plot, which allows direct measurement of the

    relative strong phases. CLEO [31], Belle [30], and BaBar [32]

    have measured the relative phase between D0 → K∗(892)−π+

    and D0 → K∗(892)+π− to be (189 ± 10 ± 3+15− 5 )

    ◦, (171.9 ± 1.3

    (stat. only))◦, and (177.6±1.1 (stat. only))◦, respectively. These

    results are close to the 180◦ expected from Cabibbo factors and

    a small strong phase. Table 4 summarizes the results of a

    time-dependent Dalitz-plot analyses.

    In addition, Belle [30] has results for both the relative

    phase (statistical errors only) and ratio R (central values only)

    of the DCS fit fraction relative to the CF fit fractions for

    K∗(892)+π−, K∗0(1430)+π−, K∗2(1430)

    +π−, K∗(1410)+π−, and

    K∗(1680)+π−. The systematic uncertainties on R must be eval-

    uated. The values for R in units of tan4 θc are 2.94 ± 0.12,

    22.0 ± 1.6, 34 ± 4, 87 ± 13, and 500 ± 500, respectively. For

    K+π−, the corresponding value for RD is (1.28±0.02)×tan4 θc.

    Similarly, BaBar [32–35] has reported central values for R for

  • 981981981981See key on page 547 Meson Partile ListingsD0Table 4: Results from time-dependent Dalitz-plotanalysis of D0 → K0Sπ

    +π− (CLEO and Belle) andD0 → K0Sπ

    +π−, K0SK+K− (BaBar). The errors are

    statistical, experimental systematic, and decay-modelsystematic, respectively.

    No CP Violation

    Year Exper. x ×10−3 y ×10−3

    2010 BaBar [32] 1.6±2.3±1.2±0.8 5.7±2.0±1.3±0.7

    2007 Belle [30] 8.0 ± 2.9 +0.9−0.7

    +1.0−1.4 3.3 ± 2.4

    +0.8−1.2

    +0.6−0.8

    2005 CLEO [29] 19 +32−33 ± 4 ± 4 −14 ± 24 ± 8 ± 4

    HFAG [33] 4.2 ± 2.1 4.6 ± 1.9

    With CP Violation

    Year Exper. |q/p| φ

    2007 Belle [30] 0.86 +0.30−0.29

    +0.06−0.03 ± 0.08 (−14

    +16−18

    +5−3

    +2−4)

    K∗(892)+π−, K∗0(1430)+π−, and K∗2 (1430)

    +π−. The large dif-

    ferences in R among these final states could point to an

    interesting role for hadronic effects.

    Decays to CP Eigenstates: When the final state f is a CP

    eigenstate, there is no distinction between f and f , and Af =Afand A

    f= Af . We denote final states with CP eigenvalues ±1

    by f± and write λ± for λf± .

    The quantity y may be measured by comparing the rate for

    D0 decays to non-CP eigenstates such as K−π+ with decays to

    CP eigenstates such as K+K− [12]. If decays to K+K− have

    a shorter effective lifetime than those to K−π+, y is positive.

    In the limit of slow mixing (x, y ≪ 1) and the absence of

    direct CP violation (AD = 0), but allowing for small indirect

    CP violation (|AM |, |φ| ≪ 1), we can write

    λ± =

    q

    p

    e±iφ . (27)

    In this scenario, to a good approximation, the decay rates for

    states that are initially D0 and D0 to a CP eigenstate have

    exponential time dependence:

    r±(t) ∝ exp (−t/τ±) , (