a computer vision for animal ecology...computer vision can be used to study animal camouflage...

13
J Anim Ecol. 2018;87:533–545. wileyonlinelibrary.com/journal/jane | 533 © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society Received: 11 April 2017 | Accepted: 17 October 2017 DOI: 10.1111/1365-2656.12780 REVIEW A computer vision for animal ecology Ben G. Weinstein Department of Fisheries and Wildlife, Marine Mammal Institute, Oregon State University, Newport, OR, USA Correspondence Ben G. Weinstein Email: [email protected] Handling Editor: Laura Prugh Abstract 1. A central goal of animal ecology is to observe species in the natural world. The cost and challenge of data collection often limit the breadth and scope of eco- logical study. Ecologists often use image capture to bolster data collection in time and space. However, the ability to process these images remains a bottleneck. 2. Computer vision can greatly increase the efficiency, repeatability and accuracy of image review. Computer vision uses image features, such as colour, shape and texture to infer image content. 3. I provide a brief primer on ecological computer vision to outline its goals, tools and applications to animal ecology. 4. I reviewed 187 existing applications of computer vision and divided articles into ecological description, counting and identity tasks. 5. I discuss recommendations for enhancing the collaboration between ecologists and computer scientists and highlight areas for future growth of automated image analysis. KEYWORDS automation, camera traps, ecological monitoring, images, unmanned aerial vehicles 1 | INTRODUCTION Observing biodiversity can be expensive, logistically difficult and time-consuming. Many animals are rare, secretive and inhabit remote areas. Animal presence and behaviour may vary over broad spatial and temporal scales, and depend on important but infrequently ob- served events, such as breeding, predation or mortality. Direct obser- vation of these events can be disruptive to wildlife, and potentially dangerous to observers. To reduce cost, labour and logistics of ob- servation, ecologists are increasingly turning to greater automation to locate, count and identify organisms in natural environments (Pimm et al., 2015). While image capture has greatly increased sampling, our ability to analyse images remains a bottleneck in turning these data into information on animal presence, abundance and behaviour. Computer vision can increase the breadth, duration and repeatability of image-based ecological studies through automated image analysis (Dell et al., 2014; Kühl & Burghardt, 2013; Pennekamp & Schtickzelle, 2013). Computer vision is a form of image-based computer science that uses pixel values to infer image content (LeCun, Bengio, & Hinton, 2015). The atomic unit of data in computer vision is an image pixel that represents colour in the visible spectrum. Pixels are arranged into groups such that pixel proximity, orientation and similarity create a group identity. Pixel values, and the resulting group identity, may change among images to create a sequence of objects. By creating rules for the pixel characteristics, relationships and changes through time, computer vision algorithms can replace laborious hand-review of ecological images. The growth in ecological image data is fuelled by its economy, ef- ficiency and scalability (Bowley, Andes, Ellis-Felege, & Desell, 2017; Dell et al., 2014). Massive repositories of image data are available for ecological analysis, uploaded from field-based cameras (Giraldo- Zuluaga, Gomez, Salazar, & Diaz-Pulido, 2017; Swanson et al., 2015; Zhang, He, Cao, & Cao, 2016) or captured by citizen scientists (Desell et al., 2013; Joly et al., 2014). For example, research grade datasets

Upload: others

Post on 19-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A computer vision for animal ecology...computer vision can be used to study animal camouflage (Tankus & Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller, 2016). For example,

J Anim Ecol. 2018;87:533–545. wileyonlinelibrary.com/journal/jane  | 533© 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society

Received:11April2017  |  Accepted:17October2017DOI:10.1111/1365-2656.12780

R E V I E W

A computer vision for animal ecology

Ben G. Weinstein

DepartmentofFisheriesandWildlife,MarineMammalInstitute,OregonStateUniversity,Newport,OR,USA

CorrespondenceBenG.WeinsteinEmail:[email protected]

HandlingEditor:LauraPrugh

Abstract1. Acentralgoalofanimalecologyistoobservespeciesinthenaturalworld.Thecostandchallengeofdatacollectionoftenlimitthebreadthandscopeofeco-logical study.Ecologistsoftenuse imagecapture tobolsterdata collection intime and space. However, the ability to process these images remains abottleneck.

2. Computervisioncangreatlyincreasetheefficiency,repeatabilityandaccuracyofimage review. Computer vision uses image features, such as colour, shape andtexturetoinferimagecontent.

3. Iprovideabriefprimeronecologicalcomputervisiontooutlineitsgoals,toolsandapplicationstoanimalecology.

4. I reviewed187existingapplicationsofcomputervisionanddividedarticles intoecologicaldescription,countingandidentitytasks.

5. Idiscussrecommendationsforenhancingthecollaborationbetweenecologistsandcomputer scientists and highlight areas for future growth of automated imageanalysis.

K E Y W O R D S

automation,cameratraps,ecologicalmonitoring,images,unmannedaerialvehicles

1  | INTRODUCTION

Observing biodiversity can be expensive, logistically difficult andtime-consuming.Manyanimalsarerare,secretiveandinhabitremoteareas. Animal presence and behaviour may vary over broad spatialand temporal scales, anddependon importantbut infrequentlyob-servedevents,suchasbreeding,predationormortality.Directobser-vationof these events can be disruptive towildlife, andpotentiallydangerous to observers.To reduce cost, labour and logistics of ob-servation,ecologistsareincreasinglyturningtogreaterautomationtolocate, countand identifyorganisms innaturalenvironments (Pimmetal., 2015). While image capture has greatly increased sampling,our ability to analyse images remains a bottleneck in turning thesedataintoinformationonanimalpresence,abundanceandbehaviour.Computervisioncanincreasethebreadth,durationandrepeatabilityofimage-basedecologicalstudiesthroughautomatedimageanalysis(Delletal.,2014;Kühl&Burghardt,2013;Pennekamp&Schtickzelle,

2013).Computervision is a formof image-based computer sciencethatusespixelvaluestoinferimagecontent(LeCun,Bengio,&Hinton,2015).Theatomicunitofdata in computervision is an imagepixelthat represents colour in the visible spectrum. Pixels are arrangedintogroupssuchthatpixelproximity,orientationandsimilaritycreatea group identity. Pixelvalues, and the resulting group identity,maychange among images to create a sequence of objects. By creatingrulesforthepixelcharacteristics,relationshipsandchangesthroughtime, computervisionalgorithmscan replace laborioushand-reviewofecologicalimages.

Thegrowthinecologicalimagedataisfuelledbyitseconomy,ef-ficiencyand scalability (Bowley,Andes,Ellis-Felege,&Desell, 2017;Dell etal., 2014). Massive repositories of image data are availablefor ecological analysis, uploaded from field-based cameras (Giraldo-Zuluaga,Gomez,Salazar,&Diaz-Pulido,2017;Swansonetal.,2015;Zhang,He,Cao,&Cao,2016)orcapturedbycitizenscientists(Deselletal., 2013;Joly etal., 2014). For example, researchgradedatasets

Page 2: A computer vision for animal ecology...computer vision can be used to study animal camouflage (Tankus & Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller, 2016). For example,

534  |    Journal of Animal Ecology WEINSTEIN

from iNaturalist (675,000 images of 5,000 species,VanHorn etal.,2017) and Zooniverse (1.2million images of 40 species; Swansonetal.,2015),highlightthegrowthinhigh-qualityimagescapturedbyresearchersandthepublic.However,imagedatacollectionhasgreatlyoutpacedimageanalysistools.Whileahumanmaybebetteratfind-inganimals in time-lapsevideo (Weinstein,2015),orhaveagreaterknowledgeofbirdidentification(Bergetal.,2014),whenconfrontedwith100,000images,itisdifficulttofindthetime,organizationandconcentrationtovalidateeachimagemanually.Myaimistodescribetheongoingworkinutilizingcomputervisionforanimalecology,pro-videabriefdescriptionoftheconceptsthatunitecomputervisional-gorithms, and describe areas for collaboration and growthwith thecomputervisioncommunity.

2  | APPLICATIONS OF COMPUTER VISION TO ANIMAL ECOLOGY

Ecological computer vision has grown out ofmultiple disciplines,with contributions from computer science (Branson, Van Horn,Belongie,&Perona,2014),astronomy(Arzoumanian,Holmberg,&Norman,2005)andremotesensing(LaRue,Stapleton,&Anderson,2016).This article covers applicationsof computer vision to find,count and study animals in natural landscapes using images col-lected in the human visual spectrum.Applications from specimenmorphometrics, microscopy (Pennekamp & Schtickzelle, 2013)andanimaltracking in laboratorysettingsarereviewedelsewhere(Dell etal., 2014; Robie, Seagraves, Egnor, & Branson, 2017). Tofindarticles,IusedWebofSciencetosearchfor“ComputerVisionAND(EcologyORAnimals),”yielding284articles.Ithenperformedthreeadditionalsearchesforarticlesusingimageanalysistools,butlacking the computer vision label: “Automated species measure-mentAND images” (n=103), “Automated speciesdetectionANDimages” (n=126) and “Automated species identificationAND im-ages”(n=196).Finally,Ireviewedthefirst200resultsfromGoogleScholarfor“ComputerVisionANDecology”publishedsince2000.For all searches, articles were included based on the followingcriteria.

1. The article described a peer-reviewed application of computervision. Articles introducing hardware for image capture, or re-viewing existing applications, were excluded.

2. Thearticlewasaimedatansweringanecologicalquestion,broadlydefinedas the identity,demographyandbehaviourofanimals innatural environments using images collected in human visualspectrum.

3. Theapplicationusedanautomatedorsemi-automatedimageanal-ysis algorithm. Articles using manual review of images wereexcluded.

Thissearchandfilteringcriteriaresultedin187articles,withconsis-tentgrowthincomputervisionapplicationsovertime(Figure1).Thesearticlesusedavarietyofopensourcetoolstoaidimageanalysis(Table1).

Iorganizedarticlesaroundthreecommontasksforecologicalcomputervision:description,countingandidentification(Figure2).Fromtheper-spectiveofimage-basedcomputervision,descriptionisthequantifica-tionofthecoloration,patterningandrelativesizeofanimalsandtheirimmediatesurroundingenvironment.Countingisthedetectionandenu-merationofanimalswithinanimage.Identityistheclassificationofanindividualorspeciesbasedonitsappearance.Foreachofthesetasks,mygoalistohelpecologistsgraspthecurrentpossibilityforimageau-tomationbyintroducingbasicterminology,applicationsandhighlightingacasestudy.

3  | DESCRIPTION

Ecologistoftenseektounderstandanimalappearanceandtheir re-lationshiptothesurroundingenvironmentusingdigitalobservations.Thesecretivenatureofmanyanimalsmakesdirectdescriptiondisrup-tiveandpotentiallydangeroustoboththeorganismandresearcher.Computer vision algorithms have greatly increased the ability tonon-invasively measure organisms through image analysis (n=56).Toascertainthesize,positionandspectralcharacteristicsofecologi-calobjects in images,computervisiontoolsuse imagefeatures (seeBox1)tofindimportantpixelswithinandamongimages.Imagefea-turesareoftenareasofhighturnoverinpixelvalues,causedbyedgesofobjectsofinterest.Forexample,tocorrectlyoutlineaflyingbird,algorithmsmight look for theareaswhere thewings intersectwiththesky(Atanbori,Duan,Murray,Appiah,&Dickinson,2016).Imagefeatureshavebeenprimarilyusedtostudytheevolutionaryecologyof animal coloration (Stoddard, Kilner, & Town, 2014), shape (Lavyetal.,2015)andpatterning(Levy,Lerner,&Shashar,2014).Comparedto human review, computer vision provides amore consistentwaytoscoreanimalappearanceacross imagesbyusingnon-RBGcolourspaces, such asHSVorYChCr,which are less sensitive to changesin illumination and other image artefacts (Kühl & Burghardt, 2013;Troscianko,Skelhorn,&Stevens,2017).Bycomparingimagefeatures,computer vision can be used to study animal camouflage (Tankus& Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller,2016).Forexample,Stoddardetal.(2016)developededgedetectionalgorithms toevaluate the relative camouflageofnesting shorebirdspeciesascomparedtotheirnestingsubstrate(Figure3b).

Imagefeaturescanalsobeusedtomeasuresizeinbothspecimensand free-living animals (Olsen &Westneat, 2015). Based onmulti-ple images frompairs of cameras, computervision tools have beenusedtodescribeanimalsizeandshape,suchasinwhales(Howland,Macfarlane, & Tyack, 2012), and coral (Jones, Cantin, Berkelmans,Sinclair, & Negri, 2008; Naumann, Niggl, Laforsch, Glaser, &Wild,2009).Thenextfrontierfor image-basedecologicaldescription is in3Dreconstructionofmorphologyandmovement (Haggag,Abobakr,Hossny,&Nahavandi,2016;Lavyetal.,2015).Three-dimensionalim-aginghasrecentlybeenusedtotrackanimalbehaviourwithinlargein-doorenclosures(e.g.Barnardetal.,2016),andapplyingthesetoolstoanimalsinnaturallandscapesisandevelopingareaofresearch(Robieetal.,2017).

Page 3: A computer vision for animal ecology...computer vision can be used to study animal camouflage (Tankus & Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller, 2016). For example,

     |  535Journal of Animal EcologyWEINSTEIN

F IGURE  1 Thegrowthincomputervisionapplicationsovertime(n=187).Fromtheperspectiveofimage-basedcomputervision,descriptionisthequantificationofimagefeaturestodescribecoloration,patterningandrelativesizeofanimalsandtheirsurroundinghabitat.Countingisthedetectionandenumerationofanimalswithinanimage.Identityistheclassificationofanindividualorspeciesbasedonitsappearance

TABLE  1 Commonlyusedtoolsforcomputervisionapplicationtoecology

Name Reference Task Comments

OpenCV Bradski(2000) Description,Counting,Identity

Sourcelibraryforcomputervisionalgorithmsinpython/java/C++

ImageJ Abràmoffetal.(2004) Description,Counting Segmentationandthresholding

BISQUE Kvilekvaletal.(2009) Description,Counting Alsoservesasahostingplatformforimageanalysistools

AgisoftPhotoscan – Description Commercialsoftwarefor3Dmodelreconstructionfromimages

StereoMorph OlsenandWestneat(2015) Description Rpackagefor3dreconstructionandimagecalibration

NaturePatternMatch Stoddardetal.(2014) Description Comparingfeaturesamongecologicalimages

MotionMeerkat Weinstein(2015) Counting Backgroundsubtractionforanimaldetectioninvideosandimages.

GoogleCloudAPI – Identity ClassificationofimagecontentusingCloudVisionAPI,deeplearningsourcelibraryusingTensorFlow

Merlin VanHornetal.(2015) Identity BirdidentificationappforiPhoneandAndroid

Wildbook Cralletal.(2013) Identity Individualidentificationanddatamanagementtools

Page 4: A computer vision for animal ecology...computer vision can be used to study animal camouflage (Tankus & Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller, 2016). For example,

536  |    Journal of Animal Ecology WEINSTEIN

3.1 | Case study: High- resolution mapping of penguin colonies using structure- through- motion

To map habitat suitability, ecologists often use remotely sensed en-vironmentalvariablesasaproxy for theenvironmentalconditionsen-counteredbyanimals.Whiletraditionalremotesensingcapturescoarse

changesinhabitatquality,animalsexperiencetheenvironmentatfine-scales,inthreedimensions,andfromalandscapeperspective.McDowalland Lynch (2017) generated ultra-fine scale (<1cm)maps of penguincoloniesbystitchingtogetherthousandsofoverlappingimagesusingatechniquecalledstructure-from-motion.Theresultingthree-dimensionalsurfaceallowedfine-scalemappingofGentoopenguin(Pygoscelis papua)

F IGURE  2 Thenumberofecologicalcomputervisionarticles(n=187)foreachfocaltaxaandcomputervisiontask.Fromtheperspectiveofimage-basedcomputervision,descriptionisthequantificationofimagefeaturestodescribecoloration,patterningandrelativesizeofanimalsandtheirsurroundinghabitat.Countingisthedetectionandenumerationofanimalswithinanimage.Identityistheclassificationofanindividualorspeciesbasedonitsappearance

Box 1 Glossary of key computer vision terms for ecological image analysis

Description

Features:Pixelpropertiesbasedonthecolour,texture,orrelationshiptosurroundingpixels.

Colour space:Numericsystemusedtodescribethespectralinformationcontainedinpixelvalues.

Edges:Imagelocationswithabruptchangesinpixelvalues,alsoknownas‘corners’.Oftenusedtofindcorrespondingpointsbetweenimages.

Structure-from-motion:Approachforreconstructingthe3Dstructureofastationaryobjectbasedonstitchingtogetherimagestakenfrommultipleangles.

Optical flow:Theidentificationofanalogouspixelsamongimages,usedtotrackobjectorcameramovement.

Counting

Segmentation:Theprocessofpartitioningimagesintolabelledregions.

Contours:Curvedlineswhichencompassconnectedpixelswithsimilarcolour,intensityortexture.

Blobs:Groupsofconnectedpixelswithafixedidentityorlabel.

Image morphology:Imageprocessingtoolsformanipulatingpixelsbasedonthevaluesofthesurroundingpixels.Forexample,‘opening’reducesnoiseintheforegroundbyremovingweaklyconnectedpixels.

Background subtraction:Theremovalofirrelevantcontentestimatedfrommultipleframesofvideo.Subtractingthestaticportionsoftheframefromthecurrentimageyieldstheestimatedforegroundobjects.

Identity

Labelled training data:Imageswithknownobjectsofintereststhatcanbeusedtotrainmachinelearningclassifiers.

Unsupervised classification:Multidimensionalclusteringalgorithmstodividepixelsintoanapriorinumberofgroupsbasedonimagefeatures.

Neural-network or ‘deep learning’:Ahierarchicalmachinelearningclassifierthatusestrainingdatatocategorizeimagecontentwithoutapriorispecificationofimagefeatures.

Page 5: A computer vision for animal ecology...computer vision can be used to study animal camouflage (Tankus & Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller, 2016). For example,

     |  537Journal of Animal EcologyWEINSTEIN

nests andcapturedvariation in slopeandaspect thatmayhavebeenmissedbycoarsersatellite-basedremotesensing(Figure3a).

4  | COUNTING

While remotely placed cameras provide a low-cost alternative tohumanobservers,theamountofdatageneratedbyfieldstudiescanbeoverwhelming.Thepotentiallyhighcostofimagereviewandstor-agemeansthatfindingtheanimalsofinterestwithinlargebatchesofimages can improve the speed and efficiency of biodiversitymoni-toring.Evenmotion triggeredcamera trapssuffer frommany false-positive images due to wind and moving vegetation. In computervision,findingnovelobjectswithinseriesofimagescanbeachievedusingbackgroundsubtraction,whichdistinguishessedentaryobjects,suchastreesandclouds,frommovingobjects,suchasanimals,withinvideosorgroupsofimages(PriceTacketal.,2016;Ren,Han,&He,2013;Weinstein,2015) (Figure4a).Abackgroundmodel is created

bycomputinganexpectedimagebasedonthepreviouspixelvalues(Stauffer&Grimson,1999).Theforegroundmodeldescribesthenon-backgroundpixelsasafunctionofthedifferencebetweentheprevi-ousbackgroundmodelandthecurrentframe(Figure4a;Christiansen,Nielsen, Steen, Jørgensen, & Karstoft, 2016; Sobral & Vacavant,2014).Thebackgroundmodelchangesovertimebasedonnewpixelvalues, thereby reducing false positives from shifts in illuminationandexternalmovement,suchaswind,wavesorcamerashake.Onceimages have been divided into foreground and background pixels(knownassegmentation),objectsarepartitionedintodiscretegroups,withconnectedsetsofpixelscorrespondingtoindividualorganisms.

Ifound55articlesthatusedaformofbackgroundsubtractiontode-tectandcountanimals,primarilyformammals(n=24)andbirds(n=22).Thesestudiesreporthighaccuracyinremovingemptyframes,buttherewerepersistentchallengesinreducingfalsepositivesfromstrongwindandotherextraneousmovementinheterogeneousenvironments(PriceTacketal.2016).Tailoringdetectionalgorithmsto individual taxacangreatly improve accuracy, for example, Zeppelzauer (2013) reported

F IGURE  3 Applicationsofcomputervisiontodescribingecologicalobjects.(1)FromMcDowallandLynch(2017),athree-dimensionalmapofthePortLockroypenguincolonywascreatedbyoverlayinghundredsofindividualphotographs(1a)todescribethelocationofGentoopenguin(Pygoscelis papua)nests(1b).Flagsdenoteoccupiedpenguinnestsidentifiedintheimages.Thesurfacewasturnedintodigitalelevationmap(1c)tomeasuretherelativepositiveandhabitatchoicebyindividualpenguinsfornestsiteselection.(2)FromStoddardetal.(2016),snowyplover(Charadrius nivosus)nestclutch(2a)segmentedintoeggandbackgroundregions(2b),edgedetectionwasusedtoquantifyedges(2c),inordertocalculatethedegreeofeggcamouflagecomparedtothebackgroundsubstrate(2d).SeeAcknowledgementsforcreditsandpermissions [Colourfigurecanbeviewedatwileyonlinelibrary.com]

(a) (b) (c)

(a) (b) (c) (d)

Page 6: A computer vision for animal ecology...computer vision can be used to study animal camouflage (Tankus & Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller, 2016). For example,

538  |    Journal of Animal Ecology WEINSTEIN

>95% accuracy in detectingAfrican elephants (Loxodonta cyclotis) bybuildingacolourmodelfromtrainingdata.State-of-the-artapproaches(Renetal.,2013;Zhangetal.,2016)canbothidentifyimagesofinterest,aswellasdefinewherewithinanimageananimaloccurs.Thisisacrucialfirststepincroppingphotostoanalysespeciesidentity(seebelow).

New computer vision tools have opened new avenues for imagedatacollection.Automatedcountdatahavebeentakenfromtime-lapsevideo (Steen&Ski, 2014), camera traps (Matuska,Hudec,Kamencay,Benco,&Zachariasova,2014),uploadedbycitizenscientists (Kosmalaetal.,2016)andcapturedfromairbornesensors(vanAndeletal.,2015).In particular, automateddetection algorithms are increasingly used tofind large animalswithin remotely sensed imagery captured by high-resolutioncommercial satellites (Barber-Meyer,Kooyman,&Ponganis,2007)andunmannedaerialvehicles(Hodgson,Kelly,&Peel,2013;Liu,Chen,&Wen,2015;vanAndel etal., 2015).Commercial satellite im-ageryofferswidespatialcoverageatsub-metre resolution,but is lim-ited by atmospheric conditions, temporal coverage and high cost. Tofindanimalswithinthisimagery,studieshaveusedpixel-basedanalysis(Fretwell,Staniland,&Forcada,2014), imagedifferencing(LaRueetal.,2015)andsupervisedclassificationusingmachinelearning(Yangetal.,2014).Severalapplicationsfocusonaggregationsofindividualsincolo-nialbreedingsitesduetotheirlargespatialsizeanddistinctvisualsigna-tureonthesurroundingenvironment(Barber-Meyeretal.,2007;Lynch,White,Black,&Naveen,2012).WhileresultsfromSouthernrightwhales(Eubalaena australis)(Fretwelletal.,2014),polarbears(Ursus maritimus)(LaRueetal.,2015),andsavannaungulates(Yangetal.,2014)highlightthepromiseof this technology,considerableautomation isneeded to

reduce the laborious handvalidation of images at scale (LaRue etal.,2016).

Incomparison to satellite-based imagery,unmannedaerialvehicleshavetheadvantagesofgreatertemporalflexibilityandlowcost(Seymour,Dale,Hammill,Halpin,&Johnston,2017).Thetrade-offisthedecreasedspatial extent limited by flight time and legal restrictions (Crutsinger,Short,&Sollenberger,2016).UAVshavebeensuccessfullyusedtocountwaterbirdpopulations,duetothebirds’openhabitatandcolonialbreed-ingstrategy (Descamps,Béchet,Descombes,Arnaud,&Zerubia,2011;Groom, Krag Petersen, Anderson, & Fox, 2011). Chabot and Francis(2016)reportedthatautomatedcountsofwaterbirdswerewithin3%–5%ofhumancountsacross16applications.RecentimprovementsofUAV-basedcountingincludeutilizinghyperspectraldata(Beijboometal.,2016;Witharana&Lynch,2016),pixel-shapemodelling (Liuetal.,2015)andcombiningbackgroundsubtractionwithmachinelearning(Torneyetal.,2016)(Figure4b).Recenteffortstocountanimalsusedeeplearningneu-ralnetworksarepromising,butrequiretensofthousandsoftrainingim-agesgatheredbyhumanannotation(Bowleyetal.,2017).

4.1 | Case study: Counting hummingbird–plant interactions using background subtraction

Topredict therules thatdeterminethe interactionsamongspecies,ecologistsoftenusethefrequencyofinteractionsasaproxyforfit-ness effects (Bartomeus etal., 2016). To determine the number ofvisitsbetweenbirdsandflowers,WeinsteinandGraham(2017)usedtime-lapse cameras to filmmultiple days of flower visitation.Using

F IGURE  4 Applicationsofcomputervisiontodetectingandcountingecologicalobjects.(a)Backgroundsubtractionofvideoframesyieldsthedesiredmotionobject(Weinstein,2015)basedonchangesinpastpixelvalues.(b)CountingwildebeestfromimagerycapturedbyunmannedaerialvehicleinTanzania(Torneyetal.,2016).Theleftpanelarecorrectidentificationsofwildebeest,therightpanelarefalsepositivescausedbyaflockofjuvenileostrich.SeeAcknowledgementsforcreditsandpermission[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Page 7: A computer vision for animal ecology...computer vision can be used to study animal camouflage (Tankus & Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller, 2016). For example,

     |  539Journal of Animal EcologyWEINSTEIN

background subtraction algorithms, theywere able to process over8,000hr of hummingbird visitation videos (Weinstein, 2015). Thisvideo-based strategy allowed sampling at much greater temporalextents, and thereforeminimized thepotential foroverlooking rareinteractions.Fromthesedata,theauthorsmodelledspeciesinterac-tionsbasedonmorphologicalsimilarityandflowerabundancetotestpredictionsofoptimalforagingtheory(Weinstein&Graham,2017).

5  | IDENTITY

Ecologistsoftenneedtoinventorythediversityoftaxaorthenumberofindividualsofagivenspeciesinageographicarea.Thestrongre-lationshipbetweensamplingdurationandobservedspeciesrichnessmeans that data collection can often be expensive and logistically

challenging.Image-basedanimalclassificationhasthepotentialtore-ducecosts,allowgreatergeographiccoverageandcauselessdistur-bancetopotentiallysensitiveecosystems.

For individual-level identification, computervision algorithms useimagesofknownindividualstomatchnewimagesbasedonthesimilar-ityofphenotypicpatterns(Figure5a).Bymatchingtheimagefeaturesamongimages,matchingalgorithmsscorethe likelihoodthattwoim-agesareofthesameindividual.Foranimalswithuniquemarkings,thiscanbea low-costalternative toexpensive trappingand taggingpro-grams.Thisapproachwaspioneeredforfluke identification inmarinemammals (Adams,Speakman,Zolman,&Schwacke,2006;Beekmans,Whitehead, Huele, Steiner, & Steenbeek, 2005; Gilman, Hupman,Stockin,&Pawley,2016)andhassincebeenappliedonawiderangeoftaxa,fromzebras(Equus grevyi)(Crall,Stewart,Berger-Wolf,Rubenstein,& Sundaresan, 2013), to elephants (L. cyclotis) (Ardovini, Cinque, &

F IGURE  5 Applicationofcomputervisiontopredictingindividualandspeciesidentity:(a)Matchingalgorithmsscorethesimilarityofphotographedzebrastoalibraryofknownimagestotrackindividualsovertime(Cralletal.2013).(b)FromMarburgandBigham(2016),adeeplearningclassifieristrainedonastarfishspeciesclassbasedontrainingdataoflabelledimages.Theclassifieristhenusedtopredicttestingdatatoevaluatetheaccuracyoftheapproach.Inthisexample,thetrainingandtestingdataareseparateobjectswithinthesameimageframebasedonboundingboxesthatdistinguishanimalsfromtheimagebackground.SeeAcknowledgementsforimagecreditsandpermissions[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Page 8: A computer vision for animal ecology...computer vision can be used to study animal camouflage (Tankus & Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller, 2016). For example,

540  |    Journal of Animal Ecology WEINSTEIN

Sangineto, 2008), and box turtles (Terrapene carolina) (Cross, Lipps,Sapak,Tobin,&Root,2014).Thesemethodsareeffectiveinidentifyinganimalswithcomplexmarkings,suchasgiraffes(Giraffa camelopardalis)(Bolger,Morrison,Vance,Lee,&Farid,2012),whalesharks(Rhincodon typus)(Arzoumanianetal.,2005)andcatfish(Rineloricaria aequalicuspis)(Dala-Corte,Moschetta,&Becker,2016),and range fromcompletelyautomated(Town,Marshall,&Sethasathien,2013),toinvolvinghumanfeedback duringmatching (Duyck etal., 2015). Crall etal. (2013) re-portedaccuracyratesrangingfrom95%forGrey’szebras(E. grevyi)to100%forjaguars(Panthera onca)usingtheHotSpotteralgorithm,whichcanbeaccessedthroughtheWildbookwebplatform.

Automatedspeciesidentificationisrapidlydevelopingfieldwithanex-plosionofnewapproachesandpromisingresults(Figure5b).Whileinitialattemptsfocusedontraditionalmachinelearningwithanaprioridivisionofimagefeatures(e.g.Blanc,Lingrand,&Precioso,2014;Lytleetal.,2010),the accuracy of these approacheswas generally low (>70%).However,recentadvancesusingnewdeeplearningmodelshavegreatlyimprovedmodel performance across a wide variety of animal taxa, from coral(Beijboometal.,2016)to largemammals (Gomez,Diez,Salazar,&Diaz,2016) (Table2).Themajorityofapplications I reviewedhadaparticulargeographicfocus,forexampletherodentcommunityoftheMojavedes-ert(Wilberetal.,2013).Thenextstageisageneraltestofmachinelearn-ingmodelsacrosssystemstofindtheoptimalnumberoftrainingimages,modelparametersandtherequiredspectraldiversityofpotentialclassesthatleadstoincreasedpredictiveperformance(VanHornetal.,2015).

5.1 | Case study: Merlin, a bird identification app powered by deep learning neural networks

The Merlin project demonstrates the potential for revolutionarychangeinecologicalidentification(Farnsworthetal.,2013).Merlin

is the joint project from Visipedia and the Cornell Laboratory ofOrnithology to identify600commonNorthAmericanbirdspecies(VanHornetal.,2015).The identificationalgorithmusesGoogle’sTensorFlowdeep learningplatform,aswellascitizensciencedatafromeBirdtogeneratepotentialspecieslistsgivenauser’slocation(Bransonetal.,2010).WhileMerlinisprimarilygearedtowardsciti-zenscientists,pairingthistechnologywiththegrowingnumberofpublicallyaccessiblephotos(e.g.iNaturalist.org)promisestobolsterobservationsofrareandcrypticspeciesforbiodiversitymonitoring.

6  | COLLABORATION WITH COMPUTER VISION RESEARCHERS

Thecombinationofhigh-qualitydata,appliedusecasesandinterestingproblemswillleadtoproductivecollaborationsamongecologistsandcomputervisionresearchers.Whilecomputervisiontoolsarebecom-ingmoreaccessibletoecologists,state-of-the-artsolutionswillbenefitfromcollaborationwiththecomputervisioncommunity.Findingandmaintainingthesecollaborationscanbedifficultgiventhedifferenceinterminologyandaimsofecologistsvs.computerscienceresearchers.Isuggesthighlightingthreeareasofpotentialmutualinterest:

1. Ecology has intriguing and challenging technical problems. Thenatural world is complex and heterogeneous. Changes in illu-mination and backgrounds make animal detection difficult.Changes in organism appearance and shape are challenging forclassification algorithms. Ecologists should emphasize the gen-erality of their proposed problem, and frame collaborations asa potential area for development of new algorithms, ratherthan as an applied example.

ReferenceTraining images Taxa

Species or classes

Average accuracy (%)

Wilberetal.(2013) 5,362 Mammals,Reptiles 7 76.4

Yuetal.(2013) 22,533 Mammals 18 83.8

Chen,Han,He,Kays,&Forrester(2014)

9,530 RainforestMammals

19 38.3

Hernández-Sernaetal.(2014)

1,800 Fish,Butterflies 32 92.87

92 11 93.25

Atanborietal.(2016) – Birds 7 89.0

Bergetal.(2014) Avg.of200perspecies

Birds 500 66.6

Beijboometal.(2016) 28,400 Coral 10 88.9

Marburg&Bigham(2016) 8,586 Benthicinverte-bratesandfish

10 89.0

Gomezetal.(2016) 14,346 Savannaanimals 26 88.9

Qin,Li,Liang,Peng,&Zhang(2016)

22,370 Fish 23 98.6

Villonetal.(2016) 1,400 Fish 8 65.8

Sunetal.(2017) 9,160 Fish 15 77.27

Fengetal.(2016) 4,530 Moths 50 53.12

TABLE  2 Evaluationstatisticsforrecentcomputervisionapplicationstopredictingspecies-levelidentity.Articlesshownonlyincludeapplicationstomorethanfivespeciesandquantifiedtheclassificationaccuracyusingatestingdataset.Accuracyisonlyreportedforthebestperformingmodelineachpaper.Articlesareorderedbypublicationdate

Page 9: A computer vision for animal ecology...computer vision can be used to study animal camouflage (Tankus & Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller, 2016). For example,

     |  541Journal of Animal EcologyWEINSTEIN

2. Ecologists can improvecomputervisionalgorithmsbyprovidingbiological context (Berg etal., 2014). Ecological rules that mayseemtobecommonsense,suchas“thereshouldnotbefishonland,”requireneuralnetworkstoidentifybothobjectsinanimage(“fish”),scenecontext(“land”)andtherelationshipbetweenimagefeatures.Onewaytoovercomethiswouldbetocumbersomelytrainanalgorithmwiththousandsofimagesoflandwithoutfish.Ecologyprovidesamorestraightforwardandeffectivemethodbyusingimagemetadata,suchastimeorlocation,toassistinimageclassification.Forexample,combiningimagelocationwithexpertvettedspeciesregionalchecklistsmightshowthatonlyafewspe-cies with a given coloration occur in given location. Similarly,imagecontextcanassistfuturepredictions.Forexample,ifanal-gorithmidentifiesawildebeestinanaerialimage,itmaybemorelikelytoalsofindzebras(Swansonetal.,2015).Finally,ecologicalcontextcanreducetheburdenofgatheringtrainingdatabyex-ploitingtheinherentconservationofbodyplansamonganimalstocreatehierarchicallabels.Ratherthanthinkingofallpotentialin-dividualcategories(e.g.blackbear,grizzlybear,polarbear,etc.),hierarchical labellingexploits theconnectionsamonganimals tocreatenestedcategories(e.g.Ursus).Tree-basedclassificationap-proacheshavebeeneffective inotherareasofcomputervision,

andfitsnaturallywiththestudyofevolutionarytaxonomy(Favret&Sieracki,2016).

3. Ecologistsarecollectingvastamountsoflabelleddata.Computervision applications, and especially deep learning approaches, re-quire significant training and testing data. High-quality datasetsaredifficulttofind,andalackoflabelleddataisamajorobstacleincomputer vision research (Belongie&Perona, 2016;Berg etal.,2010;Gomezetal.,2016).Packagingimagedatasetsandmakingthempubliclyavailablewill raiseawarenessof theopportunitiesforecologicalcollaboration.

7  | FUTURE GROWTH

Thefutureofecologicalcomputervisionwillcombinenewalgorithms,data and collaborations to study animals in natural environments.The rise of neural networks as the central tool in image classifica-tion(Gomezetal.,2016;LeCunetal.,2015),backgroundsubtraction(Christiansenetal.,2016)andimagedescription(Mohanty,Hughes,&Salathé,2016) is akeydevelopment thatwithbringnewoppor-tunitiesforecologicalcomputervision(Figure6).Untilrecently,thegrowthofthesetoolshasbeenslowedbyalackofaccesstocutting

F IGURE  6 Overviewofaneuralnetworkformachinelearningprediction:(a)Pixelconvolutionscreatecombinationsofinputpredictorsbydownsamplingandpoolingimagefeatures,(b)agenericdeeplearningstructure,inputdatapassesthroughhiddenlayers,callednodes,tocreatepathwaysfrompredictorstoprediction.Theactivationscoreateachofthesenodesisusedtoestimatemodelweights.Incurrentdeeplearningapplications,therewillbemanyhiddenlayersofnodestocreatecombinationsofinputpredictors[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Page 10: A computer vision for animal ecology...computer vision can be used to study animal camouflage (Tankus & Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller, 2016). For example,

542  |    Journal of Animal Ecology WEINSTEIN

edgealgorithms.TherecentunveilingoftheGoogleCloudMachineLearningplatformcouldbeaquantumleapinaccessforecologists.Releasedin2016,GooglegivesusersaccesstoawebservicetoretrainmodelsusingGoogle’spopularTensorFlowsoftware.TensorFlowisacomputationalgraphalgorithmthatrepresentsmathematicalopera-tionsasnodesandstoresdatainmultidimensionalarrays.Ratherthanbuildingamodelfromscratchforeachapplication,userscanretrainpre-builtmodelstoaddnewimageclasses.Knownastransferlearn-ing,thisapproachusesthestrengthsoftheunderlyingarchitecture,butaddsflexibilityforspecializedproblems.Thisgreatlyreducesthetimeandexpertiseneededtoimplementimageanalysissolutions.

Apersistentchallengeincomputervisionapplicationsiscollectingsufficientlabelleddata(Bergetal.,2010).Newdatacollectionoppor-tunities through datamining (Zhang, Korayem, Crandall, & Lebuhn,2012)andcitizenscientistswillbroadenthepotentialsourcesof la-belled ecological data (Swanson, Kosmala, Lintott, & Packer, 2016).Thenaturalexcitement forplantsandanimalsmeansthatgatheringfurtherlabelleddataispossiblethroughonlinecitizenscientistefforts(VanHornetal.,2015).Inparticular,projectsontheZooniverse,iNat-uralistandWildlife@homewebplatformsprovideawayofengagingimportantusercommunities(Deselletal.,2013;Kosmalaetal.,2016).Thenextstepisintegratingcitizenscientistsasapartofgreaterau-tomation, ratherasanalternative toautomation.Knownas “humanin loop”approaches,thisstrategycan learndirectlyfromhumanan-notations to provide feedback and recommendation for future datalabelling(Bransonetal.,2010;Reda,Mateevitsi,&Offord,2013).Thiswillcombinetheexpertiseandexcitementfromcitizenscientists,withthegreaterstandardizationofautomation.

ACKNOWLEDGEMENTS

Iwouldliketothankmanyresearchersfortheircontributionstothisreview: JasonParham (Figure5a), andAaronMarburg (Figure5b)contributedunpublishedfigures.FiguresfromTorneyetal.(2016)andStoddardetal. (2016)wereusedunderthePlosOneCreativeCommons License. Thanks to Shanis Barnard, DrewWeber,WillPearse, Margaret Kosmala, Tanya Berger-Wolf, Chuck Stewart,J. J. Valletta and Oscar Beijboom for their helpful input. Themanuscript was improved by the assistance of two anonymousreviewers.Themetadata for the reviewed filesaswell as the re-sults of each of the fourWeb of Science searches are providedin theSupporting Information.Theauthordeclaresnoconflictof interest.

DATA ACCESSIBILITY

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.b700h(Weinstein,2017).

ORCID

Ben G. Weinstein http://orcid.org/0000-0002-2176-7935

REFERENCES

Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image process-ing with imageJ. Biophotonics International, 11, 36–41. https://doi.org/10.1117/1.3589100

Adams, J. D., Speakman, T., Zolman, E., & Schwacke, L. H. (2006).Automating image matching, cataloging, and analysis for photo-identification research. Aquatic Mammals, 32, 374–384. https://doi.org/10.1578/AM.32.3.2006.374

Ardovini,A.,Cinque,L.,&Sangineto,E.(2008).Identifyingelephantphotosbymulti-curvematching.Pattern Recognition,41,1867–1877.https://doi.org/10.1016/j.patcog.2007.11.010

Arzoumanian, Z., Holmberg, J., & Norman, B. (2005). An astronomicalpattern-matchingalgorithmforcomputer-aidedidentificationofwhalesharks Rhincodon typus. Journal of Applied Ecology, 42, 999–1011.https://doi.org/10.1111/j.1365-2664.2005.01117.x

Atanbori, J., Duan, W., Murray, J., Appiah, K., & Dickinson, P. (2016).Automatic classification of flying bird species using computer vi-sion techniques. Pattern Recognition Letters, 81, 53–62. https://doi.org/10.1016/j.patrec.2015.08.015

Barber-Meyer,S.M.,Kooyman,G.L.,&Ponganis,P.J.(2007).Estimatingthe relativeabundanceofemperorpenguinsat inaccessiblecoloniesusing satellite imagery. Polar Biology, 30, 1565–1570. https://doi.org/10.1007/s00300-007-0317-8

Barnard,S.,Calderara,S.,Pistocchi,S.,Cucchiara,R.,Podaliri-Vulpiani,M.,Messori, S.,&Ferri,N. (2016).Quick, accurate, smart: 3Dcomputervision technology helps assessing confined animals’ behaviour.PLoS ONE,11,1–20.https://doi.org/10.1371/journal.pone.0158748

Bartomeus,I.,Gravel,D.,Tylianakis,J.M.,Aizen,M.,Dickie,I.,&Bernard-Verdier,M.(2016).Acommonframeworkfor identifyingrulesacrossdifferenttypesofinteractions.Functional Ecology,10,1–40.https://doi.org/10.1111/1365-2435.12666

Beekmans,B.W.P.M.,Whitehead,H.,Huele,R.,Steiner,L.,&Steenbeek,A.G.(2005).Comparisonoftwocomputer-assistedphoto-identificationmethods applied to spermwhales (Physeter macrocephalus).Aquatic Mammals,31,243–247.https://doi.org/10.1578/AM.31.2.2005.243

Beijboom,O.,Treibitz,T.,Kline,D.I.,Eyal,G.,Khen,A.,Neal,B.,…Kriegman,D.(2016).Improvingautomatedannotationofbenthicsurveyimagesusingwide-bandfluorescence.Scientific Reports,6,23166.https://doi.org/10.1038/srep23166

Belongie,S.,&Perona,P.(2016).Visipediacirca2015.Pattern Recognition Letters,72,15–24.https://doi.org/10.1016/j.patrec.2015.11.023

Berg,T.,Liu,J.,Lee,S.W.,Alexander,M.L.,Jacobs,D.W.,&Belhumeur,P.N. (2014).Birdsnap: Large-scale fine-grainedvisual categorizationofbirds.Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,pp.2019–2026.

Berg,T.L.,Sorokin,A.,Forsyth,D.A.,Hoiem,D.,Endres, I.,&Farhadi,A.(2010).It’sallaboutthedata.Proceedings of the IEEE,98,1434–1452.https://doi.org/10.1109/JPROC.2009.2032355

Blanc,K.,Lingrand,D.,&Precioso,F.(2014).Fishspeciesrecognitionfromvideo using SVM classifier. Proceedings of the 3rd ACM International Workshop on Multimedia Analysis for Ecological Data – MAED ‘14, pp.1–6.NewYork,NY:ACMPress.https://doi.org/10.1145/2661821

Bolger, D. T., Morrison, T. A., Vance, B., Lee, D., & Farid, H. (2012). Acomputer-assisted system for photographic mark-recapture anal-ysis. Methods in Ecology and Evolution, 3, 813–822. https://doi.org/10.1111/j.2041-210X.2012.00212.x

Bowley,C.,Andes,A.,Ellis-Felege,S.,&Desell,T.(2017).Detectingwild-life in uncontrolled outdoor video using convolutional neural net-works. Proceedings of the 2016 IEEE 12th International Conference on e-Science, e-Science 2016,pp.251–259.

Bradski,G.(2000).TheOpenCVLibrary.Dr Dobbs Journal,25,120–126.Branson, S., Van Horn, G., Belongie, S., & Perona, P. (2014). Bird spe-

cies categorization using pose normalized deep convolutional nets.

Page 11: A computer vision for animal ecology...computer vision can be used to study animal camouflage (Tankus & Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller, 2016). For example,

     |  543Journal of Animal EcologyWEINSTEIN

British Machine Vision Conference (BMVC). http://www.bmva.org/bmvc/2014/files/paper071.pdf

Branson,S.,Wah,C., Schroff, F.,Babenko,B.,Welinder,P.,Perona,P.,&Belongie, S. (2010). Visual recognition with humans in the loop. InDaniilidis K., Maragos P., Paragios N. (eds) Computer Vision - ECCV 2010. ECCV 2010. Lecture Notes in Computer Science, vol 6314.Berlin,Germany:Springer.

Chabot,D.,&Francis,C.M. (2016).Computer-automatedbirddetectionandcounts inhigh-resolutionaerial images:Areview.Journal of Field Ornithology,87,343–359.https://doi.org/10.1111/jofo.12171

Chen,G.,Han,T.X.,He,Z.,Kays,R.,&Forrester,T.(2014).Deepconvolu-tionalneuralnetworkbasedspeciesrecognitionforwildanimalmon-itoring. IEEE International Conference on Image Processing (ICIP),2014,858–862.

Christiansen,P.,Nielsen,L.,Steen,K.,Jørgensen,R.,&Karstoft,H.(2016).DeepAnomaly:Combiningbackgroundsubtractionanddeeplearningfordetectingobstaclesandanomaliesinanagriculturalfield.Sensors,16,1904.https://doi.org/10.3390/s16111904

Crall,J.,Stewart,C.,Berger-Wolf,T.Y.,Rubenstein,D.L.,&Sundaresan,S.R.(2013).Hotspotter–Patternedspeciesinstancerecognition.Applications of Computer Vision (WACV), 2013 IEEE Workshop,pp.230–237.

Cross,M.D., Lipps,G.J., Sapak,J.M.,Tobin,E.J.,&Root,K.V. (2014).Pattern-recognition software as a supplemental method of identify-ingindividualeasternboxturtles(Terrapene c. carolina).Herpetological Review,45,584–586.

Crutsinger,G.M.,Short,J.,&Sollenberger,R.(2016).ThefutureofUAVsin ecology: An insider perspective from the SiliconValley drone in-dustry. Journal of Unmanned Vehicle Systems,4,161–168.https://doi.org/10.1139/juvs-2016-0008

Dala-Corte,R.B.,Moschetta,J.B.,&Becker,F.G.(2016).Photo-identificationasatechniqueforrecognitionofindividualfish:Atestwiththefresh-waterarmoredcatfishRineloricaria aequalicuspisReis&Cardoso,2001(Siluriformes:Loricariidae).Neotropical Ichthyology,14,e150074.

Dell,A.I.,Bender,J.A.,Branson,K.,Couzin,I.D.,dePolavieja,G.G.,Noldus,L.P.J.J.,…Brose,U.(2014).Automatedimage-basedtrackinganditsapplication in ecology.Trends in Ecology and Evolution,29, 417–428.https://doi.org/10.1016/j.tree.2014.05.004

Descamps,S.,Béchet,A.,Descombes,X.,Arnaud,A.,&Zerubia,J.(2011).Anautomaticcounterforaerialimagesofaggregationsoflargebirds.Bird Study,58,302–308.https://doi.org/10.1080/00063657.2011.588195

Desell,T.,Bergman,R.,Goehner,K.,Marsh,R.,Vanderclute,R.,&Ellis-Felege,S. (2013).Wildlife@Home: Combining crowd sourcing and volunteercomputing to analyze avian nesting video. Proceedings - IEEE 9th International Conference on e-Science, e-Science 2013,pp.107–115.

Duyck, J., Finn, C., Hutcheon,A.,Vera, P., Salas, J., & Ravela, S. (2015).Sloop:A pattern retrieval engine for individual animal identification.Pattern Recognition,48,1055–1069.

Farnsworth,E.J.,Chu,M.,Kress,W.J.,Neill,A.K.,Best,J.H.,Stevenson,R.D.,…Pickering,J.(2013).Next-generationfieldguides.BioScience,63,891–899.https://doi.org/10.1525/bio.2013.63.11.8

Favret,C.,&Sieracki,J.M.(2016).Machinevisionautomatedspeciesiden-tificationscaledtowardsproductionlevels.Systematic Entomology,41,133–143.https://doi.org/10.1111/syen.12146

Feng, L., Bhanu, B., & Heraty, J. (2016). A software system for auto-mated identificationand retrievalofmoth imagesbasedonwingat-tributes.Pattern Recognition,51, 225–241.https://doi.org/10.1016/j.patcog.2015.09.012

Fretwell, P. T., Staniland, I. J., & Forcada, J. (2014).Whales from space:Countingsouthernrightwhalesbysatellite.PLoS ONE,9,1–9.https://doi.org/10.1371/journal.pone.0088655

Gilman, A., Hupman, K., Stockin, K. A., & Pawley, M. D. M. (2016).Computer-assisted recognition of dolphin individuals using dorsalfin pigmentations.2016 International Conference on Image and Vision Computing New Zealand (IVCNZ),1-6.

Giraldo-Zuluaga, J.-H., Gomez, A., Salazar, A., & Diaz-Pulido, A. (2017).Camera-trap images segmentation using multi-layer robust principalcomponentanalysis.arXiv:1701.08180

Gomez,A., Diez, G., Salazar,A., &Diaz,A. (2016).Animal Identificationin LowQuality Camera-Trap Images UsingVeryDeep ConvolutionalNeural Networks and Confidence Thresholds. Advances in Visual Computing: 12th International Symposium, ISVC 2016, Las Vegas, NV, USA, December 12–14, 2016, Proceedings, Part I,pp.747–756.SpringerInternationalPublishing.https://doi.org/10.1007/978-3-319-50835-1

Groom,G.,KragPetersen,I.,Anderson,M.D.,&Fox,A.D.(2011).Usingobject-basedanalysisofimagedatatocountbirds:MappingofLesserFlamingosatKamfersDam,NorthernCape,SouthAfrica.International Journal of Remote Sensing,32,4611–4639.https://doi.org/10.1080/01431161.2010.489068

Haggag,H.,Abobakr,A.,Hossny,M.,&Nahavandi,S.(2016).Semanticbodyparts segmentation for quadrupedal animals.2016 IEEE International Conference on Systems, Man, and Cybernetics,pp.855–860.

Hernández-Serna, A., & Jiménez-Segura, L. F. (2014). Automatic identi-fication of specieswith neural networks. PeerJ,2, e563. https://doi.org/10.7717/peerj.563

Hodgson,A.,Kelly,N.,&Peel,D.(2013).Unmannedaerialvehicles(UAVs)for surveying Marine Fauna: A dugong case study. PLoS ONE, 8, 1–15.

Howland,J.C.,Macfarlane,N.B.W.,&Tyack,P. (2012).Precisegeopo-sitioningofmarinemammalsusingstereophotogrammetry.OCEANS 2012 MTS/IEEE: Harnessing the Power of the Ocean.pp.1-6.https://doi.org/10.1109/OCEANS.2012.6404859.

Joly,A.,Goëau,H.,Bonnet,P.,Bakić,V.,Barbe,J.,Selmi,S.,…Barthélémy,D. (2014). Interactive plant identification based on social imagedata. Ecological Informatics, 23, 22–34. https://doi.org/10.1016/ j.ecoinf.2013.07.006

Jones, A. M., Cantin, N. E., Berkelmans, R., Sinclair, B., & Negri, A. P.(2008). A 3D modeling method to calculate the surface areas ofcoral branches. Coral Reefs, 27, 521–526. https://doi.org/10.1007/s00338-008-0354-y

Kosmala,M.,Crall,A.,Cheng,R.,Hufkens,K.,Henderson,S.,&Richardson,A. (2016).Seasonspotter:Usingcitizensciencetovalidateandscaleplantphenologyfromnear-surfaceremotesensing.Remote Sensing,8,726.https://doi.org/10.3390/rs8090726

Kühl, H. S., & Burghardt, T. (2013). Animal biometrics: Quantifying anddetectingphenotypicappearance.Trends in Ecology and Evolution,28,432–441.https://doi.org/10.1016/j.tree.2013.02.013

Kvilekval, K., Fedorov, D., Obara, B., Singh, A., & Manjunath, B. S.(2009). Bisque: A platform for bioimage analysis and management.Bioinformatics, 26, 544–552. https://doi.org/10.1093/bioinformatics/btp699

LaRue,M.A., Stapleton, S., &Anderson,M. (2016). Feasibility of usinghigh-resolution satellite imagery to assess vertebrate wildlife popu-lations. Conservation Biology, 31, 213–220. https://doi.org/10.1111/cobi.12809

LaRue,M.A.,Stapleton,S.,Porter,C.,Atkinson,S.,Atwood,T.,Dyck,M.,&Lecomte,N.(2015).Testingmethodsforusinghigh-resolutionsatel-liteimagerytomonitorpolarbearabundanceanddistribution.Wildlife Society Bulletin,39,772–779.https://doi.org/10.1002/wsb.596

Lavy,A.,Eyal,G.,Neal,B.,Keren,R.,Loya,Y.,& Ilan,M. (2015).Aquick,easy and non-intrusive method for underwater volume and sur-face area evaluation of benthic organisms by 3D computer mod-elling. Methods in Ecology and Evolution, 6, 521–531. https://doi.org/10.1111/2041-210X.12331

LeCun,Y.,Bengio,Y.,&Hinton,G.(2015).Deeplearning.Nature,521,436–444.https://doi.org/10.1038/nature14539

Levy, K., Lerner, A., & Shashar, N. (2014). Mate choice and body pat-tern variations in the Crown Butterfly fish Chaetodon paucifascia-tus (Chaetodontidae). Biology Open, 3, 1245–1251. https://doi.org/10.1242/bio.20149175

Page 12: A computer vision for animal ecology...computer vision can be used to study animal camouflage (Tankus & Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller, 2016). For example,

544  |    Journal of Animal Ecology WEINSTEIN

Liu,C.C.,Chen,Y.H.,&Wen,H.L.(2015).Supportingtheannualinterna-tionalblack-faced spoonbill censuswitha low-costunmannedaerialvehicle.Ecological Informatics,30,170–178.https://doi.org/10.1016/j.ecoinf.2015.10.008

Lynch,H.J.,White,R.,Black,A.D.,&Naveen,R. (2012).Detection,dif-ferentiation, and abundance estimation of penguin species by high-resolution satellite imagery. Polar Biology, 35, 963–968. https://doi.org/10.1007/s00300-011-1138-3

Lytle,D.A.,Martínez-Muñoz,G.,Zhang,W.,Larios,N.,Shapiro,L.,Paasch,R., … Dietterich, T. G. (2010).Automated processing and identifica-tion of benthic invertebrate samples. Journal of the North American Benthological Society,29,867–874.https://doi.org/10.1899/09-080.1

Marburg,A.,&Bigham,K.(2016).Deep learning for benthic fauna identifica-tion.OCEANS2016MTS/IEEEMonterey,pp.1–5.

Matuska,S.,Hudec,R.,Kamencay,P.,Benco,M.,&Zachariasova,M.(2014).Classification of wild animals based on SVM and local descriptors.AASRI Procedia,9,25–30.https://doi.org/10.1016/j.aasri.2014.09.006

McDowall, P., & Lynch, H. J. (2017). Ultra-fine scale spatially-integratedmappingofhabitatandoccupancyusingstructure.PLoS ONE,12,1–16.https://doi.org/10.1371/journal.pone.0166773

Mohanty,S.P.,Hughes,D.P.,&Salathé,M.(2016).Usingdeeplearningforimage-basedplantdiseasedetection.Frontiers in Plant Science,7,1–7.https://doi.org/10.3389/fpls.2016.01419

Naumann,M.S.,Niggl,W.,Laforsch,C.,Glaser,C.,&Wild,C.(2009).Coralsurface area quantification-evaluation of established techniques bycomparison with computer tomography. Coral Reefs, 28, 109–117.https://doi.org/10.1007/s00338-008-0459-3

Olsen, A. M., &Westneat, M. W. (2015). StereoMorph: An R packagefor the collection of 3D landmarks and curves using a stereo cam-eraset-up.Methods in Ecology and Evolution,6,351–356.https://doi.org/10.1111/2041-210X.12326

Pennekamp,F.,&Schtickzelle,N. (2013). Implementing imageanalysis inlaboratory-based experimental systems for ecology and evolution:Ahands-onguide.Methods in Ecology and Evolution,4,483–492.https://doi.org/10.1111/2041-210X.12036

Pimm,S.L.,Alibhai,S.,Bergl,R.,Dehgan,A.,Giri,C.,Jewell,Z.,…Loarie,S. (2015). Emerging technologies to conserve biodiversity. Trends in Ecology & Evolution, 30, 685–696. https://doi.org/10.1016/j.tree.2015.08.008

Price Tack, J. L.,West, B. S., McGowan, C. P., Ditchkoff, S. S., Reeves,S. J., Keever, A. C., & Grand, J. B. (2016). AnimalFinder: A semi-automatedsystemforanimaldetectionintime-lapsecameratrapim-ages. Ecological Informatics, 36, 145–151. https://doi.org/10.1016/j.ecoinf.2016.11.003

Qin,H.,Li,X.,Liang,J.,Peng,Y.,&Zhang,C.(2016).DeepFish:Accurateun-derwaterlivefishrecognitionwithadeeparchitecture.Neurocomputing,187,49–58.https://doi.org/10.1016/j.neucom.2015.10.122

Reda,K.,Mateevitsi,V.,&Offord,C.(2013).Ahuman-computercollab-orativeworkflowfortheacquisitionandanalysisofterrestrialinsectmovementinbehavioralfieldstudies.EURASIP Journal on Image and Video Processing, 2013, 48. https://doi.org/10.1186/1687-5281- 2013-48

Ren,X.,Han,T.X.,&He,Z. (2013).Ensemblevideoobjectcut inhighlydynamicscenes.Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,pp.1947–1954.

Robie, A. A., Seagraves, K. M., Egnor, S. E. R., & Branson, K. (2017).Machinevisionmethodsforanalyzingsocialinteractions.The Journal of Experimental Biology,220,25–34.https://doi.org/10.1242/jeb.142281

Seymour, A. C., Dale, J., Hammill, M., Halpin, P. N., & Johnston, D.W.(2017). Automated detection and enumeration of marine wildlifeusingunmannedaircraftsystems(UAS)andthermalimagery.Scientific Reports,7,1–10.https://doi.org/10.1038/srep45127

Sobral,A.,&Vacavant,A.(2014).Acomprehensivereviewofbackgroundsubtraction algorithms evaluated with synthetic and real videos.

Computer Vision and Image Understanding, 122, 4–21. https://doi.org/10.1016/j.cviu.2013.12.005

Stauffer,C.,&Grimson,W.E.L.(1999).Adaptive background mixture mod-els for real-time tracking. Proceedings. 1999 IEEE Computer SocietyConference on ComputerVision and Pattern Recognition, pp. 246–252.IEEEComput.Soc.

Steen, R., & Ski, S. (2014). Video-surveillance system for remote long-terminsituobservations:Recordingdielcavityuseandbehaviourofwild European lobsters (Homarus gammarus).Marine and Freshwater Research,65,1094–1101.https://doi.org/10.1071/MF13139

Stoddard,M.C.,Kilner,R.M.,&Town,C. (2014).Patternrecognitional-gorithm reveals how birds evolve individual egg pattern signatures.Nature Communications,5,4117.

Stoddard,M.C.,Kupán,K.,Eyster,H.N.,Rojas-Abreu,W.,Cruz-López,M.,Serrano-Meneses,M.A.,&Küpper,C.(2016).Camouflageandclutchsurvival inplovers and terns.Scientific Reports,6, 32059.https://doi.org/10.1038/srep32059

Sun,X.,Shi,J.,Dong,J.,&Wang,X.(2017).Fishrecognitionfromlow-res-olution underwater images. In Proceedings of the 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics,CISP-BMEI2016,pp.471–476.

Swanson,A.,Kosmala,M., Lintott,C.,&Packer,C. (2016).Ageneralizedapproachforproducing,quantifying,andvalidatingcitizensciencedatafromwildlife images.Conservation Biology, 30, 520–531. https://doi.org/10.1111/cobi.12695

Swanson,A.,Kosmala,M.,Lintott,C.,Simpson,R.,Smith,A.,&Packer,C.(2015).SnapshotSerengeti,high-frequencyannotatedcameratrapim-agesof40mammalianspeciesinanAfricansavanna.Scientific Data,2,150026.https://doi.org/10.1038/sdata.2015.26

Tankus, A., & Yeshurun, Y. (2009). Computer vision, camouflage break-ingandcountershading.Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 364, 529–536. https://doi.org/10.1098/rstb.2008.0211

Torney,C.J.,Dobson,A.P.,Borner,F.,Lloyd-Jones,D.J.,Moyer,D.,Maliti,H.T.,…Hopcraft,J.G.C.(2016).Assessingrotation-invariantfeatureclassificationforautomatedwildebeestpopulationcounts.PLoS ONE,11,e0156342.https://doi.org/10.1371/journal.pone.0156342

Town, C., Marshall, A., & Sethasathien, N. (2013). Manta matcher:Automated photographic identification of manta rays using key-point features. Ecology and Evolution, 3, 1902–1914. https://doi.org/10.1002/ece3.587

Troscianko, J., Skelhorn, J., & Stevens, M. (2017). Quantifying camou-flage:Howtopredictdetectabilityfromappearance.BMC Evolutionary Biology,17,7.https://doi.org/10.1186/s12862-016-0854-2

van Andel, A. C., Wich, S. A., Boesch, C., Koh, L. P., Robbins, M. M.,Kelly,J.,&Kuehl,H.S. (2015).Locatingchimpanzeenestsand iden-tifying fruiting trees with an unmanned aerial vehicle. American Journal of Primatology, 77, 1122–1134. https://doi.org/10.1002/ ajp.22446

VanHorn, G., Branson, S., Farrell, R., Haber, S., Barry, J., Ipeirotis, P., …Belongie, S. (2015). Building a bird recognition app and large scaledatasetwith citizen scientists:The fine print in fine-grained datasetcollection. InProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,pp.595–604.

VanHorn,G.,MacAodha,O.,Song,Y.,Shepard,A.,Adam,H.,Perona,P.,&Belongie,S. (2017).The iNaturalistChallenge2017Dataset. arXivpreprintarXiv:1707.06642.

Villon,S.,Chaumont,M.,Subsol,G.,Villéger,S.,Claverie,T.,&Mouillot,D.(2016).Coralreeffishdetectionandrecognitioninunderwatervideosby supervised machine learning: Comparison between deep learn-ing and HOG+SVMmethods. In Blanc-Talon J., Distante C., PhilipsW.,PopescuD.,ScheundersP.(eds)Advanced Concepts for Intelligent Vision Systems. ACIVS 2016.LectureNotes inComputerScience,vol10016.Cham,Switzerland:Springer.

Page 13: A computer vision for animal ecology...computer vision can be used to study animal camouflage (Tankus & Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller, 2016). For example,

     |  545Journal of Animal EcologyWEINSTEIN

Weinstein,B.G.(2015).MotionMeerkat:Integratingmotionvideodetec-tion and ecological monitoring.Methods in Ecology and Evolution, 6,357–362.https://doi.org/10.1111/2041-210X.12320

Weinstein,B.G.(2017).Datafrom:Acomputervisionforanimalecology.Dryad Digital Repository,https://doi.org/10.5061/dryad.b700h

Weinstein,B.G.,&Graham,C.H.(2017).Persistentbillandcorollamatch-ingdespiteshiftingtemporalresourcesintropicalhummingbird-plantinteractions. Ecology Letters, 20, 326–335. https://doi.org/10.1111/ele.12730

Wilber,M.J.,Scheirer,W.J.,Leitner,P.,Heflin,B.,Zott,J.,Reinke,D.,…Boult,T. E. (2013).Animal recognition in theMojaveDesert:Visiontools for field biologists. 2013 IEEE Workshop on Applications of Computer Vision (WACV),pp.206–213.

Witharana,C.,&Lynch,H.J. (2016).Anobject-based imageanalysisap-proach for detecting penguin guano in very high spatial resolutionsatellite images. Remote Sensing, 8, 375. https://doi.org/10.3390/rs8050375

Yang,C.,Wang,L.,Liang,W.,&Møller,A.P.(2016).Docommoncuckoos(Cuculus canorus)possessanoptimal layingbehaviour tomatch theirowneggphenotypetothatoftheirOrientalreedwarbler(Acrocephalus orientalis)hosts?Biological Journal of the Linnean Society,117,422–427.https://doi.org/10.1111/bij.12690

Yang,Z.,Wang,T., Skidmore,A.K.,DeLeeuw,J., Said,M.Y.,&Freer,J.(2014).SpottingEastAfricanmammalsinopensavannahfromspace.PLoS ONE,9,1–16.

Yu, X., Wang, J., Kays, R., Jansen, P. A., Wang, T., & Huang, T. (2013).Automated identification of animal species in camera trap images.EURASIP Journal on Image and Video Processing,2013,52.https://doi.org/10.1186/1687-5281-2013-52

Zeppelzauer, M. (2013). Automated detection of elephants in wildlifevideo. EURASIP Journal on Image and Video Processing,2013,46.https://doi.org/10.1186/1687-5281-2013-46

Zhang,Z.,He,Z.,Cao,G.,&Cao,W.(2016).Animaldetectionfromhighlyclutterednaturalscenesusingspatiotemporalobjectregionproposalsandpatchverification.IEEE Transactions on Multimedia,18,2079–2092.https://doi.org/10.1109/TMM.2016.2594138

Zhang,H.,Korayem,M.,Crandall,D.J.,&Lebuhn,G.(2012).Mining Photo-sharing Websites to Study Ecological Phenomena. International WorldWideWebConferenceCommittee(IW3C2),pp.749–758.

SUPPORTING INFORMATIONAdditional Supporting Information may be found online in thesupportinginformationtabforthisarticle.

How to cite this article:WeinsteinBG.Acomputervisionforanimalecology.J Anim Ecol. 2018;87:533–545. https://doi.org/10.1111/1365-2656.12780