a 45nm soi monolithic photonics chip-to- chip link with...

62
Symposia on VLSI Technology and Circuits A 45nm SOI Monolithic Photonics Chip-to- Chip Link with Bit-Statistics-Based Resonant Microring Thermal Tuning Chen Sun 1,2 , Mark Wade 3 , Michael Georgas 2 , Sen Lin 1 , Luca Alloatti 2 , Benjamin Moss 2 Rajesh Kumar 2 , Amir Atabaki 2 , Fabio Pavanello 3 , Rajeev Ram 2 , Milos Popovic 3 , Vladimir Stojanovic 1 1 University of California, Berkeley 2 Massachusetts Institute of Technology 3 University of Colorado, Boulder

Upload: others

Post on 05-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Symposia on VLSI Technology and Circuits

A 45nm SOI Monolithic Photonics Chip-to-Chip Link with Bit-Statistics-Based Resonant Microring Thermal Tuning

Chen Sun1,2, Mark Wade3, Michael Georgas2, Sen Lin1, Luca Alloatti2, Benjamin Moss2

Rajesh Kumar2, Amir Atabaki2, Fabio Pavanello3, Rajeev Ram2, Milos Popovic3, Vladimir Stojanovic1

1 University of California, Berkeley 2 Massachusetts Institute of Technology

3 University of Colorado, Boulder

Page 2: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Electrical Link Scaling

•  Efficiency vs. reach vs. data-rate tradeoffs limits data-rate

•  Bandwidth density hard to scale –  High-performance chips are I/O bandwidth starved

Electrical Wire 1 x 10 Gb/s

Page 3: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Silicon Photonic Links

•  Dense wavelength division multiplexing (DWDM) provides a way to scale bandwidth density

•  Distance insensitive loss, low distortion optical signaling

Optical Fiber

16 x 10 Gb/s … …

Page 4: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Ring Resonators

•  Enabler of DWDM •  Very high-Q resonant

notch filter

λ0

In Thru

DropThru

Drop

T

λ0λ

1

Slide 4

Page 5: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Ring Modulators

•  Modulation: –  On-off key the laser by electrically shifting notch

wavelength –  Modulator ring is a PN diode –  carrier dispersion ( free carriers => index of refraction)

Slide 5

λ0Tx Out

0101101... T λ0

λ

λ0

T1

T0

1

Page 6: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

λ0Tx Out

0101101... T λ0

λ

λ0

T1

T0

1

Ring Modulators

•  Modulation: –  On-off key the laser by electrically shifting notch

wavelength –  Modulator ring is a PN diode –  Carrier dispersion ( free carriers => index of refraction)

Δ

0V -1V

Slide 6

Page 7: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Critical Gating Issue

Slide 7

•  Drop-port spectra of 55 nominally identical rings (process variations) –  [Selvaraja IEEE LEOS 2009]

•  Thermal variations cause drift of 0.05nm/K, can use to tune •  Resonance alignment a critical gating issue

Page 8: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Outline

•  Active Wavelength Locking •  Bit-Statistical Thermal Tuner Concept

–  Level-tracking –  Optimal auto-locking –  Self-heating

•  45nm SOI monolithic photonic platform •  Chip-to-link link demonstration

Slide 8

Page 9: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Active Wavelength Locking

•  Amount of light resonating in the ring changes based on alignment of resonance (λ0) to laser wavelength (λ)

Slide 9

Laser Laser λ

PR

PR

λ0

Page 10: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Active Wavelength Locking

•  Weakly couple photodetector to ring (drop port), PD photocurrent (IPD) is proportional to PR –  IPD electrically-measurable indicator of alignment

Slide 10

Laser Laser λ

IPD

PR

PD PDPD

IPD

λ0

Page 11: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Active Wavelength Locking

•  Tracker circuit which track value of (IPD) •  Embed resistive heater in the ring and driver to control ring

temperature

Slide 11

Laser

PD

R Laser

Tracker

RR

PDPDPDPPDPDPDP Heater Driver

Ring Waveguide

Resistive Heater

Page 12: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Active Wavelength Locking

•  Controller uses information from tracker, controls heater to maintain alignment of λ0 to laser λ

Slide 12

Laser

PD

R Laser

Tracker Controller

RR

C

PDPDPDPPDPDPDP Heater Driver

Page 13: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Tuning Control (Lock-To-Reference)

λ

IPD Laser

IREF

Lock IPD to IREF

Heat up Heat upcool down cool down

Page 14: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Tuning Control (Lock-To-Reference)

λ

IPD

IREF

Lock IPD to IREF

•  If IPD > IREF, heat more •  If IPD < IREF, heat less

IPD

Laser

cooled cooled

Page 15: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Tuning Control (Lock-To-Reference)

λ

IPD

IREF

Lock IPD to IREF

Heat More HMIPD

Laser

•  If IPD > IREF, heat more •  If IPD < IREF, heat less

Page 16: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Tuning Control (Lock-To-Reference)

λ

IPD Laser

IREF

Lock IPD to IREF

•  If IPD > IREF, heat more •  If IPD < IREF, heat less

IPD Heated up Heated up

Page 17: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Tuning Control (Lock-To-Reference)

λ

IPD Laser

IREF

Lock IPD to IREF

•  If IPD > IREF, heat more •  If IPD < IREF, heat less

Heat Less

at s

IPD

Page 18: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Challenge #1: Data-Dependent IPD

Slide 18

• Data is amplitude-modulated –  IPD changes based on data 0 and data 1

•  If balance of 1s to 0s is changing –  Controller can think ring is drifting away when it is not

•  Level-track Bit 1s and Bit 0s separately

λ

IPD Laser IPD

0 1 I0

I1

Page 19: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Integrating Frontend

•  Goal: find i0 and i1 (0 level and 1 level) •  Integrate drop-port photocurrent over N bits •  Final voltage dependent on number of 0s and 1s

Slide 19

Page 20: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Integrating Frontend

•  Integrate bits over two intervals close in time:

Slide 20

Page 21: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Integrating Frontend

•  Integrate bits over two intervals close in time:

•  Thermals are slow (10 , so I0 and I1 stay the same:

Slide 21

Page 22: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Integrating Frontend

•  Solve 2 equations with 2 unknowns digitally –  Implemented with 2 Multipliers, 4 adders, at low speed

•  Integrate bits over two intervals close in time:

•  Thermals are slow (10 , so I0 and I1 stay the same:

Slide 22

Page 23: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Challenge #2: Picking IREF

•  Want to pick a lock point that maximizes eye opening (P1 - P0)

•  If both 1-level and 0-levels are both known –  Search to find IREF where I1 – I0 is maximized during lock

Slide 23

λ

IPD Laser IPD

0 1 IREF?

Page 24: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Lock-On Procedure

init search

PH-initRsweep

Rsweep

L0-opt

Ldiff-opt

•  Initialize heater to a high value (PH-init), then stride heater value down until there is drop-port photocurrent > Rsweep

Slide 24

Page 25: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

init search sweep

PH-init

L0-opt

Rsweep

PH-opt

L0-opt

Ldiff-opt

Ldiff-opt

Lock-On Procedure

•  Step heater value down and remember where I1 – I0 (Idiff) is maximized (I0-opt) –  corresponds to the lock point with maximum eye-height

Slide 25

Page 26: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Lock-On Procedure

init search sweep lockreset return

PH-init

L0-opt

Rsweep

PH-opt

Rsweep

L0-opt

Ldiff-opt

Ldiff-opt

•  Once photocurrent < Rsweep again, return to I0-opt and lock onto it

Slide 26

Page 27: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Challenge #3: Self-Heating

λ

PR Laser

•  Significant fraction (>50%) of PR is absorbed by the ring (usually free-carrier absorption) heating it up

0 PR0 500

Slide 27

Page 28: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Challenge #3: Self-Heating

λ

PR Laser

Mod

•  When modulating 1s or 0s, laser power resonating in ring (PR) changes

•  Here, ΔPR= 400 ring wants to cool down by 10K –  Enough to blue-shift by 0.5nm (Modulator shift is ~0.05nm)

1 PR0

PR1

500

100

Self-Heat

Slide 28

Page 29: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Challenge #3: Self-Heating

λ

PR Laser PR

•  Average PR dependent on ratio of 1s to 0s

•  Very large amplitude effect –  Transient eye-closure when ratio of 1s to 0s changes

0 1

Self-Heat

PR0

PR1

500

100 Mod

Slide 29

Page 30: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Self-Heating Cancellation

•  Difference in self-heating power between 0s and 1s is proportional to I0, I1

•  Since I0 and I1 are known, then exact amount of cancellation power to apply can be calculated

Slide 30

PC = K (I1 – I0)

Page 31: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Self-Heating Cancellation

•  Difference in self-heating power between 0s and 1s is proportional to I0, I1

•  Since I0 and I1 are known, then exact amount of cancellation power to apply can be calculated

Slide 31

PC = K (I1 – I0)

•  Can apply cancellation in N-bit intervals –  where tbit x N << thermal time constant:

PC = K (N1/N) (I1 – I0)

Page 32: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

8:1

CLK

Bit-Statistics Based Thermal Tuner

•  Integrating frontend ADC integrates drop-port photocurrent

Slide 32

Page 33: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

8:1

CLK

Bit-Statistics Based Thermal Tuner

•  Tap from the transmit datapath and count the number of 1s and 0s

Slide 33

Page 34: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

L1 L0Ldiff

8:1

CLK

Bit-Statistics Based Thermal Tuner

•  Solver performs algebra to find optical power level (I1, I0)

Slide 34

Page 35: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

L1 L0Ldiff

8:1

CLK

PH

Bit-Statistics Based Thermal Tuner

•  Controller FSM controls the strength of a heater DAC

Slide 35

Page 36: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

L1 L0Ldiff

8:1

CLK

PH

Bit-Statistics Based Thermal Tuner

•  Self-heating canceller cancels fast transients from laser self-heating effects

Slide 36

Page 37: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

IBM 12SOI (45nm) CMOS

IBM Cell IBM Power7

•  300mm wafer, commercial process •  Fast process used in microprocessors

•  N-FET transistor fT = 485 GHz [Lee, IEDM 2007]

IBM Espresso

Page 38: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Photonics in IBM 45nm SOI

•  Thin BOX SOI process –  Enable photonics through partial substrate release

•  Demonstrated monolithic optical transceivers –  [Georgas VLSI 2014]

Slide 38

Page 39: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Auto-Locked Transmitter

•  Integrate the tuning circuitry with the transmitter

In

PRBS31

8:1

Tuning Backend

VBIAS

VPD

Outen

rst

Slide 39

Page 40: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Resonator Tuning Efficiency

Slide 40

•  Substrate release process provides good tuning efficiency •  0.75mW/nm (3.8μW/GHz), 2.2mW maximum heater output •  3nm (600GHz, ~60K) total tuning range

Page 41: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

PRBS31

8:1

Thermal Tuner

Tx

Auto-locked Transmitter Demo

•  Ring resonance at 1187.2nm, laser at 1189nm

•  Tuning circuits auto-locked to maximize I1 – I0

Slide 41

Lock

Laser λ

Page 42: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Auto-locked Transmitter Demo

•  Open eyes demonstrated with PRBS31 random number sequence –  5-8 Gb/s modulation at a 1.2V swing –  Modulator driver is 30 fJ/b

Slide 42

Page 43: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

1/0 Level Tracking

•  1/0 Level tracking allows controller to track 1/0 levels separately, and the controller can maintain the lock to the correct levels

•  Uncompensated self-heating causes transient eye-closures

5Gb/s DC-Balanced Data (PRBS31) 5Gb/s non-DC balanced data

Slide 43

Page 44: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

1/0 Level Tracking + Heating Cancellation

•  Self-heating cancellation cancels the sudden change in laser self-heating power

•  Open eye is maintained

1/0 tracking only 1/0 tracking + heating cancellation

Slide 44

Page 45: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

45nm SOI Receiver

•  Photodetector leverages SiGe available for PMOS strain –  0.02 A/W and 0.1 A/W variants

•  Single-Stage TIA with 5kΩ feedback resistance –  Two-way time-interleaved slicers –  Optimized version of [Georgas VLSI 2014]

Slide 45

Page 46: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Receiver Measurements

•  10 Gb/s operation at less than 10-12 Bit-error rate

–  16.5uApp sensitivity at 10Gb/s (-21dBm normalized) –  6uApp sensitivity at 5Gb/s (-26dBm normalized)

•  290 fJ/bit at 10Gb/s, 374 fJ/bit at 5Gb/s

Slide 46

statistical eye shape 10 Gb/s BER eye measurement

Page 47: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Time [ps]

Dec

isio

n T

hres

hold

[uA

]

0 50 100 150 200

-2

0

2

1e-0011e-0021e-0031e-0041e-0051e-0061e-0071e-0081e-0091e-010<1e-010

Chip-to-Chip Link Demonstration

•  Open eye at <10-10 BER •  Optical amplifier provides 8dB optical gain

–  4dB loss per grating coupler, 1.2 dB loss couplers available [Wade, OI 2015] –  0.02 A/W photodetector in link test site

•  0.1-0.2 A/W photodetectors available

Slide 47

2.5 mW 1 mW 0.25 mW

0.1 mW

0.6 mW

0.25 mW

Page 48: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Link Energy Breakdown (5 Gb/s)

•  Backend synthesized for 3.125 GHz as opposed to 625 MHz, so still room for improvement on energy/bit

*1.8nm is the tuned range in the demo shown, corresponding to 1.4 mW Slide 48

Page 49: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Conclusion

•  Ring resonator thermal tuning is a gating issue for DWDM optical links

•  Modulator level-tracking using bit statistics •  Level-tracking enables optimal lock and self-

heating cancellation, crucial to unencoded links •  Demonstrated tuning subsystem and chip-to-chip

optical link in 45nm SOI monolithic platform

Slide 49

Acknowledgements -  POEM Team at MIT, CU Boulder, and UC Berkeley -  This work was supported in part by DARPA, NSF, MIT CICS, Trusted

Foundry, NSERC Thank you!

Page 50: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Backup

Slide 50

Page 51: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Chip-to-Chip DWDM Links

•  Vertical grating couplers couple light from a fiber into or out of a chip

•  A pair of resonators aligned to the same wavelength form a wavelength channel

•  High selectivity (Q ~10000) enables many channels on the same waveguide

Page 52: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Receiver Measurements

•  10 Gb/s operation at less than 10-12 Bit-error rate

–  8.3uA sensitivity at 10Gb/s (-21dBm normalized sensitivity) –  4.3uA sensitivity at 8Gb/s (-24dBm normalized sensitivity)

•  These are connected to a 0.02A/W photodetector –  -4dBm @ 10Gb/s, -7dBm @ 8Gb/s –  Have a 0.1A/W detector, but not connected to these circuits

•  290 fJ/bit at 10Gb/s, 310 fJ/bit at 8Gb/s

Slide 52

statistical eye shape Bit-error rate eye measurement

Page 53: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Modulators and Receivers

•  Receive: –  Ring captures light of a specific wavelength, drops light

onto a wideband photodetector

λ0Tx Out

0101101... T λ0

λ λ0Rx In

0101101...

λ0

T1

T0

1

Slide 53

Page 54: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Optical Bistability

Slide 54

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11280

1280.1

1280.2

1280.3

1280.4

1280.5

1280.6

1280.7

1280.8

1280.9

1281

0 [nm

]

Heater Power [mW]

≈H

≈H

λ ≈

Page 55: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Thermal Tuning: Drop-Port Sensing

•  Average drop port IPD also dependent on ratio of 1/0s in data (on-off keyed data) –  OK for link demonstrations (PRBS data is 1/0 balanced) –  Will break in real system, unless data encoded to

maintain constant 1/0 ratios

Laser

Low BW TIA >

PD

DAC

Reference IPD

IPD

R Laser

[Li, ISSCC 2013] [Padmaraju, Opt Exp 2012] [Amberg, ASSCC 2012] [Timurdogan, CLEO 2012]

(more/less heat) +1/-1

Page 56: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Partial Substrate Removal Die Photo

Slide 56

Page 57: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

New Photodetector Test Data

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Resp

onsi

vity

[A

/W]

Input Power [mW]

1283nm (-1.5V) 1283nm (-0.8V) 1283nm (-0.5V) 1185nm (-1.5V) 1185nm (-0.8V) 1185nm (-0.5V) 1172nm (-1.5V) 1172nm (-0.8V) 1172nm (-0.5V)

Page 58: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Gratings

Slide 58

Page 59: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Average Drop Power (Large vs. Small Shift)

•  Drop-port average is different dependent on large vs. small shift modulators

Slide 59

Page 60: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Self-Heating Eye Closure (Random Data)

•  Plotted for different ratios tbit/thermal time constant •  Different self-heating loop gains

Slide 60

−10 −8 −6 −4 −2 00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

σ/Δ

α

GL(0)

tbit

/τT = 1e−5

tbit

/τT = 1e−4

tbit

/τT = 1e−3

Page 61: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

- 0 [nm]

Val

ue (

arb.

uni

ts)

Real L0

Real L1

Real Ld

Calc L0

Calc L1

Calc Ld

Updates to LD = L0 – L1

•  If LD cannot update, controller still returns ring to the correct point

Slide 61

Ld = N [LN(ta) − LN(tb)]N0(tb) − N0(ta)

L1 = LN + N0

N· Ld

L0 = L1 − Ld

Page 62: A 45nm SOI Monolithic Photonics Chip-to- Chip Link with ...isg.eecs.berkeley.edu/wp-content/uploads/2016/03/... · Rajesh Kumar2, Amir Atabaki 2, Fabio Pavanello3, Rajeev Ram2, Milos

Averaged Power Tracking

•  Experiment with random, non-DC balanced data with ratios of 1s-to-0s changing every 200ms

•  Averaged power tracking completely fails –  Controller unable to discern loss of power due to

resonance change from a change in ratio of 1s to 0s

5Gb/s DC-Balanced Data (PRBS31) 5Gb/s non-DC balanced data

Slide 62