a loomis-sikorski theorem and functional calculus for a … · 2017-07-10 · a loomis-sikorski...

23
A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra D. Foulis, A. Jen ˇ cov ´ a, S. Pulmannov ´ a A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra

Upload: others

Post on 12-Mar-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

A Loomis-Sikorski theorem andfunctional calculus for a

generalized Hermitian algebraD. Foulis, A. Jencova, S. Pulmannova

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra

Page 2: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

introductionGH-algebras – special case ofsynaptic algebras(Foulis, 2010) – unite the notions ofan order-unit normed space,a special Jordan algebra,convex effect algebraand an orthomodular lattice.

Examples: self-adjoint part of a von Neumannalgebra, AW*-algebra, Rickart C*-algebra;JW-algebra, JB-algebra.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra

Page 3: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

outlineLoomis-Sikorski (LS) theoremB — Booleanσ-algebra(X,Σ) — X – Stone space forB,Σ — σ-algebra of Baire subsets ofX,h : Σ → B — surjectiveσ-homomorphism.Generalization for aσ-MV-algebraM Mundici 1999,Dvurecenskij, 2000:(X, T , h),X – Stone space for the maximal Booleansubalgebra ofM ,T — tribe of functionsf : X → [0, 1],h : T →M — surjectiveσ-homomorphism.

We will present a version of LS-theorem for acommutative GH-algebra and its application in afunctional calculus.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra

Page 4: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

synaptic algebraR – a linear associative algebra with unit element1.A – a vector subspace ofR, 1 ∈ A, partially orderedwith positive coneA+.a, b ∈ A ab taken inR need not belong toA.aCb meansab = ba, theab ∈ A.ForB ⊆ A, C(B) = {a ∈ A : aCb ∀b ∈ B} - thecommutantof B.C(A) -thecenterof A.CC(B) = C(C(B)) - thedouble commutantofB ⊆ A.

The vector subspaceA of R is asynaptic algebraiffthe following conditions hold.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra

Page 5: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

axioms of SA(SA1) With1 as order-unit,A is an order-unit space with norm

|| . ||.

(SA2)a ∈ A =⇒ a2 ∈ A+.

(SA3)a, b ∈ A+ =⇒ aba ∈ A+.

(SA4)a ∈ A, b ∈ A+, aba = 0 =⇒ ab = ba = 0.

(SA5)a ∈ A+ =⇒ ∃ a1

2 ∈ A+ ∩ CC(a) such that(a1

2 )2 = a.

(SA6)∀a ∈ A∃ ao ∈ A with (ao)2 = ao and∀b ∈ A,

ab = 0 ⇐⇒ aob = 0.

(SA7)1 ≤ a =⇒ ∃ a−1 ∈ A with aa−1 = a−1a = 1.

(SA8) If a, b ∈ A, a1 ≤ a2 ≤ · · · are pairwise commuting

elements ofC(b) andlimn→∞ || a− an ||= 0, thena ∈ C(b).

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra

Page 6: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

axioms 1,2,3,4AssumeA is synaptic algebra, non-degenerate, i.e.,0 6= 1. So we may identifyλ ∈ R with λ1.• A – order unit space,A+ := {a ∈ A : 0 ≤ a}, 1 isan order-unit:∀a ∈ A,∃λ > 0 : a ≤ λ.A is archimedean, i.e.na ≤ b ∀n ∈ N impliesa ≤ 0,with the norm|| a ||:= inf{0 ≤ λ ∈ R : −λ ≤ a ≤ λ}.

• If a ∈ A then0 ≤ a2 ∈ A, thusA is a special Jordanalgebra under the Jordan producta ◦ b := 1

2((a+ b)2 − a2 − b2) = 12(ab+ ba).

• aba = 2a ◦ (a ◦ b)− a2 ◦ b ∈ A; b 7→ aba is linearand order preserving mapping.• a ∈ A, b ∈ A+, aba = 0 =⇒ ab = ba = 0; withb = 1: a2 = 0 =⇒ a = 0.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra

Page 7: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

axioms 5,6,7,8• ∀a ∈ A+, square roota1/2 ∈ A+ ∩ CC(a) – theunique element such that(a1/2)2 = a.| a |:= (a2)1/2 ∈ CC(a), a+ := 1

2(| a | +a),a− := 1

2(| a | −a), a = a+ − a−.

• ∀a ∈ A, carrier projectionao ∈ CC(a) – the uniquep ∈ A such thatp2 = p and,∀b ∈ A,ab = 0 ⇔ pb = 0.| a |o= ao, (an)o = ao,∀n ∈ N.• a ≥ 1 =⇒ a is invertible witha−1 ∈ CC(a); a isinvertible iff | a |≥ ǫ, ǫ > 0.• ∀a ∈ A, C(a) is norm-closed.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra

Page 8: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

effects and projections• E := {e ∈ A : 0 ≤ e ≤ 1} is the set ofeffectsin A.For e, f ∈ E, define:e⊕ f is defined iffe+ f ∈ E,and thene⊕ f = e+ f .Then(E;⊕, 0, 1) is a convex effect algebra with theordering inherited fromA.• P := {p ∈ A : p2 = p} is the set ofprojectionsin A.• P is an OML,0 ≤ a ≤ 1 for all a ∈ P ,orthocomplementationp 7→ p⊥ = 1− p .Let p, q ∈ P . Thenp andq are• orthogonal(p ⊥ q) iff p ≤ q⊥ iff pq = 0.• (Mackey)compatible(p↔ q) iffp = (p ∧ q) ∨ (p ∧ q⊥), p↔ q⇐⇒ pCq.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra

Page 9: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

symmetry, polar decompositionIf a ∈ E, thenao is the smallest projectionp ∈ Psuch thata ≤ p.s ∈ A is asymmetryiff s2 = 1.−1 ≤ s ≤ 1, ||s|| = 1.

• If s is a symmetry, thens+12 is a projection.

If p is a projection, thens = p− p⊥ is a symmetry.• polar decomposition ofa:a = |a|u = u|a|, |a| = ua = au, u a symmetry,u ∈ CC(a).

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra

Page 10: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

spectral resolution• ∀a ∈ A, spectral resolution(pa,λ : λ ∈ R) ⊆ CC(a),

pa,λ := 1− ((a− λ)+)o,

L := sup{λ : pa,λ = 0}, U := inf{λ : pa,λ = 1},

a =

∫ U

L−0

λdpa,λ

• a, b ∈ A, aCb ⇔ pa,λCpb,µ ∀λ, µ ∈ R.

• Thespectrumof a ∈ A:spec(a) := {λ ∈ R : a− λ is not invertible}.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra –

Page 11: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

GH-algebra• A synaptic algebraA is a GH-algebra iffa1 ≤ a2 ≤ · · · ≤ b, anCan+1 =⇒ ∃ a ∈ A: an ր a.Thena ∈ CC((an)n∈N).

• A1, A2 – synaptic algebras. A linear mappingφ : A1 → A2 is asynaptic morphismiff:

(1) φ(1) = 1. (2) φ(a2) = φ(a)2.

(3) aCb⇒ φ(a)Cφ(b). (4) φ(ao) = φ(a)o.

• A1, A2 — GH-algebras. A synaptic morphismφ : A1 → A2 is aGH-algebra morphismiff(an)n∈N ⊆ A, anCan+1 (n ∈ N),

(5)an ր a =⇒ φ(an) ր φ(a)A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra –

Page 12: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

commutative GH-algebra• A – synaptic algebra. TFAE:

(i) A is commutative.

(ii) A is lattice ordered, hence an order unit normedvector lattice.

(iii) E is an MV-(effect) algebra.

(iv) P is a Boolean algebra.

• A commutative synaptic algebra is a GH-algebra iffA is monotoneσ-complete.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra –

Page 13: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

representation theorem• A — commutative GH-algebra;X — basically disconnected Stone space of theσ-complete Boolean algebraP . Then:

(1) C(X,R) is a commutative GH-algebra;

(2) ∃ GH-isomorphismΨ : A→ C(X,R);

(3) ψ := Ψ/P to P — Boolean isomorphism ofPontoP (X,R) (clopen subsets; Stone’s theorem).

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra –

Page 14: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

statesA – synaptic algebra. AstateonA – positive linearfunctionalρ : A→ R with ρ(1) = 1.S(A) — state space ofA,Ext(S(A)) — extremal states onA.• A-commutative GH—algebra,X—Stone space ofP ,Ψ : A→ C(X,R) – GH-algebra isomorphism.• ρ ∈ S(A) is extremal iffρ : A→ R is a latticehomomorphism iffρ(ab) = ρ(a)ρ(b), a, b ∈ A.• There is a bijective correspondencex↔ ρx,x ∈ X, ρx ∈ Ext(S(A)) such thatρx(a) = Ψ(a)(x).Denotea := Ψ(a); thenx(a) = a(x) ∀x ∈ X.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra –

Page 15: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

gh-tribe• A gh-tribe is a setT ⊆ R

X such that:

(1) ∀f ∈ T ∃α, β ∈ R: α ≤ f ≤ β.(2) 0, 1 ∈ T .(3) f, g ∈ T =⇒ f + g ∈ T .(4) α ∈ R, f ∈ T =⇒ αf ∈ T(5) (fn)n∈N, f ⊆ T , fn ≤ f, n ∈ N

=⇒ supn fn ∈ T .

• T is a commutative GH-algebra consisting ofbounded functions with poinwise operations.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra –

Page 16: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

integral theoremT ⊆ R

X — gh-tribe;• B(T ) := {D ⊆ X : χD ∈ T } – σ-field of sets.(1) ∀f ∈ T isB(T )-measurable.(2) ∀ σ-additive stateρ onT ,

ρ(f) =

∫X

f(x)µ(dx),

µ(D) := ρ(χD),D ∈ B(T ).

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra –

Page 17: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

LS theorem• Loomis-Sikorski theorem:A — commutative GH-algebra,X — basically disconnected Stone space ofP .=⇒• ∃ gh-tribe(X, T ) such thatC(X,R) ⊆ T ,

• ∃ surjective GH-algebra morphismh : T → A.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra –

Page 18: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

sketch of proofT — gh-tribe of functionsf : X → R generated byC(X,R).X = ExtS(A), ∃Ψ : A→ C(X,R) – isomorphism,Ψ(a) = a ∈ C(X,R), a(x) = x(a).DefineN(f) := {x ∈ X : f(x) 6= 0}, andf ∼ g iffN(f − g) is a meager subset ofX, f, g ∈ T .Then∼ is an equivalence relation, and∀f ∈ T∃!a ∈ C(X,R) with f ∼ a.Puth(f) := a iff f ∼ a. Thenh : T → A is aGH-algebra morphism.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra –

Page 19: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

observables on σ-OMLsL — σ-OML,B(R) – σ-algebra of Borel subsete ofR.• A (real) observableis ξ : B(R) → L such that(i) ξ(R) = 1;(ii) C ∩D = ∅ =⇒ ξ(C ∪D) = ξ(C) ∨ ξ(D);(iii) Dn ր D =⇒ ξ(Dn) ր ξ(D).ρ – σ-additive state onL =⇒ ρ ◦ ξ : B(R) → [0, 1] isthedistributionof ξ in ρ.ρ(ξ) :=

∫Rλρ(ξ(dλ)) – theexpectationof ξ in ρ.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra –

Page 20: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

observables on GHA(X, T , h) —- Loomis-Sikorski representation ofCC(a);∀b ∈ CC(a), ∃fb ∈ T : h(fb) = b.

Defineξb : B(R) → P ,

ξb(D) = h(χf−1

b(D)), D ∈ B(R).

• ξb is a real observable onP , independent on thechoice offb.

• ξb is the unique real observable onP such that

ξb((−∞, λ]) = pb,λ, λ ∈ R.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra –

Page 21: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

functional calculus• ρ — σ-additive state onA,

ρ(a) =

∫R

λ(ρ(ξa(dλ)), a ∈ A.

f ∈ C((spec(a),R), g := Ψ(a) ∈ C(X,R).spec(a) = {g(x) : x ∈ X} =⇒ f ◦ g ∈ C(X,R).

• Definef(a) ∈ CC(a) by f(a) := Ψ−1(f ◦ g).

f(a) =

∫ Ua

La−0

f(λ)dpa,λ.

ρ(f(a)) =

∫R

f(λ)ρ(ξa(dλ)).

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra –

Page 22: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

References[1] E.M. Alfsen: Compact Convex Sets and Boundary Integrals, Springer-Verlag,

Heidelberg, New York, 1971.

45 (2005), 371–388.

[2] D. Butnariu, E.P. Klement: Triangular norm-based measures and their Markov

kernel representation, J. Math. Anal. Appl.162 (1991) 111–143.

[3] A. Dvurecenskij: Loomis-Sikorski theorem forσ-complete MV-algebras and

ℓ-groups, J. Austral. Math. Soc.Ser. A 68 (2000) 261-277.

[4] D.J. Foulis: Synaptic algebras, Math. Slovaca60 (2010) 631–654.

[5] Foulis, D.J., Jencová, A. Pulmannová,S.: Loomis-Sikorski theorem for a

generalized Hermitian algebra and the functional calculus, Rep. Math. Phys., to

appear.

[6] D.J. Foulis, M.K. Bennett: Effect algebras and unsharp quantum logics, Found.

Phys.24 (1994) 1331–1352.

[7] D.J. Foulis, S. Pulmannová: Generalized Hermitian algebras, Internat. J.

Theoret. Phys.48 (2009) 1320–1333.A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra –

Page 23: A Loomis-Sikorski theorem and functional calculus for a … · 2017-07-10 · A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra axioms 5,6,7,8

References[1] D.J. Foulis, S. Pulmannová: Regular elements in generalized Hermitian

algebra, Math. Slovaca61 (2011) 155–172.

[2] D.J. Foulis, A. Jencová, S. Pulmannová: States and synaptic algebras, Rep.

Math. Phys., to appear, ArXiv:1606.08229[math-ph].

[3] D.J. Foulis, A. Jencová, S. Pulmannová: Vector lattices in synaptic algebras,to

appear, ArXiv:1605.06987[math.RA].

[4] S. Gudder, E. Beltrametti, S. Bugajski, S. Pulmannová: Convex and linear

effect algebras, Rep. Math. Phys.44 (1999) 359–379.

[5] D. Mundici: Tensor product and the Loomis-Sikorski theorem for

MV-algebras, Adv. Appl. Math.22 (1999) 227–248.

[6] P. Pták, S. Pulmannová: Orthomodular Structures as Quantum Logics, Kluwer,

Dordrecht, 1991.

[7] V.S. Varadarajan: Geometry of Quantum Theory, Springer-Verlag, New

York-Berlin, 1985.

A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra –