a hierarchical volumetric shadow algorithm for single scattering ilya baran, jiawen chen, jonathan...

Download A Hierarchical Volumetric Shadow Algorithm for Single Scattering Ilya Baran, Jiawen Chen, Jonathan Ragan-Kelley, Frédo Durand, Jaakko Lehtinen Computer

If you can't read please download the document

Upload: kathleen-campbell

Post on 18-Dec-2015

224 views

Category:

Documents


2 download

TRANSCRIPT

  • Slide 1
  • A Hierarchical Volumetric Shadow Algorithm for Single Scattering Ilya Baran, Jiawen Chen, Jonathan Ragan-Kelley, Frdo Durand, Jaakko Lehtinen Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology
  • Slide 2
  • Volumetric scattering with shadows Photo by Frdo Durand
  • Slide 3
  • Alan Wake by Remedy Entertainment
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Related work Ray marching (brute force) Analytical scattering models Sky lighting, bloom, etc. Doesnt account for visibility Sun et al. [2005]
  • Slide 9
  • Shadow volume methods Max [1986] Analytical integration Wyman and Ramsey [2008] Ray marching along intervals
  • Slide 10
  • Related work Engelhardt and Dachsbacher [2010] Detect discontinuities, subsample and interpolate Performance depends on occluder complexity Epipolar geometry Detected discontinuties Engelhardt and Dachsbacher [2010]
  • Slide 11
  • Overview Incremental integration Approximating single scattering Epipolar rectification ~
  • Slide 12
  • Simplified scenario Orthographic camera Light direction perpendicular to view direction Visibility only
  • Slide 13
  • r d
  • Slide 14
  • Slide 15
  • 7 5 Brute force complexity: O(rd) 1
  • Slide 16
  • 7 5 5 1
  • Slide 17
  • 1111111 Bit mask Process top down incrementally
  • Slide 18
  • 7 1111111 Bit mask
  • Slide 19
  • 7 1 1111111
  • Slide 20
  • 7 1 1111111
  • Slide 21
  • 7 1 1001111
  • Slide 22
  • 7 1 5 1001111
  • Slide 23
  • 7 1 5 Bit mask algorithm complexity: O(rd) 5 2 2 3 1001111 Bit mask
  • Slide 24
  • Partial sum trees Binary tree Each node stores sum of children 4 22 2011 11001010
  • Slide 25
  • Tree update 4 22 2011 11000010
  • Slide 26
  • 4 22 2001 11000010
  • Slide 27
  • 4 21 2001 11000010
  • Slide 28
  • 3 21 2001 11000010
  • Slide 29
  • Tree query 3 2 1 2001 11000010 = 3
  • Slide 30
  • Complexity 2D Brute force: O(rd) Incremental with bit mask: O(rd) Incremental with tree: O( (r+d) log d ) 3D: s independent slices Brute force: O(srd) Incremental with tree: O( s (r+d) log d )
  • Slide 31
  • Textured lights 0.80.10.50.30.210.8 Light texture 1 0.9 0.8 0.6 0.5 0.4 0.3 Light attenuation
  • Slide 32
  • SVD approximation ~ AUSV T = + + +
  • Slide 33
  • Epipolar rectification Light direction Epipolar slices Eye
  • Slide 34
  • Epipolar coordinates Point light Directional light
  • Slide 35
  • Depth map resampling Camera depth map Light depth map Rectify Corresponding epipolar slice
  • Slide 36
  • 9.9 sec (17.1x)169 sec Equal quality comparison: Sibenik Our methodRay marching
  • Slide 37
  • Our methodRay marching Equal quality comparison: Terrain 1.3 sec (41.5x)54 sec
  • Slide 38
  • Equal quality comparisons: Trees Our methodRay marching 2.3 sec (120.4x)277 sec
  • Slide 39
  • Slide 40
  • GPU Performance on Sibenik
  • Slide 41
  • GPU Performance on Trees
  • Slide 42
  • Limitations and future work Non-homogeneous media All points in volume must be visited SVD will have high rank GPU performance Dynamic data structure: limited parallelism Bandwidth intensive Requires CUDA, not suitable for consoles
  • Slide 43
  • Summary Hierarchical volumetric shadow algorithm with complexity guarantees Significant speedups on CPUs Moderately faster than state-of-the art on GPUs
  • Slide 44
  • GPU Performance on Sibenik