a finite volume scheme for the shallow-water system with...

30
A comparison between the second-order MOOD and MUSCL methods for the 1D shallow water problem in the presence of dry/wet interfaces J. Figueiredo, S. Clain Centre of Mathematics, University of Minho Financial support: FEDER (COMPETE) FCT (Pest-C/MAT/UI0013/2014, PTDC/MAT/121185/2010, FCT-ANR/MAT-NAN/0122/2012)

Upload: others

Post on 25-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • A comparison between the second-order MOOD and MUSCL methods for the 1D shallow water problem in the presence of dry/wet interfaces

    J. Figueiredo, S. Clain

    Centre of Mathematics, University of Minho

    Financial support:

    FEDER (COMPETE) FCT (Pest-C/MAT/UI0013/2014, PTDC/MAT/121185/2010, FCT-ANR/MAT-NAN/0122/2012)

  • - Presentation outline

    • Motivation

    • Generic second-order FV scheme

    • MOOD vs. MUSCL

    • Numerical results

    • Conclusions and future work

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 2

  • - Motivation

    o The SW problem with varying bathymetry has a wide number of applications: tsunami, flooding, coastal erosion…

    o A large number of numerical schemes exists, in particular very high-order FV schemes.

    o Still, new 2nd-order methods are interesting because these techniques are widely used in engineering and environmental applications due to their simplicity and computational efficiency but need to be improved.

    o The MUSCL method is often used in this context, but recently a new method, MOOD, involving a different limiting approach has been proposed and tested, for example, for the Euler system and for the 2D-SW problem with varying bathymetry (up to 6th-order of accuracy on unstructured meshes).

    o MOOD and MUSCL differ essentially in the limiting procedure used to prevent oscillations in the vicinity of discontinuities (a priori for MUSCL, a posteriori for MOOD).

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 3

  • - Motivation

    o Aim: compare the “performance” of MOOD vs. MUSCL for the 1D-SW system with varying bathymetry.

    accuracy (order of convergence for smooth solutions)

    Assess: shock capturing ability (sharpness and oscillations)

    behaviour of the numerical solution near dry/wet interfaces

    set of numerical simulations of different nature

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 4

  • - Generic 2nd-order FV scheme

    Non-linear 1D-SW system

    Discretisation: time

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 5

    x

    2 2

    0,

    ( ) ,2

    t x

    t x x

    h hu

    ghu hu h gh b

    hydrostatic condition: h b

    b

    h

    0 10, 0 n NT t t t t T

    1

    time step:

    if regular subdivision

    t , k 1, , . t t k kk k

    Tt t N

    N

  • - Generic 2nd-order FV scheme

    Discretisation: space

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 6

    non-overlapping cells:0, I L

    0 L

    1c 1ic ic 1ic Ic

    ( )ni ix

    1ix 1ix ix

    1/2ix 1/2i

    x

    For a function at :nt

    1/2, 1/2

    1/2, 1/2

    ( )

    ( )

    ni L i

    ni R i

    x

    x

    i ix c

  • - Generic 2nd-order FV scheme

    Hydrostatic reconstruction (Audusse et al., 2004)

    Define:

    Set:

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 7

    1/21/2 , 1/2,max( , )

    i i L i Rb b b

    1/2,

    1/2, 1/2, 1/2 1/2,

    1/2, 1/2, 1/2

    1/2,, .

    max

    with

    (0, ),

    , ,

    ii K

    i K i K

    i K i

    i i K K

    K

    iK L R

    h

    h

    h b

    b

    b

    uu

    1/2,i Lb

    1/2,i Rb1/2i

    b

    1/2,i Lh

    1/2,i Lh

    1/2ix

  • - Generic 2nd-order FV scheme

    Generic second-order scheme (Audusse et al. methodology)

    Setting the discretisation of the 1D-SW system leads to:

    where

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 8

    ( , , ),U h hu b

    1/2,1/2 1/2 1/21 , ,nn ni ii

    n nni R iiLi i

    ntU U tx

    S

    F F

    , ,1/2, 1/1 2,/2 , ,n ni L Rni iU U FF

    2 2

    ,1/2, 1/2,1/2,

    , ,with( ) ( ) , 2

    ni

    n ni K i KK

    K L Rg

    h h

    1/2, 1/2, 1/2, 1/2,.

    2

    n n n ni L i R i L i

    iR

    i

    nh h b b

    xS g

  • - MOOD vs. MUSCL

    Local second-order reconstruction

    Local linear reconstruction required approximation of first derivatives:

    But non-limited linear reconstruction will lead to oscillations in the vicinity of

    discontinuities and even in less extreme cases.

    Need to implement limiting procedures loss of accuracy!

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 9

    1 11/2 1/2

    1 1

    interfaces:

    centroid:

    ( ) , ( ) .

    ( ) .2

    i ii ii i

    i ii

    p px x

    px

  • - MOOD vs. MUSCL

    Limitation strategy

    MUSCL (Monotonic Upstream-Centred Scheme for Conservation Laws; van Leer 1979):

    slopes are reduced in order to verify some stability criterion;

    corrections to slopes are made before computing the solution

    (a priori).

    MOOD (Multi-dimensional Optimal Order Detection; Clain, Diot, Loubère 2011):

    assumes solution is smooth enough and the candidate solution is

    computed without changing the slopes; corrections to slopes are

    made if the candidate solution is “problematic” (a posteriori).

    MOOD generally less intrusive, providing better accuracy

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 10

  • - MOOD vs. MUSCL

    MUSCL in brief

    Reconstructed values at the left- and right-hand side of interfaces:

    where

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 11

    1/2, 1/2,

    1/2, 1/2, 1/2, 1/2, 1/2, 1/2,

    with( ) , ( ) , , , ,2 2

    , ,

    i i i ii R i L

    i R i R i R i L i L i L

    x xq q h hu

    b h b h

    1/2, 1/2,( ) ( ), ( )i i R i Lq p p min-mvan-Alabada

    van-

    od

    Leer

  • - MOOD vs. MUSCL

    MOOD in brief

    - Key concepts: Cell/Edge Polynomial Degree (CPD/EPD)

    EPD polynomial degree used to evaluate the reconstruction at both

    sides of each edge:

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 12

    11/2

    full slope used (second )

    nul

    -

    first-ol slope rd

    ord

    used ( )

    e

    e r

    r

    EPD ( ) min CPD ( ),CPD ( )

    CPD ( )

    1

    0

    i ii

    i

  • - MOOD vs. MUSCL

    MOOD in brief

    - MOOD loop:

    know approximation at time

    initialise for each cell and function

    compute candidate solution from CPD/EDP map

    check if each satisfies a set of conditions (detectors)

    if all cells are valid then otherwise reduce CPD and

    next time step

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 13

    1, ,( )n n

    i i IU U nt

    CPD 1

    U

    iU

    1 ,nU U

  • - MOOD vs. MUSCL

    MOOD basic detectors

    - Aim: determine if is eligible (physically ok, no spurious oscillations)

    Physical Admissible Detector:

    (PAD)

    Maximum Principle Detector:

    (MPD)

    Extrema Detector:

    (ED)

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 14

    iU

    0ih

    1 1 1 1min( , , ) max( , , )n n n n n n

    i i ii i i i

    1 1 1 1min( , ) max( , )ii i i i

  • - MOOD vs. MUSCL

    MOOD relaxation detectors

    - Aim: distinguish real (smooth) extrema from extrema caused by local

    spurious oscillations (Gibbs phenomenon)

    Local curvature indicator

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 15

    1 11 2 12

    2, , 12

    ( ) , ; ( ) ( ), ( ) ( ).( )

    ii ii I Ii IC C C C C

    x

    max,1 1 1 1min,

    max, max,min, min,

    2, , 1min( , , ), max( , , ), .

    ( ), ( ).

    i i ii i i ii

    i ii i

    i IC C C C C C

  • - MOOD vs. MUSCL

    MOOD relaxation detectors

    Small Curvature Detector:

    (SCD)

    numerical solution is locally linear

    Local Oscillation Detector:

    (LOD)

    local oscillation due to variation of curvature sign

    Smoothness Detector:

    (SD)

    numerical solution is locally smooth

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 16

    max,min,max(| |, | |) .i Ci

    max,min,0.ii

    max,min,

    max,min,

    min(| |, | |)1 .

    max(| |, | |)

    iiS

    ii

  • - MOOD vs. MUSCL

    MOOD detector algorithm

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 17

    PAD

    U

    ED

    SCD

    LOD

    SD

    0CPD

    1CPD

    no

    yes

    no

    yes

    1CPD

    yes

    no

    0CPD

    noyes

    no

    0CPD

    1CPD yes

  • - Numerical results

    General aspects

    Time scheme: Conservative flux scheme:

    Meshes: Dry/wet threshold:

    MUSCL limiter procedure: MOOD limiter procedure:

    Convergence assessment:

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 18

    TVD-RK2, 0.4CFL

    ic x

    HLL

    , ,h hu h

    610

    3with , ; 0.5C sx L

    1

    1

    1- error: , - error: max N ex N ex

    I

    i i i iii

    L LI

  • - Numerical results

    LAKE AT REST

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 19

    Meshes: cells; up to time steps. 50,100, 200 1 22 15T

    15 141

    C -property satisfie- error - error d10 , 10L L

  • - Numerical results

    SMOOTH SOLUTION (steady-state supercritical flow)

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 20

    2

    Meshes: cells; . 100, ,1600 10 ( ) 0.2exp( 5( 4) ); T b x x

    (0) 2

    ( , ) 13.29q x t

    detector only oMUSCL MOn deteO ct r.D o; h

  • - Numerical results

    SMOOTH SOLUTION (steady-state supercritical flow)

    MUSCL

    MOOD

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 21

  • - Numerical results

    DAM BREAK ON A WET BED

    MOOD MUSCL

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 22

    Mesh: cells;5, 0 25,

    100 3; ( ,0)1, 25 50.

    xT x

    x

  • - Numerical results

    DAM BREAK ON A WET BED

    MOOD MUSCL

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 23

  • - Numerical results

    DAM BREAK ON A WET BED

    MOOD MUSCL

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 24

  • - Numerical results

    DAM BREAK ON A WET BED

    MOOD:

    MUSCL:

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 25

    1

    Overall convergence:

    err ( )C x

    0.037

    0.072u

    C

    C

    0.055

    0.107u

    C

    C

  • - Numerical results

    DRY/WET SIMULATION (smooth bathymetry)

    MOOD MUSCL

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 26

    Mesh: cells; . 100 1.5T

    cells10000

    st1 -order

  • - Numerical results

    DRY/WET SIMULATION (smooth bathymetry)

    MOOD MUSCL

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 27

    Mesh: cells; . 100 1.5T

    cells10000

    st1 -order

  • - Numerical results

    DRY/WET SIMULATION (discontinuous bathymetry)

    MOOD MUSCL

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 28

    Mesh: cells; . 100 2.75T

    cells10000

    st1 -orderMOOD involves and !h u

  • - Numerical results

    DRY/WET SIMULATION (discontinuous bathymetry)

    MOOD MUSCL

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 29

    Mesh: cells; . 100 2.75T cells10000

    st1 -order

  • - Conclusions and future work

    • We performed comparisons between the 2nd-order MOOD and the MUSCL methods for the non-linear shallow water system with varying bathymetry.

    • Both methods comply with the C-property, but the MOOD method is less

    diffusive than the MUSCL method (shock, rarefaction propagation), and

    is more accurate when dealing with smooth solutions.

    • Dry/wet interfaces with smooth/discontinuous bathymetry are reasonably well handled by MOOD technique (better velocity / kinetic energy estimates).

    • Still, new detectors and schemes have to be proposed to improve the treatment of wet/dry interfaces (location, height and velocity profiles).

    MOOD vs. MUSCL for the dry/wet SW problem

    SHARK-FV 2015, 18-22 May, Ofir J. Figueiredo, S. Clain 30