a brief primer on ideal point estimatesjoshua d. clinton princeton university [email protected]...

23
Motivation Two Probabilistic Voting Models Computation Complications Conclusion A Brief Primer on Ideal Point Estimates Joshua D. Clinton Princeton University [email protected] January 28, 2008 Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

Upload: others

Post on 20-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    A Brief Primer on Ideal Point Estimates

    Joshua D. ClintonPrinceton University

    [email protected]

    January 28, 2008

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Really took off with growth of game theory and EITM.Claim: ideal points = player preferences.

    Widely used in American, Comparative and International Relations:Measure legislator/judicial/voter/party/country preferences, gridlockintervals, uncovered sets, polarization, heterogeneity, representation,party pressure.

    Outline:

    I Statistical Models

    I Computational Considerations

    I Reasons for Concern

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Claim 1:

    The maps [of ideal points] are useless unless the userunderstands both the spatial theory that the computer programembodies and the politics of the legislature that produced theroll calls (Poole, 2005).

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Claim 2:

    Legislative voting is one of the most intensively studied areas ofquantitative political science. Many have assumed that thebasic answers were discovered long ago. Others will interpretthe recent research as filling in ‘everything they always wantedto know about legislative voting’ and (often) didn’t care to ask.But the challenge of the field remains (Weisberg, 1977).

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Statistical Model

    Uit(θy(t)

    )= f (xi , θy(t)) + ζit

    Uit(θn(t)

    )= f (xi , θn(t)) + νit

    Legislator i votes Yea if f (xi , θy(t))− f (xi , θn(t)) > νit − ζit

    Pr(yit = 1) = Pr(νit − ζit < f (xi , θy(t))− f (xi , θn(t)))

    Ideal point estimators vary in assumptions about deterministic parts(f(xi , θy(t)),f(xi , θn(t))) and stochastic parts (ζit , νit) of legislator i ’s utilityfunction.

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    NOMINATE & QuadraticQuadratic:

    f (xi , θy(t)) = −`xi − θy(t)

    ´2f (xi , θn(t)) = −

    `xi − θn(t)

    ´2f (xi , θy(t))− f (xi , θn(t)) = −

    `xi − θy(t)

    ´2+`xi − θn(t)

    ´2= βtxi − αt

    Where: αt = θ2n(t) − θ2y(t) and βt = 2

    `θy(t) − θn(t)

    ´.

    NOMINATE:

    f (xi , θy(t)) = βexp“− 1

    2

    `xi − θy(t)

    ´2”f (xi , θn(t)) = βexp

    “− 1

    2

    `xi − θn(t)

    ´2”f (xi , θy(t))− f (xi , θn(t)) = β

    hexp

    “− 1

    2

    `xi − θy(t)

    ´2”− exp

    “− 1

    2

    `xi − θn(t)

    ´2”i

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    NOMINATE & QuadraticQuadratic:

    f (xi , θy(t)) = −`xi − θy(t)

    ´2f (xi , θn(t)) = −

    `xi − θn(t)

    ´2f (xi , θy(t))− f (xi , θn(t)) = −

    `xi − θy(t)

    ´2+`xi − θn(t)

    ´2= βtxi − αt

    Where: αt = θ2n(t) − θ2y(t) and βt = 2

    `θy(t) − θn(t)

    ´.

    NOMINATE:

    f (xi , θy(t)) = βexp“− 1

    2

    `xi − θy(t)

    ´2”f (xi , θn(t)) = βexp

    “− 1

    2

    `xi − θn(t)

    ´2”f (xi , θy(t))− f (xi , θn(t)) = β

    hexp

    “− 1

    2

    `xi − θy(t)

    ´2”− exp

    “− 1

    2

    `xi − θn(t)

    ´2”iJosh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Stochastic Elements

    Assume ζit and νit are: uncorrelated and drawn from a symmetric,unimodal distribution. Suppose νit − ζit ∼ N(0, σ2):

    f (xi , θy(t))− f (xi , θn(t)) ∼ N(νit − ζit , σ2)

    Therefore:

    Pr(yit = 1) = Pr(νit − ζit < f (xi , θy(t))− f (xi , θn(t)))

    )= Φ

    (σ−1(f (xi , θy(t))− f (xi , θn(t))))

    )Implying:

    PrN(yit = 1) = Φ[β[exp

    (− 12ω

    (xi − θy(t)

    )2) − exp(− 12ω (xi − θn(t))2)]]PrQ(yit = 1) = Φ

    [σ−1(βtxi − αt)

    ]Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Likelihood Functions

    Quadratic Model:

    L(x,θ|y) = ΠLi=1ΠTt=1PrQ(yit = 1)yit × (1− PrQ(yit = 1))1−yit

    = ΠLi=1ΠTt=1Φ (βtxi − αt)yit × (1− Φ (βtxi − αt))1−yit

    NOMINATE Model:

    L(x,θ|y) = ΠLi=1ΠTt=1PrN(yit = 1)yit × (1− PrN(yit = 1))1−yit

    = ΠLi=1ΠTt=1Φ

    hβhexp

    “− 1

    2

    `xi − θy(t)

    ´2” − exp“− 12

    `xi − θn(t)

    ´2”iyitׄ

    1− Φhβhexp

    “− 1

    2

    `xi − θy(t)

    ´2” − exp“− 12

    `xi − θn(t)

    ´2”i”1−yit

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Parameter Identification:Clearly unidentified without further restrictions:

    xβ − α = x∗β∗ − α with x∗ = xs and β∗ = β/sImplies L(β,α, x|y) = L(β∗,α, x∗|y)

    Scale and Rotational Invariance:

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Parameter Identification:

    Clearly unidentified without further restrictions:

    xβ − α = x∗β∗ − α with x∗ = xs and β∗ = β/sImplies L(β,α, x|y) = L(β∗,α, x∗|y)

    Solution: two linearly independent restrictions on x.I Sen. Helms = 1, Sen. Kennedy = -1I E [x] = 0, V [x] = 1, and median Democrat < 0.

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Identification Summary

    Estimator Comparability ConstraintsInterest Group Scores Not∗ NoneWNOMINATE Not NoneDNOMINATE Across time, not inst. (except pres.) Parametric ChangeDWNOMINATE Across time, not inst. (except pres.) Parametric ChangeCommon Space Across time and instit. Fixed xQuadratic Depends Depends

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • ·Sarbanes ·Reed ·KERRY ·Harkin ·Boxer

    ·Levin ·Clinton ·Dayton ·Lautenberg ·Mikulski

    ·Feingold ·Durbin ·Corzine ·EDWARDS ·

    Kennedy ·Stabenow ·Johnson·Daschle ·Leahy ·

    Wyden ·Murray ·Akaka·Byrd ·GRAHAM, B. ·

    Dodd ·Rockefeller ·Hollings ·Schumer ·Cantwell

    ·Kohl ·Bingaman ·Biden ·Reid ·

    Dorgan ·Inouye ·Nelson, B.·Feinstein ·LIEBERMAN ·

    Conrad ·Pryor ·Landrieu·Carper ·Jeffords ·

    Lincoln ·Baucus ·Bayh ·Breaux ·Nelson, D.

    ·Chafee ·Snowe

    −3 −2 −1 0

    −3 −2 −1 0

    · McCain· Specter·Collins· Campbell· Murkowski

    · Stevens· Sununu·Smith· Shelby·Gregg· Fitzgerald· Graham, L.

    · Hutchison· Coleman·Warner· Hagel·Ensign· DeWine· Brownback

    · Talent· Allard·Roberts· Dole· Voinovich

    · Chambliss· Miller·Lott· Kyl· Inhofe

    · Enzi· Bond·Domenici· Crapo· Alexander

    · Craig· Nickles·Frist· Bennett· Burns

    · Grassley· Bunning·Santorum· Cochran· Allen

    · McConnell· Thomas·Sessions· Hatch·

    Lugar· Cornyn

    0 1 2 3

    0 1 2 3

  • ·Sarbanes ·Reed ·KERRY ·Harkin ·Boxer

    ·Clinton ·Levin ·Dayton ·Lautenberg ·Mikulski

    ·Feingold ·Durbin ·Corzine ·EDWARDS ·

    Kennedy ·Stabenow ·Johnson·Leahy ·Daschle ·

    Wyden ·Murray ·Akaka·Byrd ·Dodd ·

    GRAHAM, B. ·Rockefeller ·Hollings ·Schumer ·Cantwell

    ·Kohl ·Bingaman ·Biden ·Reid ·

    Dorgan ·Inouye ·Nelson, B.·Feinstein ·LIEBERMAN ·

    Conrad ·Pryor ·Landrieu·Carper ·Jeffords ·

    Lincoln ·Baucus ·Bayh ·Breaux ·Nelson, D.

    ·Chafee ·Snowe

    0 20 40

    0 20 40

    · McCain· Specter·Collins· Campbell· Murkowski

    · Stevens· Sununu·Smith· Shelby·Gregg· Fitzgerald· Graham, L.

    · Hutchison· Coleman·Warner· Hagel·Ensign· DeWine· Brownback

    · Talent· Allard·Roberts· Voinovich· Dole

    · Chambliss· Miller·Lott· Kyl· Inhofe

    · Enzi· Bond·Domenici· Crapo· Alexander

    · Craig· Nickles·Frist· Bennett· Burns

    · Grassley· Bunning·Santorum· Allen·McConnell

    · Cochran· Lugar·Hatch· Thomas· Sessions

    · Cornyn

    50 70 90

    50 70 90

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Computation

    Much easier now:

    I http://voteview.com/dwnl.htm

    I WNOM9707.EXE (WNOMINATE executable)

    I WNOMINATE for R

    I pscl (ideal) in R

    I TurboADA for STATA (see Jeff Lewis, UCLA)

    I winBUGS

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Recommendations

    All produce the same answer (in 1d) for “well-behaved” legislatures.Slightly prefer quadratic for computational reasons:

    I Easier to customize the estimator.

    I Measures of parameter uncertainty are recovered directly.

    I Code is well-understood (and replicable in other programs).

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Model Evaluation

    I Error structure.

    I Functional form.

    I Goodness-of-fit (degrees of freedom).

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Exogeneity

    How to interpret ideal point estimates:

    I Agenda is endogenous & institutional rules change over time.

    I Decision to vote is endogenous & roll calls not always recorded.

    I Often related to characteristics being explained.

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • All Statutes

    Congress

    Num

    ber

    of L

    aws/

    Vot

    es

    ●● ●

    ●●

    ●●

    ●●

    ●●

    ●●

    ● ●

    ●●

    ● ●

    ●●

    ●●

    ●●

    ●● ●

    ●●

    ●●

    50 60 70 80 90 100

    040

    010

    00

    1887 1907 1927 1947 1967 1987

    Top 3500 Statutes

    Congress

    Num

    ber

    of L

    aws/

    Vot

    es

    ● ● ●

    ●●

    ● ●● ● ●

    ●●

    ●● ●

    ● ●●

    ● ●

    ●●

    ● ●

    ●●

    ●● ●

    ● ●●

    ●●

    50 60 70 80 90 100

    050

    150

    1887 1907 1927 1947 1967 1987

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Exogeneity

    How to interpret ideal point estimates:

    I Agenda is endogenous & institutional rules change over time.

    I Decision to vote is endogenous & roll calls not always recorded.

    I Often related to characteristics being explained.

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Exogeneity

    How to interpret ideal point estimates:

    I Agenda is endogenous & institutional rules change over time.

    I Decision to vote is endogenous & roll calls not always recorded.

    I Often related to characteristics being explained.

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

  • MotivationTwo Probabilistic Voting Models

    ComputationComplications

    Conclusion

    Conclusion

    Political science is heavily dependant on measures of latent concepts(e.g., ideal points, party manifestos, expert surveys).

    I Computational issues are largely resolved.

    I Theoretical and interpretative issues remain.

    I Data generating process important (and not well understood).

    Josh Clinton, Princeton University A Brief Primer on Ideal Point Estimates

    MotivationTwo Probabilistic Voting ModelsComputationComplicationsConclusion