title › electronics › edtn › edtn134.pdfauthor(s): s. srikanth date: january 22, 1986...

10
NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA ELECTRONICS DIVISION TECHNICAL NOTE NO 134 Title: SMALL-APERTURE SCALAR HORN AS A FEED FOR THE 7-FEED, 6-CM RECEIVER ON THE 300-FT TELESCOPE Author(s): S. Srikanth Date: January 22, 1986 DISTRIBUTION: GB CV TU VLA GB Library CV Library Library Downtown VLA Library R. Norrod H. Hvatum Library Mountain P. Napier R. Weimer M. Balister J. Payne J. Campbell D . Schiebel S. Weinreb R. Freund W. Brundage E . Childers C. Burgess J. Lamb S. Srikanth S-K. Pan C. Brockway A. R. Kerr J. Coe P. Siegel G. Behrens L. D'Addario R. Mauzy R. Bradley R. Lacasse R. Fisher F. Crews B . Peery

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • NATIONAL RADIO ASTRONOMY OBSERVATORYGREEN BANK, WEST VIRGINIA

    ELECTRONICS DIVISION TECHNICAL NOTE NO 134

    Title: SMALL-APERTURE SCALAR HORN AS A FEED FOR THE7-FEED, 6-CM RECEIVER ON THE 300-FT TELESCOPE

    Author(s): S. Srikanth

    Date: January 22, 1986

    DISTRIBUTION:

    GB CV TU VLAGB Library CV Library Library Downtown VLA LibraryR. Norrod H. Hvatum Library Mountain P. NapierR. Weimer M. Balister J. Payne J. CampbellD. Schiebel S. Weinreb R. Freund W. BrundageE . Childers C. Burgess J. LambS. Srikanth S-K. PanC. Brockway A. R. KerrJ. Coe P. SiegelG. Behrens L. D'AddarioR. MauzyR. BradleyR. LacasseR. FisherF. CrewsB . Peery

  • 2

    SMALL-APERTURE SCALAR HORN AS FEED FOR THE7-FEED, 6-CM RECEIVER ON THE 300-FT TELESCOPE

    S. Srikanth

    Introduction

    The 7-beam, 14-channel (7 feeds x 2 polarizations) 6-cm

    receiver was proposed by J. J. Condon [1] for the purpose of

    making radio maps of the entire sky visible from Green Bank.

    This receiver, making use of NRAO cooled FET amplifiers, is being

    put together by G. Behrens and I. Jeffries and is scheduled to go

    on the 300-ft telescope in June 1986. The operating range of the

    receiver is 4.6 to 5.1 GHz. The proposed layout of the feeds is

    shown in Figure 1. The beam spacing is approximately 3 HPBW at

    the center frequency. Acceptable levels of beam distortion and

    loss of aperture efficiency warrant tight packing of the feeds

    and set the limitation on the maximum dimension of the feed at

    4.25". The following two feeds were considered for this system.

    Dual-Mode, Small-Aperture Feed

    A dual-mode, small-aperture feed with an aperture diameter of

    1.31 A was designed [2], [3] and fabricated. In this feed, TEll

    and TM11 modes are excited at the circular aperture where the

    relative phases and amplitudes of the two modes are adjusted to

    cancel the electric field at the aperture boundary. This tapered

    distribution over the aperture provides nearly circularly symmetric

    radiation patterns. Far-field pattern measurements made on the

    fabricated feed revealed that this feed did not have the required

  • 3

    bandwidth. Due to the differential dispersion between the modes

    the amplitude and phase patterns on either side of the design

    frequency started to lobe, rendering this feed unsuitable.

    Hybrid-Mode Scalar Horn

    The second alternative was a hybrid-mode scalar horn (wide-

    flare-angle corrugated horn) where the two modes TE„ and TM„

    are locked together in the HE„ mode configuration The hybrid-

    mode condition is achieved by imposing an anisotropic boundary

    condition on the excitation structure leading to the aperture.

    These feeds exhibit radiation pattern symmetry resulting in high

    gain and low spillover. They radiate with very low cross-polari-

    zation. A bandwidth as high as 1 7:1 is attainable with the

    scalar horn. Scalar horns have been found to perform efficiently

    even when they are small in terms of wavelengths [4], [5], [6].

    Experimental Results

    A scalar horn with a flare half-angle of 450 shown in Figure

    2 was designed and fabricated. The aperture diameter is approximately

    1.31X at the center frequency of 4.85 GHz. The input section of

    the horn is 1.768" diameter. The corrugations of this horn are

    perpendicular to the wall of the horn and have uniform slot depth

    of little more than a quarter wavelength at the lower frequency

    end. The widths of the slot and ridge are 0.12 X and 0.03 X,

    respectively. Because of the size of the aperture, only two

    corrugations could be accommodated. The location of the first

    corrugation has been chosen for a good match between the TE„

  • 4

    mode in the circular waveguide and the TM„ mode in the corrugated

    circular section. The various dimensions are shown in Figure 3.

    Co-polar and cross-polar field patterns in the two principal

    planes were measured. The results are shown in Figures 5 and 6.

    At the edge of the dish (300-ft) the field levels varied between

    -11 dB and -12.5 dB in the E-plane and between -14.5 and -16 dB

    in the H-plane. As can be seen from the plots, cross-polarization

    levels were never greater than -38 dB with respect to the boresight

    co-polarization levels in the two planes. The patterns in the

    two planes are almost identical down to about -9 dB. The phase

    centers in the two planes are found to be coincident.

    A tuning washer has been introduced into the input section

    of the horn for improving the impedance match. The return loss

    measured is shown in Figure 4 and is found to be excellent.

    The various efficiencies and noise temperatures contributed

    by the feed on the 300-ft telescope are shown in Table 1. The

    aperture efficiency varies between 69% and 75% while the spillover

    noise temperature varies between 6.5°K and 10°K. It can be

    concluded that scalar horns need not be electrically large for

    reasonably good performance.

  • REFERENCES

    [1] J. J. Condon, "Multiple-Beam Receiver Proposal," Memorandumto R. J. Havlen, September 28, 1982.

    [2] R. C. Johnson and H. Jasik, Antenna Engineering Handbook,Second Edition, pp. 15-19 to 15-25.

    [3] R. H. Turrin, "Dual Mode Small-Aperture Antennas," IEEETransactions on Antennas and Propagation, Vol. AP-15,pp. 307-308, March 1967.

    [4] P. J. B. Clarricoats and A. D. Olver, "Design of Cylindricaland Conical Corrugated Horns," Chapter 5, Corrugated Horns for Microwave Antennas, 1984.

    [5] P. J. B. Claricoats and P. K. Saha, "Propagation and RadiationBehaviour of Corrugated Feeds, Part 2: Corrugated -Conical - Horn Feed," Proc. Inst. Elect. Engrs. Vci.Mpp. 1177-1186, September 1971.

    [6] A. J. Estin, C. F. Stubenrauch, A. G. Repjar and A. C. Newell,"Optimized Wavelength-Sized Scalar Horns as AntennaRadiation Standards," IEEE Trans. on Inst. & Meas. Vol. IM-31, No 1, pp. 53-56, March 1982.

  • TAB

    LE 1

    fR

    efle

    c-ti

    on

    H-P

    LAN

    E

    Tap

    erS

    pil

    l-ov

    erA

    pert

    ure

    Noi

    seT

    empe

    ra-

    ture

    Tap

    erS

    pil

    l-ov

    erA

    pert

    ure

    Noi

    seT

    empe

    ra-

    ture

    GHz

    nn

    nTi

    'ICn

    iiii

    ° K

    4.6

    0.98

    650.

    774

    0.94

    20.

    7192

    9.2

    0.79

    30.

    937

    0.73

    2010

    .2

    4.85

    0.99

    990.

    752

    0.95

    10.

    7151

    7.6

    0.79

    10.

    948

    0.74

    988.

    4

    5.1

    0.99

    680.

    716

    0.96

    00.

    6852

    6.5

    0.77

    30.

    951

    0.73

    288.0

  • 7

    FIGURE 1. Layout of the 6-cm feeds.

    FIGURE 2. Small-aperture scalar horn with flare semiangle of 45°.

  • FIGURE 3. 6-cm Scalar Horn.

    8

    (All dimensions in inches.)

    FIGURE 4. Return Loss.

  • _ _

    7

    100

    90 8

    0 7

    - M

    INU

    S

    1512 21TA

    ,Ct1

    24

    0.27 30 33 36 39

    10

    0 9

    0 8

    0 7

    0 6

    0 5

    0 4

    MIN

    US

    II • • •

    iii \ ii

    . III

    111111

    111111

    15111

    Alrill1

    111111

    111111

    111111

    111111

    111111

    111111

    111111

    111111

    11171

    11 1111

    111111

    11111

    111111

    111111

    1 1111

    B111

    11111

    111101

    111 H1

    11111

    011111

    11111

    111111

    111111

    111111

    111111

    111111

    R1111

    111111

    111111

    111111

    11111 1111 II

    ii

    1rR

    EQ

    ,'-P

    t..A

    NE

    PL

    OT

    No.

    H-P

    LA

    NE

    DA

    TE

    ;L

    .R

    EM

    AR

    KS:

    x 1

    -1,A

    RU

    p o

    ocl I

    l

    42

    11111

    30

    20

    10

    0 1

    20

    30

    40

    Z1/

    VIU

    TH

    AN

    GL

    E (

    DE

    C.)

    ',5

    0 6

    0 7

    0 8

    0 9

    0 1

    0PL

    U

    •FE

    ED

    6 01

    st

    A-

    Lkg z

    imM

    IMI

    0 E

    - PLA

    NE

    PLO

    T N

    o.FREQ

    . 5

    .1°

    GH

    z •

    I, H

    -PLA

    NE

    DA

    TE

    : iV

    ill'5

    -RE

    MAR

    KS;

    X ft.

    .Ait

    OP a

    odi3

    a• 11111

    1111

    1111

    1111

    11111

    11111111

    111 M

    IMI

    61

    11

    .1111

    11,1 III

    filIN

    IIMII

    NM

    *01

    1111

    N111

    0M

    OIN

    E III II

    1512963

    ao18

    ill

    2 42 1

    1 It

    27

    11111

    MU

    M 4 2

    !iji1

    1iil

    LLJJ

    jJJL

    l11

    100 9

    0 8

    O 7

    0 6

    0 5

    0 4

    0 3

    0 2

    0 1

    0 0

    1

    0 2

    01 3

    0 4

    0 5

    0 6

    0M

    INUS

    Il

    iAZI

    MU

    TH A

    NG

    LE

    (DEG

    .)1

    1I

    11

    I1 IL

    0 8

    0 9

    0 1

    00

    -

    FE

    ED

    FR

    ED

    .

    A C

    f1''A

    i is-

    h.'

    GH

    z

    111

    0 E

    'PL

    AN

    EPL

    OT

    No. _

    IIS

    W

    pH

    -PL

    AN

    ED

    AT

    E:

    ,-21,1

    -,C

    II6

    RE

    MA

    RK

    S.

    X ib

    ,m49

    '..

    016

    _

    9

    03 7 .LL.

    . .

    II12 15

    ni i.II

    Will

    2',1 1

    si■

    L. mil

    .D I -

    ,FPI

    P

    _ ai

    Alk

    1

    ,_____

    i3

    37

    2

    I

    A

    Il

    I11

    -II

    I 13

    6

    39

    1IL

    I

    42

    I1

    i,1

    I1

    11

    11

    11

    11

    H.i

    ___LA

    L....L

    .11

    _11

    0 6

    0 5

    040 3

    04

    0 5

    0 6

    070 8

    09

    0 1

    00

    100

    020 3

    0

    L I

    1IM

    UTH

    AA

    NG

    LE

    11

    (DE

    G,)

    PLU

    S,

    11

    II

    11

    11

    11

    (a)

    4.6

    GH

    z(b

    ) 4

    .85

    GH

    z

    (c)

    5.1

    GH

    z

    FIG

    UR

    E 5

    Co

    -po

    lar

    an

    d c

    ross

    -po

    lar

    patt

    ern

    s:H

    -Pla

    ne

    Note

    : X

    -po

    lar

    patt

    ern

    up

    + 2

    0 d

    B.

    t

  • 111111

    111111

    MIN

    I111

    111111

    111111

    .1111

    111111

    111111

    111111

    11111

    1111

    111111

    111111

    111111

    1111

    1111

    1111

    1111

    111 .

    =M

    EN

    EM

    .= 2.

    1n

    om

    morm

    aa

    mri

    nu

    mm

    um

    mo

    -arm

    um

    monom

    E'

    33IM

    MO

    OM

    MO

    JM

    EM

    O' M

    EM

    . '39

    1M

    OM

    M

    IM

    I I 42

    1111

    1i

    100 9

    0 8

    0 7

    0160 5

    0 4

    0 3

    0 2

    0 1

    0 0

    10 2

    0 3

    0 4

    0 5

    0 6

    0 7

    0 8

    0 9

    0 1

    00

    MIN

    US1

    AZI

    MU

    TH

    AN

    GLE

    (D

    EG.)

    PLU

    S

    9 12 15

    FEED

    cry E

    ck,k

    ,

    FREQ

    . 1,

    6

    GHz

    LIE-P

    LAN

    E• P

    LOT N

    o.

    0 H

    -PLAN

    E

    DATE:

    Ppi

    s,

    REM

    ARKS

    ;x

    f""

    ■••••■

    •••■

    1

    •1111

    11111 E1

    11•

    OMII

    Mr=

    II

    II 111

    1111

    1111

    1111

    1 M11

    11111 11

    1111111111

    111111M M

    I111

    111111

    111111

    111111

    11111

    MN

    = _ •

    K111111

    111111

    11111111

    III11

    1111

    1 11

    E11111

    111111

    1111 =

    1111

    1111

    1EII II

    IIII

    IIII

    INB

    IIII

    IIII

    ME

    M '

    VIM

    EM

    M

    III M

    ilII

    MIM

    I I

    1111

    101_

    1111

    1

    00

    90 8

    0 ,70 6

    0 5

    0 4

    0 3

    0 2

    0 1

    0M

    INUS

    IAZ

    IMUT

    I12 15 18 21 24 0 33 36 39 42

    0 1

    0 2

    0 3

    0 4

    0 5

    0 6

    0 7

    0AN

    GLE

    (D

    EG

    .)I

    II

    II

    EM

    I

    IUlI

    J-

    -9-

    111I1

    111

    111111

    111111

    11111 •

    1111

    111

    1111

    1111

    111 M

    111.

    1111

    11

    1111

    1111

    1111

    1111

    1111

    11E1

    11111

    111111

    111111

    111101

    111111

    111111

    111111

    111111

    1111 M

    111111

    111111

    111111

    111111

    111/1

    111111

    .1111

    11•1

    1111

    1111

    111

    111111

    111111

    111111

    111111

    11111 • • 111

    80 9

    0 1

    00

    PLU

    S

    111111

    111111

    111111

    111115

    111111

    1

    111111

    111111

    111111

    111111

    111111

    111111

    111101

    111111

    111111

    111111

    11111

    1111

    1111

    1111

    111.1

    11NW

    AIM

    IE

    MIE

    NU

    IUII

    IIfl

    U.3

    1111111111

    1111111111

    111II

    IIII

    II36 39

    1111

    1111

    1111

    1111

    1111

    1111

    1111

    11 42

    FE

    ED

    x

    cq

    cu

    tifr

    .

    FR

    EQ

    . A

    Y o

    5-G

    Hz

    vdE

    -PL

    AN

    E P

    LO

    T N

    o.

    OH

    -PL

    AN

    E

    DA

    TE

    : ia-H

    ir

    RE

    MA

    RK

    S:

    XR

    Lft

    R U

    P a

    0C

    15

    18-903

    21U

    i

    29 12 15

    100 9

    0 8

    0 7

    0 6

    0 5

    0 4

    0 3

    0 2

    0 1

    0 0

    10 2

    0 3

    0 4

    MIN

    U8

    AZ

    IMU

    TH

    AN

    GL

    E D

    E11

    1

    0 5

    0 6

    0 7

    0 8

    0 9

    0 1

    00

    PL

    US

    II

    II

    11

    a) 4

    .6 G

    Hz

    (b)

    4.8

    5 G

    Hz

    FIG

    UR

    E 6

    Co

    -pola

    r an

    d c

    ross

    -po

    lar

    patt

    ern

    s:E

    -Pla

    ne

    No

    te:

    X-p

    ola

    r p

    att

    ern

    up

    + 2

    0 d

    B.

    (c) 5.1

    GH

    z