a b c d e f - royal society of chemistrya b c c f 3 a figure s4. edx of tca electrode after...

11
1 Supporting Information for Electron Regulation Enabled Selective Lithium Deposition for Stable Anode of Lithium- Metal Batteries Junling Guo, a Shupeng Zhao, a He Yang, a Fengxiang Zhang* a and Jinping Liu* b Figure S1. The SEM (a-c) and EDX (d-f) images of the ZnO array on carbon cloth. a State Key Laboratory of Fine Chemicals and School of Petroleum and Chemical Engineering, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, P. R. China. *E-mail: [email protected] b School of Chemistry, Chemical Engineering and Life Science and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China. *E-mail: [email protected] a c e b d f C element Zn element O element Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Upload: others

Post on 08-Nov-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: a b c d e f - Royal Society of Chemistrya b c C F 3 a Figure S4. EDX of TCA electrode after infiltration in the electrolyte for 5h at different points: (a) Scanning Acquire image;

1

Supporting Information for

Electron Regulation Enabled Selective Lithium Deposition for Stable Anode of Lithium-

Metal Batteries

Junling Guo,a Shupeng Zhao, a He Yang, a Fengxiang Zhang*a and Jinping Liu*b

Figure S1. The SEM (a-c) and EDX (d-f) images of the ZnO array on carbon cloth.

a State Key Laboratory of Fine Chemicals and School of Petroleum and Chemical Engineering, Dalian

University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, P. R. China.

*E-mail: [email protected] b School of Chemistry, Chemical Engineering and Life Science and State Key Laboratory of Advanced

Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R.

China.

*E-mail: [email protected]

a

c

e

b

d

f

C element

Zn element

O element

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2018

Page 2: a b c d e f - Royal Society of Chemistrya b c C F 3 a Figure S4. EDX of TCA electrode after infiltration in the electrolyte for 5h at different points: (a) Scanning Acquire image;

2

Figure S2. Discharge-charge curves of the TCA electrode for SEI formation.

Figure S3. EDX mapping of TCA electrode after 3 cycles at 0.3 ~ 1 V for SEI formation: (a)

Scanning Acquire image; (b) C element and (C) F element.

0 5000 10000 150000.3

0.6

0.9

1.2

1.5

Volt

age

(V)

Time (s)

0.2 mA/cm2

a b

c C

F

Page 3: a b c d e f - Royal Society of Chemistrya b c C F 3 a Figure S4. EDX of TCA electrode after infiltration in the electrolyte for 5h at different points: (a) Scanning Acquire image;

3

Figure S4. EDX of TCA electrode after infiltration in the electrolyte for 5h at different points:

(a) Scanning Acquire image; (b) point 1, corresponding to position on the outer surface; (c-e)

points 2-4 corresponding to different positions on the inner surface.

0 10000 20000 30000 400000

10

20

30

40

50

Co

un

ts

Energy (eV)

0 10000 20000 30000 400000

10

20

30

40

50

Co

un

ts

Energy (eV)

0 10000 20000 30000 400000

10

20

30

40

50

Co

un

ts

Energy (eV)

0 10000 20000 30000 400000

10

20

30

40

50

60

Energy (eV)

Co

un

ts

1

2

3

4

200 400 600 800

0

20

40O

C

200 400 600 800

0

20

40 OC

200 400 600 800

0

20

40

O

C

200 400 600 800

0

20

40

60

FO

C

a b c

d e

Page 4: a b c d e f - Royal Society of Chemistrya b c C F 3 a Figure S4. EDX of TCA electrode after infiltration in the electrolyte for 5h at different points: (a) Scanning Acquire image;

4

Figure S5. EDX of TCA electrode after 3 cycles at 0.3 ~1 V at different points: (a) scanning

Acquire image; (b-c) point 1, corresponding to a position on the outer surface; (d-e) point 2,

corresponding to a position on the inner surface.

a

1

2

200 400 600 800

0

10

20

30

40

50

O

Energy (eV)

Co

un

ts

C

0 10000 20000 30000 400000

10

20

30

40

50

Energy (eV)

Co

un

ts

200 400 600 8000

10

20

30

40

50

Co

un

ts

Energy (eV)

F

C

O

0 10000 20000 30000 400000

10

20

30

40

50

Co

un

ts

Energy (eV)

b c

d e

Page 5: a b c d e f - Royal Society of Chemistrya b c C F 3 a Figure S4. EDX of TCA electrode after infiltration in the electrolyte for 5h at different points: (a) Scanning Acquire image;

5

Figure S6. Enlarged charge-discharge curves of (a) the SEI wrapped TCA electrode at

different cycles at 1 mA cm2; (b-d) Li plating/stripping curves of different electrodes at 1 mA

cm-2 for 2 mAh cm-2.

7 8 9 10 11-50

-25

0

25

50

Po

ten

tial

(mV

vs

Li/

Li+

) TCA electrode SEI wrapped

TCA electrode

Time (h)

SEI wrapped

TCP electrode

95 96 97 98 99-50

-25

0

25

50

Po

ten

tia

l (m

V v

s L

i/L

i+) TCA electrode

SEI wrapped

TCA electrode

Time (h)

95 96 97 98 99-600

-400

-200

0

200

400

Po

ten

tia

l (m

V v

s L

i/L

i+)

TCA electrode

SEI wrapped

TCA electrode

Time (h)

43 44 45 46 47-50

-25

0

25

50

Po

ten

tia

l (m

V v

s L

i/L

i+)

TCA electrode

SEI wrapped

TCA electrode

Time (h)

SEI wrapped

TCP electrode

43 44 45 46 47-200

0

200

400

600

800

Po

ten

tia

l (m

V v

s L

i/L

i+)

TCA electrode

SEI wrapped

TCA electrode

Time (h)

SEI wrapped

TCP electrode

1.10 1.15 1.20 1.25 1.30-0.04

-0.02

0.00

0.02

0.04

Po

ten

tia

l (V

vs

Li/

Li+

)

Areal capacity (mAh cm-2)

50 th 1 st

100 th 200 th

a

b

c

d

Page 6: a b c d e f - Royal Society of Chemistrya b c C F 3 a Figure S4. EDX of TCA electrode after infiltration in the electrolyte for 5h at different points: (a) Scanning Acquire image;

6

Figure S7. The nyquist plots of different cells without sulfur.

Figure S8. Li plating/stripping behavior of different electrodes at 5 mA cm-2 for 2 mAh cm-2.

0 5 10 15 20 25 300

5

10

15

20

Li/TCA cell

Li/SEI wrapped TCA cell

Li/Li cell

Zim

(oh

m)

Zre (ohm)

Page 7: a b c d e f - Royal Society of Chemistrya b c C F 3 a Figure S4. EDX of TCA electrode after infiltration in the electrolyte for 5h at different points: (a) Scanning Acquire image;

7

Figure S9. The SEM images of different electrodes after cycling: (a-c) SEI wrapped TCP

electrode; (d-f) TCA electrode and (g-i) SEI wrapped TCA electrode.

500 nm

500 nm

500 nm

30 μm

30 μm

30 μm

3 μm

3 μm

3 μm

a b c

e d

g

f

h i

Page 8: a b c d e f - Royal Society of Chemistrya b c C F 3 a Figure S4. EDX of TCA electrode after infiltration in the electrolyte for 5h at different points: (a) Scanning Acquire image;

8

Figure S10. XRD of pristine TCA electrode, TCA electrode after 5 cycles and SEI wrapped

TCA electrode after 5 cycles of charge-discharge operation.

Figure S11. TEM images of porous carbon sphere/sulfur composite.

10 20 30 40 50 60 70 800

200

400

600

800

LiOH

Inte

nsi

ty(a

.u.)

2 (deg.)

TCA electrode after 5 cycles

SEI wrapped TCA electrode after 5 cycles

Pristine TCA electrode

a b

Page 9: a b c d e f - Royal Society of Chemistrya b c C F 3 a Figure S4. EDX of TCA electrode after infiltration in the electrolyte for 5h at different points: (a) Scanning Acquire image;

9

Table S1. The performance comparison of our works with literature results

Strategies Coulombic

efficiency

Stable cycling performance

Current

density

Voltage hysteresis

(after 150 h)

Hollow carbon shells

loaded with Au

nanoparticles inside[23]

98% 300

cycles

Carbon

nanofibers loaded with

Ag nanoparticles[33]

98% 50

cycles

0.5

mA cm-2 ~22 mV

Covalently connected

graphite microtubes[42]

~97% 100

cycles

1

mA cm-2 24 mV

Artificial solid

electrolyte interphase

layer[18]

~98% 200

cycles

Nanodiamonds work as

an electrolyte

additive[11]

~96% 100

cycles

1

mA cm-2 100 mV

Our work 98% 200

cycles.

1

mA cm-2 ~12 mV

Page 10: a b c d e f - Royal Society of Chemistrya b c C F 3 a Figure S4. EDX of TCA electrode after infiltration in the electrolyte for 5h at different points: (a) Scanning Acquire image;

10

Figure S12. The nyquist plots of different sulfur cells.

Figure S13. (a) Side-view and (b) top-view SEM images of the pristine Li metal anode; (c)

side-view and (d) top-view SEM images of the Li metal anode after 100 cycles.

b a

c d

0 20 40 60 800

20

40

60

Zim

(o

hm

)

Zre (ohm)

Li-TCA/S cell

Li-SEI wrapped TCA/S cell

Li/S cell

Page 11: a b c d e f - Royal Society of Chemistrya b c C F 3 a Figure S4. EDX of TCA electrode after infiltration in the electrolyte for 5h at different points: (a) Scanning Acquire image;

11

Figure S14. The electrochemical performance of different Li-LiCoO2 batteries: (a) the first

charge-discharge curves; (b) the cycle performance at 0.2 C.

0 20 40 60 80 100

2.8

3.2

3.6

4.0

Battery using Li-SEI wrapped TCA anode

Capacity (mAh/g)

Po

ten

tia

l (V

)

Battery using Li- TCA anode

Battery using commercial Li anode

3.89

3.90

3.90

3.95

0 20 40 60 80 100

20

40

60

80

100

52.3 %

76.8 %

Cap

aci

ty (

mA

h/g

)

Cycle Number

Blcak: Battery using Li- TCA anode

Blue: Battery using commercial Li anode

Red: Battery using Li-SEI wrapped TCA anode

Charge

Discharge