a c g c a c tt c a g aa c g c g t a c t g a c t g aa

65
2 3 4 ACGCAC TTCAGAACGCGTACTGACTGAA TGCGTGAAGTCTTG CGCATGACTGACTT

Upload: ashtyn

Post on 23-Feb-2016

31 views

Category:

Documents


0 download

DESCRIPTION

2. 3. 4. A C G C A C TT C A G AA C G C G T A C T G A C T G AA. T G C G T G AA G T C TT G C G C A T G A C T G A C TT. Homework: Tuesday : Lab Notebook – with Serial Dilution & Spectrophotometer Wednesday : News article – specific and detailed for credit . Agenda: 4/28. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

2 3 4

ACGCACTTCAGAACGCGTACTGACTGAA

TGCGTGAAGTCTTGCGCATGACTGACTT

Page 2: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Agenda: 4/28

Objective: To determine how DNA is used in forensic cases

Human Genome – how people differ DNA Uses and Sources DNA Fingerprinting – Steps needed

- Restriction enzymes- Gel electrophoresis- Polymerase Chain Reaction

Homework: Tuesday: Lab Notebook – with Serial Dilution & Spectrophotometer Wednesday: News article – specific and detailed for credit

Page 3: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Class notebookDate Assignment Pages

4/25 Processes represented in the Central Dogman

4/25 Proteins- function and structure

DNA Fingerprinting - Use of DNA in Forensic Cases

Restriction enzymes – background & lab preparation

Page 4: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

DNA fingerprintingDNA forensics • Digesting a DNA sample

using restriction enzymes• Gel electrophoresis

– Process: running gels– Data analysis

• Polymerase Chain Reaction – Process – Interpretation

• Solving the Case • Paternity Case - Blacketts

What we need to know:

• RFLP – Restriction Fragment Length

Polymorphism • Restriction enzymes• How/why does gel

electrophoresis works?• How/why does PCR work? • Use of informatics/statistics

Page 5: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

The Human Genome

The sequence of bases make up our genes. The Human Genome Project determined the order of each of these

bases in all of our genes. Also found that most DNA is not coding for genes. There are many areas in which bases are repeated.

Page 6: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

How many bases are there in the human genome?

a) 3,000b) 300,000c) 3 milliond) 3 billione) 3 trillion

Facts & Figures about DNA

Page 7: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

How many bases are there in the human genome?

Facts & Figures about DNA

Page 8: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

How many bases are there in the human genome?

Facts & Figures about DNA

a) 3,000b) 300,000c) 3 milliond) 3 billione) 3 trillion

Page 9: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

How many bases are there in the human genome?

Facts & Figures about DNA

3,000,000,000

Page 10: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

We are not all exactly the same – What percent of your DNA is similar to any

other person in the world?

Facts & Figures about DNA

Page 11: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

We are not all exactly the same – What percent of your DNA is similar to any

other person in the world?a) 99.9%b) 98%c) 90%d) 60%e) 10%

Facts & Figures about DNA

Page 12: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

We are not all exactly the same – What percent of your DNA is similar to any

other person in the world?

Facts & Figures about DNA

a) 99.9%b) 98%c) 90%d) 60%e) 10%

Page 13: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

We are not all exactly the same – What percent of your DNA is similar to any

other person in the world?

Facts & Figures about DNA

3 MILLION bases are different!

Page 14: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Forensic scientists focus on these variable regions to generate a “DNA fingerprint” for each individual

Facts & Figures about DNA

Page 15: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Summary – Nuclear DNA

Page 16: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

DNA Use in Forensic Cases

• Most are rape cases (>2 out of 3)• Looking for match between evidence

and suspect• Must compare victim’s DNA profile

• Mixtures must be resolved• DNA is often degraded• Inhibitors to PCR are often present

Challenges

Page 17: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Human Identity Testing

• Forensic cases -- matching suspect with evidence• Paternity testing -- identifying father• Historical investigations• Missing persons investigations• Mass disasters -- putting pieces back together• Military DNA “dog tag”• Convicted felon DNA databases

Page 18: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

• YouTube – DNA forensics – 4 videos• https://www.youtube.com/watch?v=dXYztbkMXwU&list

=PLC0B027FC81C82602 – 2 minute overview

• Includes CODIS – Story• https://www.youtube.com/watch?v=VF5s1loHxx4&list=P

LC0B027FC81C82602• https://www.youtube.com/watch?v=8w_VJ4G7qiw&list=P

LC0B027FC81C82602• https://www.youtube.com/watch?v=yWKb

QH2P6og&list=PLC0B027FC81C82602

Page 19: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

What are some sources of DNA?

Page 20: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Sources of Biological Evidence

• Blood• Semen• Saliva• Urine• Hair• Teeth• Bone• Tissue• Mucus• Ear Wax

Page 21: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

DNA fingerprintingDNA forensics • Digesting a DNA sample

using restriction enzymes• Gel electrophoresis

– Process: running gels– Data analysis

• Polymerase Chain Reaction – Process – Interpretation

• Solving the Case • Paternity Case - Blacketts

What we need to know:

• RFLP – Restriction Fragment Length

Polymorphism • Restriction enzymes• How/why does gel

electrophoresis works?• How/why does PCR work? • Use of informatics/statistics

Page 22: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Cutting the DNA with Restriction Enzymes

Page 23: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

DNA can be cut into smaller pieces by restriction enzymes that recognize very specific sequences of DNA.

Restriction Enzyme Digest

AGCTAGAATTCTTTACGCTCGGATGAATTCCACCTATCTCC

Page 24: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

DNA can be cut into smaller pieces by restriction enzymes that recognize very specific sequences of DNA.

AGCTAG

AATTCTTTACGCTCGGATG AATTCCACCTATC

TCC

Restriction Enzyme Digest

AGCTAGAATTCTTTACGCTCGGATGAATTCCACCTATCTCC

Page 25: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Multiple Restriction Enzymes Exist for Cutting DNA

EcoRI GAATTC G AATTC

PstI CTGCAG CTGCA G

SmaI CCCGGG CCC GGG

HindIII AAGCTT A AGCTT

BamI GGATCC G GATCC

HaeIII GGCC GG CC

Page 26: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Separating the DNA fragments RFLP analysis

Page 27: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Visualizing the DNA Restriction Fragments 1 – Ladder to determine size (number of base pairs in each segment)

2-7 samples from suspects or victims

Page 28: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

DNA Restriction Enzymes

• Evolved by bacteria to protect against viral DNA infection

• Endonucleases = cleave within DNA strands

• Over 3,000 known enzymes

Page 29: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Enzyme Site Recognition

• Each enzyme digests (cuts) DNA at a specific sequence = restriction site

• Enzymes recognize 4- or 6- base pair, palindromic sequences (eg GAATTC)

Palindrome

Restriction site

Fragment 1 Fragment 2

Page 30: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

5 vs 3 Prime Overhang

• Generates 5 prime overhang

Enzyme cuts

Page 31: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Common Restriction Enzymes EcoRI

– Eschericha coli– 5 prime overhang

Pstl– Providencia stuartii– 3 prime overhang

Page 32: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

The DNA DigestionReaction

Restriction Buffer provides optimal conditions

• NaCl provides the correct ionic strength

• Tris-HCI provides the proper pH

• Mg2+ is an enzyme co-factor

Page 33: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

DNA DigestionTemperature

Why incubate at 37°C?

• Body temperature is optimal for these and most other enzymes

What happens if the temperature is too hot or cool?

• Too hot = enzyme may be denatured (killed)

• Too cool = enzyme activity lowered, requiring

longer digestion time

Page 34: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Restriction Fragment Length PolymorphismRFLP

Allele 1

Allele 2

GAATTCGTTAAC

GAATTCGTTAAC

CTGCAGGAGCTC

CGGCAGGCGCTC

PstI EcoRI

1 2 3

3Fragment 1+2Different Base PairsNo restriction site

+

M A-1 A-2

Electrophoresis of restriction fragments

M: MarkerA-1: Allele 1 FragmentsA-2: Allele 2 Fragments

Page 35: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

AgaroseElectrophoresis

Loading

• Electrical current carries negatively-charged DNA through gel towards positive (red) electrode

Power Supply

Buffer

Dyes

Agarose gel

Page 36: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

AgaroseElectrophoresis

Running • Agarose gel sieves

DNA fragments according to size– Small fragments move farther than large fragments

Power Supply

Gel running

Page 37: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Analysis of Stained Gel

Determinerestriction

fragmentsizes

• Create standard curve using DNA marker

• Measure distance traveled by restriction fragments

• Determine size of DNA fragments

Identify the relatedsamples

Page 38: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Molecular Weight Determination

Size (bp) Distance (mm)

23,00011.0 9,400 13.0

6,500 15.0

4,400 18.0

2,300 23.0

2,000 24.0

100

1,000

10,000

100,000

0 5 10 15 20 25 30

Distance, mm

Size

, bas

e pa

irsB

A

Fingerprinting Standard Curve: Semi-log

Page 39: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Polymerase Chain Reaction (PCR)

PCR can make many copies in a very short period of time

ACGCACTTCAGAACGCGTACTGACTGAATGCGTGAAGTCTTGCGCATGACTGACTT

Page 40: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Polymerase Chain Reaction (PCR)

Heat to 94°C: Denature Strands of DNA

ACGCACTTCAGAACGCGTACTGACTGAA

TGCGTGAAGTCTTGCGCATGACTGACTT

Page 41: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

ACGCACTTCAGAACGCGTACTGACTGAA

TGCGTGAAGTCTTGCGCATGACTGACTT

Polymerase Chain Reaction (PCR)

Cool to 55°C: Allow primers to anneal

TGCGTGAA

TGACTGAA

Page 42: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

ACGCACTTCAGAACGCGTACTGACTGAA

TGCGTGAAGTCTTGCGCATGACTGACTT

Polymerase Chain Reaction (PCR)

Heat to 72°C: New DNA strand is synthesized

TGCGTGAAGTCTTGCGCATGACTGACTT

ACGCACTTCAGAACGCGTACTGACTGAA

Page 43: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Polymerase Chain Reaction (PCR)

PCR can make many copies in a very short period of time

ACGCACTTCAGAACGCGTACTGACTGAATGCGTGAAGTCTTGCGCATGACTGACTT

ACGCACTTCAGAACGCGTACTGACTGAATGCGTGAAGTCTTGCGCATGACTGACTT

ACGCACTTCAGAACGCGTACTGACTGAATGCGTGAAGTCTTGCGCATGACTGACTT

ACGCACTTCAGAACGCGTACTGACTGAATGCGTGAAGTCTTGCGCATGACTGACTT

ACGCACTTCAGAACGCGTACTGACTGAATGCGTGAAGTCTTGCGCATGACTGACTT

ACGCACTTCAGAACGCGTACTGACTGAATGCGTGAAGTCTTGCGCATGACTGACTT

ACGCACTTCAGAACGCGTACTGACTGAATGCGTGAAGTCTTGCGCATGACTGACTT

ACGCACTTCAGAACGCGTACTGACTGAATGCGTGAAGTCTTGCGCATGACTGACTT

ACGCACTTCAGAACGCGTACTGACTGAATGCGTGAAGTCTTGCGCATGACTGACTT

ACGCACTTCAGAACGCGTACTGACTGAATGCGTGAAGTCTTGCGCATGACTGACTT

ACGCACTTCAGAACGCGTACTGACTGAATGCGTGAAGTCTTGCGCATGACTGACTT

ACGCACTTCAGAACGCGTACTGACTGAATGCGTGAAGTCTTGCGCATGACTGACTT

ACGCACTTCAGAACGCGTACTGACTGAATGCGTGAAGTCTTGCGCATGACTGACTT

Page 44: A C G C A C TT C A G AA C G C G T A C T G A C T G AA
Page 45: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

How do we generate a DNA fingerprint?

…After amplification of the variable regions through PCR

Page 46: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

FBI’s CODIS DNA Database

Combined DNA Index System• Used for linking serial crimes and unsolved

cases with repeat offenders• Launched October 1998• Links all 50 states• Requires >4 RFLP markers and/or 13 core STR markers• Current backlog of >600,000 samples

Page 47: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

13 CODIS Core STR Loci with Chromosomal Positions

CSF1PO

D5S818

D21S11

TH01

TPOX

D13S317

D7S820

D16S539 D18S51

D8S1179

D3S1358

FGAVWA

AMEL

AMEL

Page 48: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Overview

• Basic – DNA Fingerprinting – Overview: 6 min. Bozeman Science

Page 49: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Use of Short Tandem Repeats

• Non-coding sections (do not code from proteins)

• Inherited from parents – Individuals have 2

copies (alleles)

Page 50: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

13 CODIS Core STR Loci with Chromosomal Positions

CSF1PO

D5S818

D21S11

TH01

TPOX

D13S317

D7S820

D16S539 D18S51

D8S1179

D3S1358

FGAVWA

AMEL

AMEL

Page 51: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Short Tandem Repeats (STRs)

the repeat region is variable between samples while the flanking regions where PCR primers bind are constant

7 repeats

8 repeats

AATG

Homozygote = both alleles are the same length

Heterozygote = alleles differ and can be resolved from one another

Page 52: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Short Tandem Repeats

STRs are short sequences of DNA, normally of length 2-5 base pairs, that are repeated numerous times Example: the 16 bp sequence of "gatagatagatagata" would represent 4 copies of the tetramer "gata".

The polymorphisms (variations in DNA sequence between individuals) in STRs are due to the different number of copies of the repeat element that can occur in a population of individuals.

Page 53: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

STR and probability

• Today's DNA profile :: DNA Learning Center

• http://www.dnalc.org/view/15983-Today-s-DNA-profile.html

Page 54: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

STR Allele Frequencies

05

1015202530354045

6 7 8 9 9.3 10

Caucasians (N=427)Blacks (N=414)Hispanics (N=414)

TH01 Marker

*Proc. Int. Sym. Hum. ID (Promega) 1997, p. 34

Number of repeats

Freq

uenc

y

Page 55: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

170 bp195 bp

Different primer sets produce different PCR product sizes for the same STR allele

TCAT repeat unit

Page 56: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Multiplex PCR• Over 10 Markers Can Be

Copied at Once• Sensitivities to levels less than

1 ng of DNA• Ability to Handle Mixtures

and Degraded Samples• Different Fluorescent Dyes

Used to Distinguish STR Alleles with Overlapping Size Ranges

Page 57: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

ABI Prism 310 Genetic Analyzer

capillary

Syringe with polymer solution

Autosampler tray

Outlet buffer

Injection electrode

Inlet buffer

Page 58: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Close-up of ABI Prism 310 Sample Loading Area

Autosampler Tray

Sample Vials

ElectrodeCapillary

See Technology section for more information on CE

Page 59: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

amelogenin

D19

D3

D8

TH01

VWA D21FGA

D16D18 D2

amelogeninD19

D3D8 TH01

VWA D21

FGA

D16D18 D2

Two

diff

eren

t ind

ivid

uals

DNA Size (base pairs)

Results obtained in less than 5 hours with a spot of blood the size of a pinhead

probability of a random match: ~1 in 3 trillion

Human Identity Testing with Multiplex STRs

Simultaneous Analysis of 10 STRs and Gender ID

AmpFlSTR® SGM Plus™ kit

Page 60: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

STR genotyping is performed by comparison of sample data to allelic ladders

Microvariant allele

Page 61: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

STR Allele Frequencies

05

1015202530354045

6 7 8 9 9.3 10

Caucasians (N=427)Blacks (N=414)Hispanics (N=414)

TH01 Marker

*Proc. Int. Sym. Hum. ID (Promega) 1997, p. 34

Number of repeats

Freq

uenc

y

Page 62: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

4 types of DNA

• http://learn.genetics.utah.edu/content/extras/molgen/index.html

Page 63: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

When nuclear DNA is degraded:

Page 64: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Cases

• OJ Simpson• http://www.trutv.com/library/crime/criminal

_mind/forensics/serology/5.html• Australian• http://www.trutv.com/library/crime/

criminal_mind/forensics/serology/5.html

Page 65: A C G C A C TT C A G AA C G C G T A C T G A C T G AA

Blackett Family

•  Paternity Case• http://www.biology.arizona.edu/

human_bio/activities/blackett2/overview.html