a 20 year retrospective · high nutrients and “other ideal ecological conditions” result in...

38
EUSGS science for a changing world Cyanotoxin Occurrence in the United States A 20 Year Retrospective Photo Credit: B. Rosen, USGS Photo Credit: J. Graham, USGS Photo Credit: NASA U.S. Department of the Interior U.S. Geological Survey Jennifer L. Graham U.S. Geological Survey Great Plains and Midwest Harmful Algal Blooms Workshop February 4, 2020

Upload: others

Post on 15-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

Cyanotoxin Occurrence in the United States A 20 Year Retrospective

Photo

Cre

dit: B

. Ros

en, U

SGS

Photo

Cre

dit: J

. Gra

ham,

USG

S

Photo

Cre

dit: N

ASA

U.S. Department of the Interior U.S. Geological Survey

Jennifer L. Graham U.S. Geological Survey

Great Plains and Midwest Harmful Algal Blooms Workshop February 4, 2020

Page 2: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

First Reports of Cyanotoxins 1878 AUS

1882 MN

1939 CO

1943 MT

1944 IA

1946 ND

1956 TX

1964 NH

1976 WA

1977 OK

1981 IL

1985 WI

1987 MS

1990 IN

After Yoo et al., 1995

Page 3: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

First Reports of Cyanotoxins 1878 AUS

1882 MN

1939 CO

1943 MT

1944 IA

1946 ND

1956 TX

1964 NH

1976 WA

1977 OK

1981 IL

1985 WI

1987 MS

1990 IN

After Yoo et al., 1995

Page 4: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

Toxic Algae i11 Iowa Lakes '

By EARL T. l{osE

R eprinted from PROCEEDINGS OF THE lowA

A c AIJEM Y OF Sc1ENCE, \'olume 6 I.

Blue-Green Algae Control at Stonn Lake By EARL T . RosE

First Reports of Cyanotoxins 1878 AUS

1882 MN

1939 CO

1943 MT

1944 IA

1946 ND

1956 TX

1964 NH

1976 WA

1977 OK

1981 IL

1985 WI

1987 MS

1990 IN

After Yoo et al., 1995

1953

1954

Phot

o C

redi

t: S.

Pan

ken,

Uni

vers

ity o

f Mis

sour

i

Page 5: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

Toxic Algae i11 Iowa Lakes '

By EARL T. l{osE

R eprinted from PROCEEDINGS OF THE lowA

A c AIJEM Y OF Sc1ENCE, \'olume 6 I.

Blue-Green Algae Control at Stonn Lake By EARL T . RosE

First Reports of Cyanotoxins 1878 AUS

1882 MN

1939 CO

1943 MT

1944 IA

1946 ND

1956 TX

1964 NH

1976 WA

1977 OK

1981 IL

1985 WI

1987 MS

1990 IN

1953

1954

Phot

o C

redi

t: S.

Pan

ken,

Uni

vers

ity o

f Mis

sour

i

After Yoo et al., 1995

Blooms are a nuisance issue that can sometimes be toxic

Usually, but not always, a summer phenomenon

High nutrients and “other ideal ecological conditions” result in blooms

Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gloeotrichia, Microcystis, and Nodularia

Toxins are complex organic substances that are “almost impossible to determine”

Page 6: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

By EARi

Reprinted from PR0

A c ADE M Y oF S

Blue-Green Algae By E Al

EUSGS science for a changing world

I.Are Harmful Algal Blooms Becoming the Greatest Inland Water Quality Threat to Public Health and Aquatic Ecosystems?

Bryan W. Brooks:y James M. Lazorchak,t Meredith D.A. Howard,§ Mari-Vaughn V. Johnson, Steve L Morton.# Dawn A.K. Perkins,tt Euan D. Reavie,H Geoffrey I. Scott.§§ Stephanie A. Smith. and Jeffery A Steevens## fDepartment of Environmental Science. Center for Reservoir and Aquatic Systems Research. Institute of Biomedical Studies. Baylor University, Waco. Texas. USA !Office of Research and Development US Environmental Protection Agency, Cinclmati. Ohio, USA Southern cahtomla Coastal Water Research Project Costa Mesa. califomia. USA Nat1Xal Resources Conservation Service. US Department of A9ricult1Xe. Temple. Texas. USA

RNat ional Centers for Coastal Ocean Science. Center for Coastal Environmental Health and Biomolecular Research. National Oceanic and Atmospheric Administration. Char1eston. South carolina. USA tfWisconsin State Laboratory of Hygiene. University of Wisconsin-Madison. Madison. Wisconsin. USA UNatural Resources Research Institute. Center for Water and the Environment University of Minnesota-Duluth. Duluth. Minnesota. USA

Department of Environmental Health Science. Arnold School of Public Health. University of South carolina. Coh.mbla. South carolina. USA

Beagle Bioproducts. Coli.mbus. Ohio. USA IJ#US Army Engineer Research and Development Center. Vicksburg. Mississippi, USA

First Reports of Cyanotoxins 1878 AUS

1882 MN

1939 CO

1943 MT

1944 IA

1946 ND

1956 TX

1964 NH

1976 WA

1977 OK

1981 IL

1985 WI

1987 MS

1990 IN

1953

After Yoo et al., 1995

Blooms are a nuisance issue that can sometimes be toxic

Usually, but not always, a summer phenomenon

High nutrients and “other ideal ecological conditions” result in blooms

Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

1954 Microcystis, and Nodularia Toxins are complex organic

substances that are “almost impossible to determine”

Page 7: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

Planktothnx

EUSGS science for a changing world

Cyanotoxins are Diverse Hepatotoxins Neurotoxins Dermatoxins

CYL MC ANA SAX Anabaena/Dolichospermum X X X X X

Aphanizomenon X ? X X X

Microcystis X X

Oscillatoria/Planktothrix X X X X

Anabaena/Dolichospermum Aphanizomenon PlanktothrixMicrocystis

Photo Credit: A. St. Amand, PhycoTech

After Graham and others, 2008

Page 8: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

- OZARK IIlGHLANDS (OH) OSAGE PLAINS (OP)

DISSECIBD TILL PLAINS (Dl)

WESIBRN LAKE (WL) PLAINS BORDER (PB)

CONCENTRATION/RISK • NOT DETECTED

Q LOW (<10 uwL)

Q MODERATE (10-20 uwL)

• IIlGH (> 20 uwL)

0

0

0 0 0

& 0

• 0

0 0

0

· ◊ 0 0 0

0 • 00

0 0 0

0 0 0

0

0

0 0

0

••

0

0 • •

0

• 0

Microcystins are Widespread and Common

78% of lakes had detections (n=359) Maximum concentration: 52 µg/L

After Graham and others 2004, 2006, and 2009

Page 9: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

-]JOO - 120° - 110°

45°

35°

30°

ll:XPLANATION 250 . MicrOC)'Slih l Co.11centralio11 (.MC)

Non-detect ( 1RL < O. l O ~tg/L) e 0.10 ~1.gi'L~ MC < 10 ~1.grL (\VIJO Low) 0 10 11g/L '.5 1C < 20 µgit (WHO Moderate) e 20 µg/L < 1C < 2000 µg/L (WHO High)

- 100°

Microcystins are Widespread and Common

Loftin et al., 2016

Page 10: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

"O .a

4 1

39

~ 37

35

33

8~8

6 ~ 6

4 e 4

2 ~ 2

0 l:JO

-123 -121

EUSGS science for a changing world

-119 -117

stins not detected . ' I

.L_ .

lr1 ,L

' ; 1 [ I . I \ I I

NEVA.DA ' ',r I( L I ' ' ,, I • I i 'i

l, ~ (J) ~ 111 I • 1-/umtoldt- orya/¥t J ~ I , l I 1

., .'~~ ,\. ·::f: •-= ;' ~rtN311on.,/ Forest t } / • 1

San ~rg-t,sco' .:~ ,. , I t i ~ I t Pj•1 r.. 1 l

-1 15 -123 longitude

a- ,)~ •It s!n ose ,. r: I Fro~ 11 ~ ? t

) 0 ' CALIF >

San Lul11 Ob~po

"><

-121

i,<-. ...

Long B

-119 -117 -115

,..

er

Ex planmion

c:::l Extent ot SESOA studv 1uea

- Urb~n ~•ua Piedmont

Mic.racvstiB, •n mic ru!ijram5 per Liter ill".'ll e nli id er tifier

I I I I

• <0.1

0

0

0

0.110 0.15

0.15 toO.3

0.30 to 1.0

I

l ',j

A

:ll"

01110

Cl) 1 P,t ..t.S

I'll ' )l l(llf'W[l'IJI'

Microcystins are Widespread and Common

Fetscher et al.. 2015 Loftin et al., 2016

Page 11: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

Detectable Toxins/T&O Compounds - Microcystin - 100% of Lakes (n=23) - Geosmin - 83%

MIB -35% - Anatoxin-a - 30% D Saxitoxin - 17%

- Cylindrospermopsin - 9% - Nodularin - 9%

Other Cyanotoxins Occur Less Frequently

After Graham and others, 2010

Page 12: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

Explanation

.. Study watershed

Synthetase gene detections

Microcystin lmcyE) ~ Saxitoxin (sxtAl Anatoxin lanaC) U Cylindrospermopsin jcyrA)

6 Not detected

Cyanotoxin detections

A Microcystin A Anatoxin and microcystin 6 Not detected

0 I 0

I I 250

250 I I

500 Miles I

500 Kilometers

Connecticut River

Delaware River

Advances in Analytical Approaches Allow Assessmentof Occurrence in Novel Ways

Graham et al., 2020

Page 13: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

Jan eb r r y un l g p ct

Nov ec

u

Ma p AuM

a Se OJ DF A J Jan eb r r y un l g p ct

Nov ec

u

Ma p

Ma Au Se OJ DF A J

Cyanotoxins are Usually, But Not Always, a Summer Phenomenon Stratified Period

Tot

al M

icro

cyst

in (µ

g/L

)

2.0

1.5

1.0

0.5

0.0 2.0

1.5

1.0

0.5

0.0 2.0

1.5

1.0

0.5

0.0 25

20

15

10

5

0

Forest

Bilby

Marceline

Harrison

2004

2.0

1.5

1.0

0.5

0.0 2.0

1.5

1.0

0.5

0.0 2.0

1.5

1.0

0.5

0.0 2.0

1.5

1.0

0.5

0.0

Paho

Nodaway

Mozingo

Sterling

2004 After Graham et al., 2006

Page 14: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

Forest

0.0

0.5

1.0

1.5

Marceline

Jan

Feb Mar

Apr

May Ju

n Ju

l Aug

0

5

10

15

20

25

Harrison

Tot

al M

icro

cyst

in (µ

0.0

0.5

1.0

1.5

2.0

eb r r y un l g p ctNov

ec

uM

a pM

a Au Se OJ DF A J

Cyanotoxins are Usually, But Not Always, a Summer Phenomenon Stratified Period

Paho

0.0

0.5

1.0

1.5

2.0

Nodaway

0.0

0.5

1.0

1.5

2.0

Mozingo

0.0

0.5

1.0

1.5

2.0

Sterling

0.0

0.5

1.0

1.5

2.0

2.0

Bilby

0.0

0.5

1.0

1.5

2.0

Sep OctNov Dec

g/L

)

Jan

Phot

o C

redi

t: R

. Zur

awel

l,Alb

erta

Env

ironm

ent a

nd P

arks

Phot

o C

redi

t: R

. Zur

awel

l,Alb

erta

Env

ironm

ent a

nd P

arks

2004 2004 After Graham et al., 2006

Page 15: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

Sep

g/L

) continues to curb water issues as Mozingo

Lake raises concern for cyanotoxins Kendrick Calfee I Community News Editor I @KoalaCalfee Jan 23, 2020 - O

EUSGS science for a changing world

Forest

0.0

0.5

1.0

1.5

Paho1.5

2.00.0

0.5

1.0

1.5

Marceline

Jan

Feb Mar

Apr

May Ju

n Ju

l Aug

0

5

10

15

20

25

Harrison

Tot

al M

icro

cyst

in (µ

0.0

0.5

1.0

1.5

2.0

ctNov

ec

Jan eb r r y un l g p ct

Nov ec

u

Ma p

Ma Au SeO OJD DF A J

Cyanotoxins are Usually, But Not Always, a Summer Phenomenon

2.0

Bilby

0.0

0.5

1.0

1.5

2.0

Stratified Period

0.0

0.5

1.0

Nodaway 2.0

Mozingo

0.0

0.5

1.0

1.5

2.0

Sterling

0.0

0.5

1.0

1.5

2.0

Phot

o C

redi

t: R

. Zur

awel

l,Alb

erta

Env

ironm

ent a

nd P

arks

Phot

o C

redi

t: R

. Zur

awel

l,Alb

erta

Env

ironm

ent a

nd P

arks

2004 2004 After Graham and others, 2006

Page 16: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

• ...

1~ .. •· • •· • • • •

• • It • • I I I ., • •

J ..

.... .. .. .. ..

EUSGS science for a changing world

Cyanotoxins May Be Transported for Long Distances Downstream of Source Areas

SEPTEMBER 8, 2011

TO

TA

L M

ICR

OC

YST

IN (

g/L

)

0

1

2

3

4

5

6

TRIBUTARY CONCENTRATION MAIN-STEM CONCENTRATON ESTIMATED CONCENTRATION

WA

KA

RU

SA

DEL

AW

AR

E

BIG

BLU

E

REP

UBL

ICA

N

SMO

KY

HIL

L

ANALYTICAL DETECTION THRESHOLD

WHO PROVISIONAL DRINKING-WATER GUIDELINE

180 160 140 120 100 80 60 40 20 0 DISTANCE UPSTREAM FROM CONFLUENCE WITH MISSOURI RIVER, IN MILES

Graham et al., 2012

Page 17: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

• ...

1~ .. •· • •· • • • •

• • I I I

.41. .j ..

EUSGS science for a changing world

It • • I~ • • . a.

.41.

OPEN 0 ACCESS Frffly avali..ble online -~ PLos one

Evidence for a Novel Marine Harmful Algal Bloom: Cyanotoxin (Microcystin) Transfer from Land to Sea Otters Melissa A. Miller1

•2

• , Raphael M. Kudela2, Abdu Mekebri3

, Dave Crane3, Stori C. Oates 1 , M. Timothy

Tinker4, Michelle Staed ler5, Woutrina A. Miller6

, Sharon Toy-Choutka 1, Cla re Domlnik7, Dane Hard in 7 ,

Gregg Langlois8, Michael Murray5

, Kim Ward9, David A. Jessup 1

1 Marine Widli:fe Veterll\ilty Care~ Resea,ch Center. California Qes:,anment of Fish and Game. Office of Spill Prevention and Response, Santa Cruz. Califo,nli., United State of America. 2 Ocean Sciences Depart

Califomi,1 Oepar1ment of Fish and ~me.

Centet', United States Geological Survey, l

Stales of Americ~ 6 0epanment of Pa1

of Americ.il, 7 Applied M¥ine Sciences, Liv

Ame,iu1. 9 Division of Water ~hty. Stilite

TO

TA

L M

ICR

OC

YST

IN (

g/L

) Cyanotoxins May Be Transported for Long Distances

Downstream of Source Areas

SEPTEMBER 8, 2011 6

5

4

3

2

1

0

TRIBUTARY CONCENTRATION MAIN-STEM CONCENTRATON ESTIMATED CONCENTRATION

WA

KA

RU

SA

DEL

AW

AR

E

BIG

BLU

E

REP

UBL

ICA

N

SMO

KY

HIL

L

ANALYTICAL DETECTION THRESHOLD

WHO PROVISIONAL DRINKING-WATER GUIDELINE

180 160 140 120 100 80 60 40 20 0 DISTANCE UPSTREAM FROM CONFLUENCE WITH MISSOURI RIVER, IN MILES

Graham et al., 2012

Phot

o C

redi

t: G

etty

Imag

es

Page 18: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

Sou th Pacific Ocean

North . Atlantic Ocean

South Atlantic Ocean

e MC detected from CyanoHABs in coastal/estuarine waters

CyanoHABs in coastal/estuarine waters

.A. MC detected from freshwater discharge

. ~ . ~

Cyanotoxins May Occur in Coastal and Estuarine Environments

Preece et al., 2017

Page 19: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

■ Cou.tD .... i1k..r .. Fw u.1 A.1Ul'.1151 rb Hill E,-...,,:n

Reeking, Oozing Algae Closes South Florida B

lrl.UI\ IM.lJ .AULBl.11

Blue-green toxic algae invades Florida river

,,,,_..,,, , ... .._ 0 0 0 000 "°'•••m

'Toledo's tap water undrinkable for a second day; test results delayed

mm oooeo

Toxic algae blooms becoming more common across US Ely As.stlci.1ff'd Pit-$ .lul k' i J , 20 18 I 4' 07p,n

As Cl imate Warms, A lgae Blooms In Dr inking Water Supp lies 5~,:,':. MD!t 1, • '- J: L. _:)'"""'I~ l i.-..t ll ,'.I 1•~~ (.-:i•~i,:_l•!o+(I

Toxic algae bloom found in Ohio River

• k t:if C.,CTIQ>I

•::. ,h,-M 8 i?:t U:!1 1.ho!- C l.t r:r , :,te,J: ~!I!' 111!<~ m1 r . , ~ Ott 2:t:U.. l , !Tl t t all tJ,: ~,ru ·ol Cu ti~ Cli.:• - I 11u M

.,_. Tm ic alr,:1e have reached rhe Ohio River. A bloom of microc:ysti~, :1 hlue-15-1'<'~11 <1J~.i.e i.;a pa Lile or IJl'Odunclg live, and 11er,-.. 1 oxi11s llta t ..-a 11 sich c1 ;,t~pl~ um! bU pl'ts, hu.~ formed m tht· Ohio RiH-r nc·:.u- Bdmont County

Is Cyanotoxin Occurrence Increasing?

Slide Courtesy of T. Thorpe, University of Missouri

Page 20: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

flUSGS science for a changing world

T Decreasing (P < 0.1)

0 Decreasing (P > 0.1

• Increasing (P < 0.1)

0 Increasing p > 0.1

Since the 1980’s, Peak Summertime Bloom Intensity Has Increased in Some Lakes

Ho et al., 2019

Page 21: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

~USGS ~ for a changing world science

.. M-K trend ~ coefficient

0.75

0.50

0.25

0.00

-0.20

-0.40

-0.60

Cyanobacterial Abundance Has Also Increased

Taranu et al., 2015

Page 22: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

Toxins 2015, 7, 353-366; doi: 10.3390/toxins7020353 OPEN ACCESS

• toxins ISSN 2072-6651

wWvv.mdpi.com/joum al/toxins

Article

Human Illnesses and Animal Deaths Associated with Freshwater Harmful Algal Blooms-Kansas

Ingrid Trevino-Garrison 1,t,* , Jamie DeMent 2,t, Farah S. Ahmed 1, Patricia Haines-Lieber 1, Thomas Langer 1, Henri Menage1· 1, Janet Neff 1,

Deon van der Merwe 3,t and Edward Carney 1,t

EUSGS science for a changing world

Cyanobacterial Abundance Has Also Increased

Time Period Median Number of Health Alerts*

1989-1995 13

1996-2002 18

2003-2009 25

After Trevino-Garrison et al., 2015

*Based on 2010 Kansas Department of Health Public Health Alert Criteria (advisory ≥ 20,000 cells/mL; warning ≥ 100,000 cells/mL

Page 23: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

lak mill Rr .l'en·oir Mwll1gemr11l. 25:253-263. 2009 0 Copyright by lhC Nunh Amcril';.111 Ul~l' M:m~g~ml'nt Socie1y 2009 ISSN: 07H-8141 prim 1 1040-23~ 1 onllnc DOI: 10.1080/07438 140903143239

Microcystin in Missouri reservoirs

Jennifer L. Graham• and John R. Jones Depm1ment o f Fisheries and Wildl ife Sciences. Universi ty of Mi ·sour i . 302 Anheuser-Bu ·ch

Natural Resources Bui lding, Columbia, M O, 652 11 -7420, USA

Table 4.-Annual means, medians, and maxima of total microcystin values. Summary statistics are based on samples collected during each year.

Total microcystin (,.1.g/L)

Year Reservoir n % Detection n % Detection Mean Median Maximum

2004 76 42 514 23 0.34 <0.1 21 2005 95 52 380 26 0.25 <0.1 II

2006 127 46 508 20 0.16 <0.1 4.9

u1c: Rc~r,·uir n imJic:.uc~ the number uf rcM:rvuirs ~mplcd c:.1ch year. n indicat~ lhc number o f ~ampl~ cullcc1cd during each year.

EUSGS science for a changing world

Percentage of Monitoring Sites with Measurable toxins

Toxin 2017

Cylindrospermopsin

Microcystin

Results from reservoir sites sampled both seasons

n=99

16%

83%

2018 n=99

41%

61%

Has Cyanotoxin Occurrence and Concentration Increased?

Courtesy of T. Thorpe, University of Missouri

Cylindrospermopsin 36 reservoirs, 1 sample each % Detection: 14 Maximum: <1 µg/L

Page 24: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

~-G_ro_u _ . . ' .. .. . . . . .. ' "':' .

. . • .- r.

·-~•.;...c.:,___ •. • • .. ·· ....

EUSGS science for a changing world

What Causes Cyanobacterial Blooms?

Graham et al., 2016

Page 25: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

1000 ...-------------------..----, LOG CHL g_ : -1.09 + 1.46 LOG TOT AL P

r : 0 .95

80 100

r<')

~

' (!)

:E

cl 10

_J _J

>-I :-ll. 0 a: 0 _J I (.)

20 Mi

M

20 40 60 80 100

10 100 1000 Mean epilimnetic TN:TP ratio MEASURED TOT AL PHOSPHORUS MG/ M3

■USGS science for a changing world

Nutrients Play a Key Role

Smith, 1983 Jones and Bachmann, 1976

Page 26: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

-V, V, V, V, C'O C'O EE o.~ :c .c C'O C'O

·.::: 0 ~-(.) -cu 0

.C C 0 0 C·-C'O ->-0 (.)~ ..... -

100% (a-) - -J - - 91 - - - (bi) -1-

7 - - 7 - - .-1 - - - 7 - -

80% • 7 --7- -7-

7- - ~-- - ~ -60% ,- - - 1• 1 - -, - ---.- - .I.-40% - - - - - - ... - -

I • • I - - ·• - -I 20% - - - -

I - - - -0% - - _I_

60 40 20 0 10 100 1000 Total N:total P (mass units) Total phosphorus (µg •L·1)

100% (-d-) - r - - - T • - {e-)- - - 1- - - -J -- - - r .--- - .- - r - - - 1

80% --- r-, - - r - - - 1 ---, ---- - -r e--- --1 60% - - - - - I- - - , 1

- --=I== ~ - l e

40% -1 • ..... - - :-e_.

I I 20% - - -

I -a-_ I -0% - -

100 1000 10000 1 10 100 Phytoplankton biomass (µg•L·1

) Chlorophyll a (µg•L·1 )

{c-)- - -t - i - - - 1.0 :::0

-----t -- u, '71.

- - - - 0.8 c.O - - ..... - -00

0.6 3'< - - 5" m

--·- -m ::::,

0.4 :::::s 0 (') C" ---- (1) I»

- - .-- 0.2 (') -- - - - (D .... 0.0 I»

100 1000 10000 Total nitrogen (µg•L-1)

1.0 :::0 u, • Cyanobacteria '71.

0.8 Cl. 0 biomass -30 0.6 _,'<

:::::s I» Trend in I» ::::, 0.4 :::::s 0 Cyanobacteria (') C"

(D I» 0.2 (') -(D

Risk of >50% .... 0.0 m Cyanobacte ria

Nutrients Play a Key Role

Downing et. al, 2001

Page 27: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

MC (µg/L)

0 <0.1 0 0.1 - 0.3 0 -- 0.3 -1

1 - .2.S. 2.5 - 5

• 5- 50 • 50 - 230

,.-._ ....J

C) 0 :1. 0 ..._,,,

T""'

a.. I- •

0 ~

EUSGS 100

science far a changing world

• •

0 :...

\

1000 TN (~19/L)

'

• • • • • • • • . ......

• • •

•• • •

l'v (,n

• U1

I

0 (;)

\

10000

Relations Between Cyanotoxins and EnvironmentalVariables are Similar to Those Observed for Cyanobacteria

Yuan and Pollard, 2017

Page 28: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

.5000 r2:::.0.84 •

4000 ~

~ C

.3000 C

--= ~ f;i'J.

2000 .:: ti

::i 1000

(a)

EUSGS (C) Tofal itroge:n (µg/L,

science for a changing world

5000

3000 \ • •

2000 j 1

1000 j I • I

0 .' ............ ' . , 0 2

( b)

l. lc:+ 12

9.0.,+ il · ·• 7.0c+ l 1

5.0c+IJ \

3 Oe+ I l -

Ull:+ 11 I 1.0.:+10 j Ult:+ 7 't -

0

(d)

3 4 5 6 7 8 9 10

Soc,chi (m)

..... ~ - ,---, ---.---.----, 2 3 4 5 6

Relations Between Cyanotoxins and EnvironmentalVariables are Similar to Those Observed for Cyanobacteria

Graham et al., 2004

Page 29: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

• ... ■

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

01/

14/

27/

09/

22/

05/

18/

31/

13/

26/

08/

21/

04/

17/

30/

05/

05/

05/

06/

06/

07/

07/

07/

08/

08/

09/

09/

10/

10/

10/

Cyanotoxin Occurrence is Not Necessarily Tightly Coupled to Cyanobacterial Abundance or Community Composition

Harsha Lake, OH

10 100

0

Cya

noba

cter

ial A

bund

ance

(cel

ls p

er m

illili

ter)

1000

10000

100000

1000000

Rel

ativ

e A

bund

ance

(per

cent

)

1

0.1

0.01

Cya

noto

xin

Con

cent

ratio

n (

g/L

)

80

60

40

20

Anabaena Microcystis Planktolyngbya Planktothrix Pseudanabaena Other Cyanobacterial Abundance Microcystin Saxitoxin

Francy et al., 2015

Page 30: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

Individual Lakes Are Unique

Reservoir Strongest Correlate rs p-value n Bilby Conductance -0.86 <0.01 48

Forest Chlorophyll > 35 µm 0.67 <0.01

Harrison Total Nitrogen 0.78 <0.01

Marceline Dissolved Organic Carbon 0.66 <0.01

Mozingo Magnesium -0.84 <0.01

Nodaway Nitrate -0.46 <0.01

Paho Ceriodaphnia abundance 0.81 <0.01

Sterling Sodium 0.60 0.03 13

49

49

49

13

49

28

Page 31: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

Marine PollutJoo Bulletin 124 (2017) 591-o06

Contents I ists available at Sci ' nceOircct

Marine Pollution Bulletin

ELSEVIER journal homepage: www.elsev,er.com/locate/marpolbul

Eutrophication, harmful algae and biodiversity - Challenging paradigms in a world of complex nutrient changes

CrossMark

te/ hal Patricia M. Glibert

Uniw:rstty of Maryland Ctnur for E.m'ironmmllll Scitnct, Hom Point l.aborou,,y, PO Box 6775, Cambridge. MD 21613, USA

EUSGS science for a changing world

Blurred lines: Multiple freshwater and marine algal toxins at the land-sea interface of San Francisco Bay, California

Me lissa B. Peacock'1·b.c.•. Corinne M. Gibbleb.d. David B. Sennd. James E. Cloem c, Raphae l M. Kude lab J HonJrw,,sJ lndlDII Collegr, 2522 Kwu,a /Id, B,,lfuw,am. WA. 98226. USA "Ornm Samas~~ 1156 Hw, Sum. unn.,,rs,'ry o{Califom,a, Santa Cna. CA 95064. USA 'San f,unosn, l::stuary lnslituu, 4911 Cmuul llfflW<', IOdunond. CA 94804. USA

" °"1forrua Drpartmffll a{l-lsh and Wlldb/r. Of/icr ofSp1U f\"nornuon and "'5ponSr. Mannt Wlldbf<' \ltttn11a,y CaR and -rch unto; 15 1 MclJ/1sttr Way, SanLa Cnu, CA 95060. USA r Uralffl SI~ CffiOf(X'III Sul'W)' MS496. 345 M~ ld /Id, Mffl/o f'mt. CA 9402S. USA

Review

Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems

Andrew W. Griffitha·h, Christopher J. Goblera·

• Sdlool of - - IIDll<lljllla,c ~ SIDny Btoo/c uru..,...,,, ~ NY, I 19118, Utuu,d Sias • °""'""""' o( ~ St-....-,s. U,,,_.,,., a( Saudtnn ('.ahfonua. IA<""""" Ci\ ll0089. U,w,d Siam

Paradigms Are Changing

Page 32: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

a)

--- 1.2

~ 1.0 oI)

a 0.8 ._, i::: <l) 0.6 oI) 0 l-, ......

0.4

·- 0.2 = -ro 0.0 ...... 0 ...... -0.2 oI) 0

-0.4 -(b)

--- 1.2

~ 1.0 oI)

a 0.8 ._, i::: 0.6 <l) oI) 0 0.4 l-, ...... ·- 0.2 = -ro 0.0 ...... 0 ......

-0.2 oI) 0

-0.4 -EUSGS science for a changing world

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

log total phosphorus (µg L-1)

2.3

2.1

1.9

1.7

1.5

1.3

1.1

0.9

0.7

0.5

0.3

0.1

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

.,-..,

~ el) ::l.. ._, \j

>--. ..c: 0. 0 ,.__ 0

::i: u el) 0

0 ~ el)

E "-'

(/"J (/"J (,;l

E 0

:.E -a ..... 0 ..... el)

.2

Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes Christopher T. Filstrup B & John A. Downing

Pages 385-400 I Published online 09 Oct 2017

" Download citation P.I https://doi.org/10.1080/20442041.2017.1375176 111) Check for updatM

Paradigms Are Changing

Filstrup and Downing, 2017

Page 33: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

(a)

--- 1.2

~ 1.0 oI)

a 0.8 ._, i::: <l) 0.6 oI) 0 l-, ......

0.4

·- 0.2 = -ro 0.0 ...... 0 ...... -0.2 oI) 0

-0.4 -(b)

--- 1.2

~ 1.0 oI)

a 0.8 ._, i::: 0.6 <l) oI) 0 0.4 l-, ...... ·- 0.2 = -ro 0.0 ...... 0 ......

-0.2 oI) 0

-0.4 -EUSGS science for a changing world

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

log total phosphorus (µg L-1)

2.3

2.1

1.9

1.7

1.5

1.3

1.1

0.9

0.7

0.5

0.3

0.1

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

.,-..,

~ el) ::l.. ._, \j

>--. ..c: 0. 0 ,.__ 0

::i: u el) 0

0 ~ el)

E "-'

(/"J (/"J (,;l

E 0

:.E -a ..... 0 ..... el)

.2

Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes Christopher T. Filstrup B & John A. Downing

Pages 385-400 I Published online 09 Oct 2017

" Download citation P.I https://doi.org/10.1080/20442041.2017.1375176 111) Check for updatM

Paradigms Are Changing

High nutrients and low biomass did not coincide with shifts in nutrient limitation, light availability, cellular Chl-a content, phytoplankton composition, or zooplankton grazing pressure.

Nitrate comprised most of TN and occurred with reduced dissolved organic matter.

Hypothesis: Photolysis of nitrate may produce reactive oxygen species that damage DOM and phytoplankton.

Filstrup and Downing, 2017

Page 34: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

Skaneateles Lake algae outbreak could be toxic, state DEC says Updated Aug 6 ; Posted Aug 6

The state has confirmed that algae floating in Skaneateles Lake near the village of Skaneateles is

toxic. (Gregory Simmons I Special to Syracuse.com)

Skaneateles Lake beaches closed after harmful algae blooms pop up Updated Aug 7; Posted Aug 7

SKANEATELES LAKE

DEC confirms harmful algal bloom on Skaneateles Lake, now dissipated ThlCit.tzfflsl~ ,- 7. 201

Swimmers, Pets Told to Avoid Algal Bloom on Skaneateles Lake; City Monitoring Water Quality lh-SCOT1WILL.IS 6,L..,.... ,,_,IIIAADO . Al,K,l,:lOllf

Toxin-producing algae found again in Skaneateles Lake Updated Sep 6, 1.51 PM, Posted Sep 6 , 1 :36 PM

Cyanotoxin Blooms Are Occurring in Oligotrophic Systems

2018

Page 35: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

Skaneateles Lake algae outbreak could be toxic, state DEC says Updated Aug 6 ; Posted Aug 6

The state has confirmed that algae floating in Skaneateles Lake near the village of Skaneateles is

toxic. (Gregory Simmons I Special to Syracuse.com)

Cyanotoxin Blooms Are Occurring in Oligotrophic Systems

2018

2018 Summer Maximum Total Phosphorus: 7 μg/L Chlorophyll: 1.6 μg/L Shoreline Microcystin: 940 μg/L

Page 36: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

IIUSGS EUSGS sciencs far a changing world science tor a changing world

EUSGS science for a changing world

The Spatiotemporal Variability of Cyanobacteria Poses

Unique Challenges to Monitoring and Assessment July 20, 2016 4:09 pm July 20, 2016 at 3:54 pm

Photo Credit: G. Foster, USGS Photo Credit: G. Foster, USGS

Milford Lake, KS

Page 37: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

Knowledge Gaps A considerable amount of research is being conducted…toward the determination of causes and control of algal blooms. An expansion and integration of these studies is indicated as a very real need.

~E. T. Rose, 1953

Status and trends Environmental fate and transport Environmental drivers Ecosystem effects Exposure and health Drinking water and food impacts Mitigation and management

Photo

Cre

dit: B

. Ros

en, U

SGS

Photo

Cre

dit: J

. Gra

ham,

USG

SPh

oto C

redit

: NAS

A

Page 38: A 20 Year Retrospective · High nutrients and “other ideal ecological conditions” result in blooms Potential producers include: Aphanizomenon, Anabaena, Coelosphaerium, Gleotrichia,

EUSGS science for a changing world

Jennifer Graham [email protected] 518-285-5706