a matrix expander chernoff boundnikhil/mchernoff.pdfĀ Ā· ankit garg, yin tat lee, zhao song, nikhil...

61
A Matrix Expander Chernoff Bound Ankit Garg, Yin Tat Lee, Zhao Song, Nikhil Srivastava UC Berkeley

Upload: others

Post on 07-Feb-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

  • A Matrix Expander Chernoff Bound

    Ankit Garg, Yin Tat Lee, Zhao Song, Nikhil Srivastava

    UC Berkeley

  • Vanilla Chernoff Bound

    Thm [Hoeffding, Chernoff]. If š‘‹1, ā€¦ , š‘‹š‘˜ are independent mean zerorandom variables with š‘‹š‘– ā‰¤ 1 then

    ā„™1

    š‘˜

    š‘–

    š‘‹š‘– ā‰„ šœ– ā‰¤ 2exp(āˆ’š‘˜šœ–2/4)

  • Vanilla Chernoff Bound

    Thm [Hoeffding, Chernoff]. If š‘‹1, ā€¦ , š‘‹š‘˜ are independent mean zerorandom variables with š‘‹š‘– ā‰¤ 1 then

    ā„™1

    š‘˜

    š‘–

    š‘‹š‘– ā‰„ šœ– ā‰¤ 2exp(āˆ’š‘˜šœ–2/4)

    Two Extensions:1.Dependent Random Variables2.Sums of random matrices

  • Expander Chernoff Bound [AKSā€™87, Gā€™94]

    Thm[Gillmanā€™94]: Suppose šŗ = (š‘‰, šø) is a regular graph with transition matrix š‘ƒ which has second eigenvalue šœ†. Let š‘“: š‘‰ ā†’ ā„be a function with š‘“ š‘£ ā‰¤ 1 and Ļƒš‘£ š‘“ š‘£ = 0.

  • Expander Chernoff Bound [AKSā€™87, Gā€™94]

    Thm[Gillmanā€™94]: Suppose šŗ = (š‘‰, šø) is a regular graph with transition matrix š‘ƒ which has second eigenvalue šœ†. Let š‘“: š‘‰ ā†’ ā„be a function with š‘“ š‘£ ā‰¤ 1 and Ļƒš‘£ š‘“ š‘£ = 0.Then, if š‘£1, ā€¦ , š‘£š‘˜ is a stationary random walk:

    ā„™1

    š‘˜

    š‘–

    š‘“(š‘£š‘–) ā‰„ šœ– ā‰¤ 2exp(āˆ’š‘(1 āˆ’ šœ†)š‘˜šœ–2)

    Implies walk of length š‘˜ ā‰ˆ 1 āˆ’ šœ† āˆ’1 concentrates around mean.

  • Intuition for Dependence on Spectral Gap

    š‘“ = +1 š‘“ = āˆ’1

    1 āˆ’ šœ† =1

    š‘›2

  • Intuition for Dependence on Spectral Gap

    1 āˆ’ šœ† =1

    š‘›2

    Typical random walk takes Ī© š‘›2 steps to see both Ā±1.

  • Derandomization Motivation

    Thm[Gillmanā€™94]: Suppose šŗ = (š‘‰, šø) is a regular graph with transition matrix š‘ƒ which has second eigenvalue šœ†. Let š‘“: š‘‰ ā†’ ā„be a function with š‘“ š‘£ ā‰¤ 1 and Ļƒš‘£ š‘“ š‘£ = 0.Then, if š‘£1, ā€¦ , š‘£š‘˜ is a stationary random walk:

    ā„™1

    š‘˜

    š‘–

    š‘“(š‘£š‘–) ā‰„ šœ– ā‰¤ 2exp(āˆ’š‘(1 āˆ’ šœ†)š‘˜šœ–2)

    To generate š‘˜ indep samples from [š‘›] need š‘˜ log š‘› bits.If šŗ is 3 āˆ’regular with constant šœ†, walk needs: log š‘› + š‘˜ log(3) bits.

  • Derandomization Motivation

    Thm[Gillmanā€™94]: Suppose šŗ = (š‘‰, šø) is a regular graph with transition matrix š‘ƒ which has second eigenvalue šœ†. Let š‘“: š‘‰ ā†’ ā„be a function with š‘“ š‘£ ā‰¤ 1 and Ļƒš‘£ š‘“ š‘£ = 0.Then, if š‘£1, ā€¦ , š‘£š‘˜ is a stationary random walk:

    ā„™1

    š‘˜

    š‘–

    š‘“(š‘£š‘–) ā‰„ šœ– ā‰¤ 2exp(āˆ’š‘(1 āˆ’ šœ†)š‘˜šœ–2)

    To generate š‘˜ indep samples from [š‘›] need š‘˜ log š‘› bits.If šŗ is 3 āˆ’regular with constant šœ†, walk needs: log š‘› + š‘˜ log(3) bits.

    When š‘˜ = š‘‚(log š‘›) reduces randomness quadratically. Can completely derandomize in polynomial time.

  • Matrix Chernoff Bound

    Thm [Rudelsonā€™97, Ahlswede-Winterā€™02, Oliveiraā€™08, Troppā€™11ā€¦]. If š‘‹1, ā€¦ , š‘‹š‘˜ are independent mean zero random š‘‘ Ɨ š‘‘ Hermitianmatrices with | š‘‹š‘– | ā‰¤ 1 then

    ā„™1

    š‘˜

    š‘–

    š‘‹š‘– ā‰„ šœ– ā‰¤ 2š‘‘exp(āˆ’š‘˜šœ–2/4)

  • Matrix Chernoff Bound

    Thm [Rudelsonā€™97, Ahlswede-Winterā€™02, Oliveiraā€™08, Troppā€™11ā€¦]. If š‘‹1, ā€¦ , š‘‹š‘˜ are independent mean zero random š‘‘ Ɨ š‘‘ Hermitianmatrices with | š‘‹š‘– | ā‰¤ 1 then

    ā„™1

    š‘˜

    š‘–

    š‘‹š‘– ā‰„ šœ– ā‰¤ 2š‘‘exp(āˆ’š‘˜šœ–2/4)

    Very generic bound (no independence assumptions on the entries).Many applications + martingale extensions (see Tropp).

    Factor š‘‘ is tight because of the diagonal case.

  • Matrix Expander Chernoff Bound?

    Conj[Wigderson-Xiaoā€™05]: Suppose šŗ = (š‘‰, šø) is a regular graph with transition matrix š‘ƒ which has second eigenvalue šœ†. Let š‘“: š‘‰ ā†’ ā„‚š‘‘Ć—š‘‘ be a function with | š‘“ š‘£ | ā‰¤ 1 and Ļƒš‘£ š‘“ š‘£ = 0.Then, if š‘£1, ā€¦ , š‘£š‘˜ is a stationary random walk:

    ā„™1

    š‘˜

    š‘–

    š‘“(š‘£š‘–) ā‰„ šœ– ā‰¤ 2š‘‘exp(āˆ’š‘(1 āˆ’ šœ†)š‘˜šœ–2)

    Motivated by derandomized Alon-Roichman theorem.

  • Main Theorem

    Thm. Suppose šŗ = (š‘‰, šø) is a regular graph with transition matrix š‘ƒ which has second eigenvalue šœ†. Let š‘“: š‘‰ ā†’ ā„‚š‘‘Ć—š‘‘ be a function with | š‘“ š‘£ | ā‰¤ 1 and Ļƒš‘£ š‘“ š‘£ = 0.Then, if š‘£1, ā€¦ , š‘£š‘˜ is a stationary random walk:

    ā„™1

    š‘˜

    š‘–

    š‘“(š‘£š‘–) ā‰„ šœ– ā‰¤ 2š‘‘exp(āˆ’š‘(1 āˆ’ šœ†)š‘˜šœ–2)

    Gives black-box derandomization of any application of matrix Chernoff

  • 1. Proof of Chernoff: reduction to mgf

    Thm [Hoeffding, Chernoff]. If š‘‹1, ā€¦ , š‘‹š‘˜ are independent mean zerorandom variables with š‘‹š‘– ā‰¤ 1 then

    ā„™1

    š‘˜

    š‘–

    š‘‹š‘– ā‰„ šœ– ā‰¤ 2exp(āˆ’š‘˜šœ–2/4)

    ā„™

    š‘–

    š‘‹š‘– ā‰„ š‘˜šœ– ā‰¤ š‘’āˆ’š‘”š‘˜šœ–š”¼ exp š‘”

    š‘–

    š‘‹š‘– = š‘’āˆ’š‘”š‘˜šœ–ą·‘

    š‘–

    š”¼š‘’š‘”š‘‹š‘–

    ā‰¤ š‘’āˆ’š‘”š‘˜šœ– 1 + š‘”š”¼š‘‹š‘– + š‘”2 š‘˜ ā‰¤ š‘’āˆ’š‘”š‘˜šœ–+š‘˜š‘”

    2ā‰¤ eāˆ’

    š‘˜šœ–2

    4

  • 1. Proof of Chernoff: reduction to mgf

    Thm [Hoeffding, Chernoff]. If š‘‹1, ā€¦ , š‘‹š‘˜ are independent mean zerorandom variables with š‘‹š‘– ā‰¤ 1 then

    ā„™1

    š‘˜

    š‘–

    š‘‹š‘– ā‰„ šœ– ā‰¤ 2exp(āˆ’š‘˜šœ–2/4)

    ā„™

    š‘–

    š‘‹š‘– ā‰„ š‘˜šœ– ā‰¤ š‘’āˆ’š‘”š‘˜šœ–š”¼ exp š‘”

    š‘–

    š‘‹š‘– = š‘’āˆ’š‘”š‘˜šœ–ą·‘

    š‘–

    š”¼š‘’š‘”š‘‹š‘–

    ā‰¤ š‘’āˆ’š‘”š‘˜šœ– 1 + š‘”š”¼š‘‹š‘– + š‘”2 š‘˜ ā‰¤ š‘’āˆ’š‘”š‘˜šœ–+š‘˜š‘”

    2ā‰¤ eāˆ’

    š‘˜šœ–2

    4

    Markov

  • 1. Proof of Chernoff: reduction to mgf

    Thm [Hoeffding, Chernoff]. If š‘‹1, ā€¦ , š‘‹š‘˜ are independent mean zerorandom variables with š‘‹š‘– ā‰¤ 1 then

    ā„™1

    š‘˜

    š‘–

    š‘‹š‘– ā‰„ šœ– ā‰¤ 2exp(āˆ’š‘˜šœ–2/4)

    ā„™

    š‘–

    š‘‹š‘– ā‰„ š‘˜šœ– ā‰¤ š‘’āˆ’š‘”š‘˜šœ–š”¼ exp š‘”

    š‘–

    š‘‹š‘– = š‘’āˆ’š‘”š‘˜šœ–ą·‘

    š‘–

    š”¼š‘’š‘”š‘‹š‘–

    ā‰¤ š‘’āˆ’š‘”š‘˜šœ– 1 + š‘”š”¼š‘‹š‘– + š‘”2 š‘˜ ā‰¤ š‘’āˆ’š‘”š‘˜šœ–+š‘˜š‘”

    2ā‰¤ eāˆ’

    š‘˜šœ–2

    4

    Indep.

  • 1. Proof of Chernoff: reduction to mgf

    Thm [Hoeffding, Chernoff]. If š‘‹1, ā€¦ , š‘‹š‘˜ are independent mean zerorandom variables with š‘‹š‘– ā‰¤ 1 then

    ā„™1

    š‘˜

    š‘–

    š‘‹š‘– ā‰„ šœ– ā‰¤ 2exp(āˆ’š‘˜šœ–2/4)

    ā„™

    š‘–

    š‘‹š‘– ā‰„ š‘˜šœ– ā‰¤ š‘’āˆ’š‘”š‘˜šœ–š”¼ exp š‘”

    š‘–

    š‘‹š‘– = š‘’āˆ’š‘”š‘˜šœ–ą·‘

    š‘–

    š”¼š‘’š‘”š‘‹š‘–

    ā‰¤ š‘’āˆ’š‘”š‘˜šœ– 1 + š‘”š”¼š‘‹š‘– + š‘”2 š‘˜ ā‰¤ š‘’āˆ’š‘”š‘˜šœ–+š‘˜š‘”

    2ā‰¤ eāˆ’

    š‘˜šœ–2

    4

    Bounded

  • 1. Proof of Chernoff: reduction to mgf

    Thm [Hoeffding, Chernoff]. If š‘‹1, ā€¦ , š‘‹š‘˜ are independent mean zerorandom variables with š‘‹š‘– ā‰¤ 1 then

    ā„™1

    š‘˜

    š‘–

    š‘‹š‘– ā‰„ šœ– ā‰¤ 2exp(āˆ’š‘˜šœ–2/4)

    ā„™

    š‘–

    š‘‹š‘– ā‰„ š‘˜šœ– ā‰¤ š‘’āˆ’š‘”š‘˜šœ–š”¼ exp š‘”

    š‘–

    š‘‹š‘– = š‘’āˆ’š‘”š‘˜šœ–ą·‘

    š‘–

    š”¼š‘’š‘”š‘‹š‘–

    ā‰¤ š‘’āˆ’š‘”š‘˜šœ– 1 + š‘”š”¼š‘‹š‘– + š‘”2 š‘˜ ā‰¤ š‘’āˆ’š‘”š‘˜šœ–+š‘˜š‘”

    2ā‰¤ eāˆ’

    š‘˜šœ–2

    4

    Mean zero

  • 1. Proof of Chernoff: reduction to mgf

    Thm [Hoeffding, Chernoff]. If š‘‹1, ā€¦ , š‘‹š‘˜ are independent mean zerorandom variables with š‘‹š‘– ā‰¤ 1 then

    ā„™1

    š‘˜

    š‘–

    š‘‹š‘– ā‰„ šœ– ā‰¤ 2exp(āˆ’š‘˜šœ–2/4)

    ā„™

    š‘–

    š‘‹š‘– ā‰„ š‘˜šœ– ā‰¤ š‘’āˆ’š‘”š‘˜šœ–š”¼ exp š‘”

    š‘–

    š‘‹š‘– = š‘’āˆ’š‘”š‘˜šœ–ą·‘

    š‘–

    š”¼š‘’š‘”š‘‹š‘–

    ā‰¤ š‘’āˆ’š‘”š‘˜šœ– 1 + š‘”š”¼š‘‹š‘– + š‘”2 š‘˜ ā‰¤ š‘’āˆ’š‘”š‘˜šœ–+š‘˜š‘”

    2ā‰¤ eāˆ’

    š‘˜šœ–2

    4

  • 1. Proof of Chernoff: reduction to mgf

    Thm [Hoeffding, Chernoff]. If š‘‹1, ā€¦ , š‘‹š‘˜ are independent mean zerorandom variables with š‘‹š‘– ā‰¤ 1 then

    ā„™1

    š‘˜

    š‘–

    š‘‹š‘– ā‰„ šœ– ā‰¤ 2exp(āˆ’š‘˜šœ–2/4)

    ā„™

    š‘–

    š‘‹š‘– ā‰„ š‘˜šœ– ā‰¤ š‘’āˆ’š‘”š‘˜šœ–š”¼ exp š‘”

    š‘–

    š‘‹š‘– = š‘’āˆ’š‘”š‘˜šœ–ą·‘

    š‘–

    š”¼š‘’š‘”š‘‹š‘–

    ā‰¤ š‘’āˆ’š‘”š‘˜šœ– 1 + š‘”š”¼š‘‹š‘– + š‘”2 š‘˜ ā‰¤ š‘’āˆ’š‘”š‘˜šœ–+š‘˜š‘”

    2ā‰¤ eāˆ’

    š‘˜šœ–2

    4

  • 2. Proof of Expander Chernoff

    Goal: Show š”¼exp š‘” Ļƒš‘– š‘“ š‘£š‘– ā‰¤ exp š‘šœ†š‘˜š‘”2

  • 2. Proof of Expander Chernoff

    Goal: Show š”¼exp š‘” Ļƒš‘– š‘“ š‘£š‘– ā‰¤ exp š‘šœ†š‘˜š‘”2

    Issue: š”¼exp Ļƒš‘– š‘“ š‘£š‘– ā‰  Ļ‚š‘– š”¼exp(š‘”š‘“(š‘£š‘–))

    How to control the mgf without independence?

  • Step 1: Write mgf as quadratic form

    =

    š‘–0,ā€¦,š‘–š‘˜āˆˆš‘‰

    ā„™(š‘£0 = š‘–0)š‘ƒ š‘–0, š‘–1 ā€¦š‘ƒ(š‘–š‘˜āˆ’1, š‘–š‘˜) exp š‘”

    1ā‰¤š‘—ā‰¤š‘˜

    š‘“ š‘–š‘—

    =1

    š‘›

    š‘–0,ā€¦,š‘–š‘˜āˆˆš‘‰

    š‘ƒ š‘–0, š‘–1 š‘’š‘”š‘“(š‘–1)ā€¦š‘ƒ š‘–š‘˜āˆ’1, š‘–š‘˜ š‘’

    š‘”š‘“(š‘–š‘˜)

    š”¼š‘’š‘” Ļƒš‘–ā‰¤š‘˜ š‘“(š‘£š‘–)

    = āŸØš‘¢, šøš‘ƒ š‘˜š‘¢āŸ© where š‘¢ =1

    š‘›, ā€¦ ,

    1

    š‘›. š’ŠšŸŽ

    š’ŠšŸ

    š’ŠšŸ

    š’ŠšŸ‘

    š‘ƒ š‘–0, š‘–1

    š‘ƒ š‘–1, š‘–2

    š‘ƒ š‘–2, š‘–3

    š‘’š‘”š‘“(š‘–1)

    š‘’š‘”š‘“(š‘–2)

    š‘’š‘”š‘“(š‘–3)

    šø =š‘’š‘”š‘“(1)

    š‘’š‘”š‘“(š‘›)

  • Step 1: Write mgf as quadratic form

    =

    š‘–0,ā€¦,š‘–š‘˜āˆˆš‘‰

    ā„™(š‘£0 = š‘–0)š‘ƒ š‘–0, š‘–1 ā€¦š‘ƒ(š‘–š‘˜āˆ’1, š‘–š‘˜) exp š‘”

    1ā‰¤š‘—ā‰¤š‘˜

    š‘“ š‘–š‘—

    =1

    š‘›

    š‘–0,ā€¦,š‘–š‘˜āˆˆš‘‰

    š‘ƒ š‘–0, š‘–1 š‘’š‘”š‘“(š‘–1)ā€¦š‘ƒ š‘–š‘˜āˆ’1, š‘–š‘˜ š‘’

    š‘”š‘“(š‘–š‘˜)

    š”¼š‘’š‘” Ļƒš‘–ā‰¤š‘˜ š‘“(š‘£š‘–)

    = āŸØš‘¢, šøš‘ƒ š‘˜š‘¢āŸ© where š‘¢ =1

    š‘›, ā€¦ ,

    1

    š‘›. š’ŠšŸŽ

    š’ŠšŸ

    š’ŠšŸ

    š’ŠšŸ‘

    š‘ƒ š‘–0, š‘–1

    š‘ƒ š‘–1, š‘–2

    š‘ƒ š‘–2, š‘–3

    š‘’š‘”š‘“(š‘–1)

    š‘’š‘”š‘“(š‘–2)

    š‘’š‘”š‘“(š‘–3)

    šø =š‘’š‘”š‘“(1)

    š‘’š‘”š‘“(š‘›)

  • Step 1: Write mgf as quadratic form

    =

    š‘–0,ā€¦,š‘–š‘˜āˆˆš‘‰

    ā„™(š‘£0 = š‘–0)š‘ƒ š‘–0, š‘–1 ā€¦š‘ƒ(š‘–š‘˜āˆ’1, š‘–š‘˜) exp š‘”

    1ā‰¤š‘—ā‰¤š‘˜

    š‘“ š‘–š‘—

    =1

    š‘›

    š‘–0,ā€¦,š‘–š‘˜āˆˆš‘‰

    š‘ƒ š‘–0, š‘–1 š‘’š‘”š‘“(š‘–1)ā€¦š‘ƒ š‘–š‘˜āˆ’1, š‘–š‘˜ š‘’

    š‘”š‘“(š‘–š‘˜)

    š”¼š‘’š‘” Ļƒš‘–ā‰¤š‘˜ š‘“(š‘£š‘–)

    = āŸØš‘¢, šøš‘ƒ š‘˜š‘¢āŸ© where š‘¢ =1

    š‘›, ā€¦ ,

    1

    š‘›. š’ŠšŸŽ

    š’ŠšŸ

    š’ŠšŸ

    š’ŠšŸ‘

    š‘ƒ š‘–0, š‘–1

    š‘ƒ š‘–1, š‘–2

    š‘ƒ š‘–2, š‘–3

    š‘’š‘”š‘“(š‘–1)

    š‘’š‘”š‘“(š‘–2)

    š‘’š‘”š‘“(š‘–3)

    šø =š‘’š‘”š‘“(1)

    ā€¦š‘’š‘”š‘“(š‘›)

  • Step 2: Bound quadratic form

    Observe: ||š‘ƒ āˆ’ š½|| ā‰¤ šœ† where š½ = complete graph with self loops

    So for small šœ†, should have š‘¢, šøš‘ƒ š‘˜š‘¢ ā‰ˆ āŸØš‘¢, (šøš½)š‘˜š‘¢āŸ©

    Goal: Show āŸØš‘¢, šøš‘ƒ š‘˜š‘¢āŸ© ā‰¤ exp š‘šœ†š‘˜š‘”2

  • Step 2: Bound quadratic form

    Observe: ||š‘ƒ āˆ’ š½|| ā‰¤ šœ† where š½ = complete graph with self loops

    So for small šœ†, should have š‘¢, šøš‘ƒ š‘˜š‘¢ ā‰ˆ āŸØš‘¢, (šøš½)š‘˜š‘¢āŸ©

    Approach 1. Use perturbation theory to show ||šøš‘ƒ|| ā‰¤ exp š‘šœ†š‘”2

    Goal: Show āŸØš‘¢, šøš‘ƒ š‘˜š‘¢āŸ© ā‰¤ exp š‘šœ†š‘˜š‘”2

  • Step 2: Bound quadratic form

    Observe: ||š‘ƒ āˆ’ š½|| ā‰¤ šœ† where š½ = complete graph with self loops

    So for small šœ†, should have š‘¢, šøš‘ƒ š‘˜š‘¢ ā‰ˆ āŸØš‘¢, (šøš½)š‘˜š‘¢āŸ©

    Approach 1. Use perturbation theory to show ||šøš‘ƒ|| ā‰¤ exp š‘šœ†š‘”2

    Approach 2. (Healyā€™08) track projection of iterates along š‘¢.

    Goal: Show āŸØš‘¢, šøš‘ƒ š‘˜š‘¢āŸ© ā‰¤ exp š‘šœ†š‘˜š‘”2

  • Simplest case: šœ† = 0

    šøš‘ƒšøš‘ƒšøš‘ƒšøš‘ƒš‘¢

  • Simplest case: šœ† = 0

    šøš‘ƒšøš‘ƒšøš‘ƒšøš‘ƒš‘¢

  • Simplest case: šœ† = 0

    šøš‘ƒšøš‘ƒšøš‘ƒšøš‘ƒš‘¢

  • Simplest case: šœ† = 0

    šøš‘ƒšøš‘ƒšøš‘ƒšøš‘ƒš‘¢

  • Simplest case: šœ† = 0

    šøš‘ƒšøš‘ƒšøš‘ƒšøš‘ƒš‘¢

  • Observations

    šøš‘ƒšøš‘ƒšøš‘ƒšøš‘ƒš‘¢

    Observe: š‘ƒ shrinks every vector orthogonal to š‘¢ by šœ†.

    š‘¢, šøš‘¢ =1

    nĻƒš‘£āˆˆV š‘’

    š‘”š‘“(š‘£) = 1 + š‘”2 by mean zero

    condition.

  • A small dynamical system

    š‘£ = šøš‘ƒ š‘—š‘¢

    š‘š|| = āŸØš‘£, š‘¢āŸ©

    š‘šāŠ„ = ||š‘„āŠ„š‘£||

    š‘š|| š‘šāŠ„

  • A small dynamical system

    š‘£ = šøš‘ƒ š‘—š‘¢

    š‘š|| = āŸØš‘£, š‘¢āŸ©

    š‘šāŠ„ = ||š‘„āŠ„š‘£||

    š‘š|| š‘šāŠ„

    0

    0

    š‘’š‘”2

    š‘”

    š‘£ ā†· šøš‘ƒš‘£šœ† = 0

  • A small dynamical system

    š‘£ = šøš‘ƒ š‘—š‘¢

    š‘š|| = āŸØš‘£, š‘¢āŸ©

    š‘šāŠ„ = ||š‘„āŠ„š‘£||

    š‘š|| š‘šāŠ„

    š‘’š‘”šœ†

    šœ†š‘”

    š‘’š‘”2

    š‘”

    š‘£ ā†· šøš‘ƒš‘£any šœ†

  • A small dynamical system

    š‘£ = šøš‘ƒ š‘—š‘¢

    š‘š|| = āŸØš‘£, š‘¢āŸ©

    š‘šāŠ„ = ||š‘„āŠ„š‘£||

    š‘š|| š‘šāŠ„

    ā‰¤ 1

    šœ†š‘”

    š‘’š‘”2

    š‘”

    š‘£ ā†· šøš‘ƒš‘£š‘” ā‰¤ log 1/šœ†

  • A small dynamical system

    š‘£ = šøš‘ƒ š‘—š‘¢

    š‘š|| = āŸØš‘£, š‘¢āŸ©

    š‘šāŠ„ = ||š‘„āŠ„š‘£||

    š‘š|| š‘šāŠ„

    ā‰¤ 1

    šœ†š‘”

    š‘’š‘”2

    š‘”

    Any mass that leaves gets shrunk by šœ†

  • Analyzing dynamical system gives

    Thm[Gillmanā€™94]: Suppose šŗ = (š‘‰, šø) is a regular graph with transition matrix š‘ƒ which has second eigenvalue šœ†. Let š‘“: š‘‰ ā†’ ā„be a function with š‘“ š‘£ ā‰¤ 1 and Ļƒš‘£ š‘“ š‘£ = 0.Then, if š‘£1, ā€¦ , š‘£š‘˜ is a stationary random walk:

    ā„™1

    š‘˜

    š‘–

    š‘“(š‘£š‘–) ā‰„ šœ– ā‰¤ 2exp(āˆ’š‘(1 āˆ’ šœ†)š‘˜šœ–2)

  • Main Issue: exp š“ + šµ ā‰  exp š“ exp(šµ) unless š“, šµ = 0

    Generalization to Matrices?

    Setup: š‘“: š‘‰ ā†’ ā„‚š‘‘Ć—š‘‘ , random walk š‘£1, ā€¦ , š‘£š‘˜.Goal:

    š”¼š‘‡š‘Ÿ exp š‘”

    š‘–

    š‘“ š‘£š‘– ā‰¤ š‘‘ ā‹… exp š‘š‘˜š‘”2

    where š‘’š“ is defined as a power series.

    canā€™t express exp(sum) as iterated product.

  • Main Issue: exp š“ + šµ ā‰  exp š“ exp(šµ) unless š“, šµ = 0

    Generalization to Matrices?

    Setup: š‘“: š‘‰ ā†’ ā„‚š‘‘Ć—š‘‘ , random walk š‘£1, ā€¦ , š‘£š‘˜.Goal:

    š”¼š‘‡š‘Ÿ exp š‘”

    š‘–

    š‘“ š‘£š‘– ā‰¤ š‘‘ ā‹… exp š‘š‘˜š‘”2

    where š‘’š“ is defined as a power series.

    canā€™t express exp(sum) as iterated product.

  • The Golden-Thompson InequalityPartial Workaround [Golden-Thompsonā€™65]:

    š‘‡š‘Ÿ exp š“ + šµ ā‰¤ š‘‡š‘Ÿ exp š“ exp šµ

    Sufficient for independent case by induction.For expander case, need this for š‘˜ matrices. False!

    š‘‡š‘Ÿ š‘’š“+šµ+š¶ > 0 > š‘‡š‘Ÿ(eAeBeC)

    ā‰ˆ š‘’š“

    ā‰ˆ š‘’šµ ā‰ˆ š‘’š¶

  • The Golden-Thompson InequalityPartial Workaround [Golden-Thompsonā€™65]:

    š‘‡š‘Ÿ exp š“ + šµ ā‰¤ š‘‡š‘Ÿ exp š“ exp šµ

    Sufficient for independent case by induction.For expander case, need this for š‘˜ matrices.

    š‘‡š‘Ÿ š‘’š“+šµ+š¶ > 0 > š‘‡š‘Ÿ(eAeBeC)

    ā‰ˆ š‘’š“

    ā‰ˆ š‘’šµ ā‰ˆ š‘’š¶

  • The Golden-Thompson InequalityPartial Workaround [Golden-Thompsonā€™65]:

    š‘‡š‘Ÿ exp š“ + šµ ā‰¤ š‘‡š‘Ÿ exp š“ exp šµ

    Sufficient for independent case by induction.For expander case, need this for š‘˜ matrices. False!

    š‘‡š‘Ÿ š‘’š“+šµ+š¶ > 0 > š‘‡š‘Ÿ(eAeBeC)

    ā‰ˆ š‘’š“

    ā‰ˆ š‘’šµ ā‰ˆ š‘’š¶

  • Key Ingredient

    [Sutter-Berta-Tomamichelā€™16] If š“1, ā€¦ , š“š‘˜ are Hermitian, then

    log š‘‡š‘Ÿ š‘’š“1+ ā€¦+š“š‘˜

    ā‰¤ āˆ« š‘‘š›½(š‘) log š‘‡š‘Ÿ š‘’š“1(1+š‘–š‘)

    2 ā€¦š‘’š“š‘˜(1+š‘–š‘)

    2 š‘’š“1(1+š‘–š‘)

    2 ā€¦š‘’š“š‘˜(1+š‘–š‘)

    2

    āˆ—

    where š›½(š‘) is an explicit probability density on ā„.

    1. Matrix on RHS is always PSD.

    2. Average-case inequality: š‘’š“š‘–/2 are conjugated by unitaries.3. Implies Liebā€™s concavity, triple-matrix, ALT, and more.

  • Key Ingredient

    [Sutter-Berta-Tomamichelā€™16] If š“1, ā€¦ , š“š‘˜ are Hermitian, then

    log š‘‡š‘Ÿ š‘’š“1+ ā€¦+š“š‘˜

    ā‰¤ āˆ« š‘‘š›½(š‘) log š‘‡š‘Ÿ š‘’š“1(1+š‘–š‘)

    2 ā€¦š‘’š“š‘˜(1+š‘–š‘)

    2 š‘’š“1(1+š‘–š‘)

    2 ā€¦š‘’š“š‘˜(1+š‘–š‘)

    2

    āˆ—

    where š›½(š‘) is an explicit probability density on ā„.

    1. Matrix on RHS is always PSD.

    2. Average-case inequality: š‘’š“š‘–/2 are conjugated by unitaries.3. Implies Liebā€™s concavity, triple-matrix, ALT, and more.

  • Proof of SBT: Lie-Trotter Formula

    š‘’š“+šµ+š¶ = limšœƒā†’0+

    š‘’šœƒš“š‘’šœƒšµš‘’šœƒš¶1/šœƒ

    log š‘‡š‘Ÿ š‘’š“+šµ+š¶ = limšœƒā†’0+

    log ||šŗ šœƒ ||2/šœƒ

    For šŗ š‘§ ā‰” š‘’š‘§š“

    2 š‘’š‘§šµ

    2 š‘’š‘§š¶

    2

  • Proof of SBT: Lie-Trotter Formula

    š‘’š“+šµ+š¶ = limšœƒā†’0+

    š‘’šœƒš“š‘’šœƒšµš‘’šœƒš¶1/šœƒ

    log š‘‡š‘Ÿ š‘’š“+šµ+š¶ = limšœƒā†’0+

    2log ||šŗ šœƒ ||2/šœƒ/šœƒ

    For šŗ š‘§ ā‰” š‘’š‘§š“

    2 š‘’š‘§šµ

    2 š‘’š‘§š¶

    2

  • Complex Interpolation (Stein-Hirschman)

    log šŗ šœƒ 2/šœƒ

    šœƒ

  • Complex Interpolation (Stein-Hirschman)

    |š¹ šœƒ | = šŗ šœƒ 2/šœƒ

    For each šœƒ, find analytic š¹(š‘§) st:

    |š¹ 1 + š‘–š‘” | ā‰¤ šŗ 1 + š‘–š‘” 2

    |š¹ š‘–š‘” | = 1

  • Complex Interpolation (Stein-Hirschman)

    |š¹ šœƒ | = šŗ šœƒ 2/šœƒ

    For each šœƒ, find analytic š¹(š‘§) st:

    |š¹ 1 + š‘–š‘” | ā‰¤ šŗ 1 + š‘–š‘” 2

    |š¹ š‘–š‘” | = 1

    log š¹ šœƒ ā‰¤ ą¶±log |š¹ š‘–š‘” | + ą¶±log |š¹ 1 + š‘–š‘” |

  • Complex Interpolation (Stein-Hirschman)

    |š¹ šœƒ | = šŗ šœƒ 2/šœƒ

    For each šœƒ, find analytic š¹(š‘§) st:

    |š¹ 1 + š‘–š‘” | ā‰¤ šŗ 1 + š‘–š‘” 2

    |š¹ š‘–š‘” | = 1

    log š¹ šœƒ ā‰¤ ą¶±log |š¹ š‘–š‘” | + ą¶±log |š¹ 1 + š‘–š‘” |

    lim šœƒ ā†’ 0

  • Key Ingredient

    [Sutter-Berta-Tomamichelā€™16] If š“1, ā€¦ , š“š‘˜ are Hermitian, then

    log š‘‡š‘Ÿ š‘’š“1+ ā€¦+š“š‘˜

    ā‰¤ āˆ« š‘‘š›½(š‘) log š‘‡š‘Ÿ š‘’š“1(1+š‘–š‘)

    2 ā€¦š‘’š“š‘˜(1+š‘–š‘)

    2 š‘’š“1(1+š‘–š‘)

    2 ā€¦š‘’š“š‘˜(1+š‘–š‘)

    2

    āˆ—

    where š›½(š‘) is an explicit probability density on ā„.

  • Key Ingredient

    [Sutter-Berta-Tomamichelā€™16] If š“1, ā€¦ , š“š‘˜ are Hermitian, then

    log š‘‡š‘Ÿ š‘’š“1+ ā€¦+š“š‘˜

    ā‰¤ āˆ« š‘‘š›½(š‘) log š‘‡š‘Ÿ š‘’š“1(1+š‘–š‘)

    2 ā€¦š‘’š“š‘˜(1+š‘–š‘)

    2 š‘’š“1(1+š‘–š‘)

    2 ā€¦š‘’š“š‘˜(1+š‘–š‘)

    2

    āˆ—

    where š›½(š‘) is an explicit probability density on ā„.

    Issue. SBT involves integration over unbounded region, bad for Taylor expansion.

  • Bounded Modification of SBT

    Solution. Prove bounded version of SBT by replacing stripwith half-disk.

    [Thm] If š“1, ā€¦ , š“š‘˜ are Hermitian, then

    log š‘‡š‘Ÿ š‘’š“1+ā€¦+š“š‘˜

    ā‰¤ āˆ« š‘‘š›½(š‘) log š‘‡š‘Ÿ š‘’š“1š‘’

    š‘–š‘

    2 ā€¦š‘’š“š‘˜š‘’

    š‘–š‘

    2 š‘’š“1š‘’

    š‘–š‘

    2 ā€¦š‘’š“š‘˜š‘’

    š‘–š‘

    2

    āˆ—

    where š›½(š‘) is an explicit probability density on

    āˆ’šœ‹

    2,šœ‹

    2.

    šœƒ

    Proof. Analytic š¹(š‘§) + Poisson Kernel + Riemann map.

  • Handling Two-sided Products

    Issue. Two-sided rather than one-sided products:

    š‘‡š‘Ÿ š‘’š‘”š‘“ š‘£1 š‘’

    š‘–š‘

    2 ā€¦š‘’š‘”š‘“ š‘£š‘˜ š‘’

    š‘–š‘

    2 š‘’š‘”š‘“ š‘£1 š‘’

    š‘–š‘

    2 ā€¦š‘’š‘”š‘“ š‘£š‘˜ š‘’

    š‘–š‘

    2

    āˆ—

    Solution.Encode as one-sided product by using š‘‡š‘Ÿ š“š‘‹šµ = š“āŠ—šµš‘‡ š‘£š‘’š‘ š‘‹ :

    āŸØš‘’š‘”š‘“ š‘£1 š‘’

    š‘–š‘

    2 āŠ— š‘’š‘”š‘“ š‘£1

    āˆ—š‘’š‘–š‘

    2 ā€¦š‘’š‘”š‘“ š‘£š‘˜

    āˆ—š‘‡š‘’āˆ’š‘–š‘

    2 āŠ—š‘’š‘”š‘“ š‘£š‘˜

    āˆ—š‘‡š‘’āˆ’š‘–š‘

    2 vec Id , vec Id āŸ©

  • Handling Two-sided Products

    Issue. Two-sided rather than one-sided products:

    š‘‡š‘Ÿ š‘’š‘”š‘“ š‘£1 š‘’

    š‘–š‘

    2 ā€¦š‘’š‘”š‘“ š‘£š‘˜ š‘’

    š‘–š‘

    2 š‘’š‘”š‘“ š‘£1 š‘’

    š‘–š‘

    2 ā€¦š‘’š‘”š‘“ š‘£š‘˜ š‘’

    š‘–š‘

    2

    āˆ—

    Solution.Encode as one-sided product by using š‘‡š‘Ÿ š“š‘‹šµ = š“āŠ—šµš‘‡ š‘£š‘’š‘ š‘‹ :

    āŸØš‘’š‘”š‘“ š‘£1 š‘’

    š‘–š‘

    2 āŠ—š‘’š‘”š‘“ š‘£1

    āˆ—š‘‡š‘’š‘–š‘

    2 ā€¦š‘’š‘”š‘“ š‘£š‘˜

    āˆ—š‘‡š‘’āˆ’š‘–š‘

    2 āŠ—š‘’š‘”š‘“ š‘£š‘˜

    āˆ—š‘‡š‘’āˆ’š‘–š‘

    2 vec Id , vec Id āŸ©

  • Finishing the Proof

    Carry out a version of Healyā€™s argument with š‘ƒ āŠ— š¼š‘‘2 and:

    And š‘£š‘’š‘(š¼š‘‘) āŠ— š‘¢ instead of š‘¢.

    This leads to the additional š‘‘ factor.

    š’ŠšŸŽ

    š’ŠšŸ

    š’ŠšŸ

    š’ŠšŸ‘

    š‘ƒ š‘–0, š‘–1

    š‘ƒ š‘–1, š‘–2

    š‘ƒ š‘–2, š‘–3

    šø =š‘’š‘”š‘“ 1 š‘’š‘–š‘

    2 āŠ—š‘’š‘”š‘“ 1 āˆ—š‘‡š‘’š‘–š‘

    2

    ā€¦

    š‘’š‘”š‘“(š‘›)š‘’š‘–š‘

    2 āŠ—š‘’š‘”š‘“ š‘› āˆ—š‘‡š‘’āˆ’š‘–š‘

    2

  • Main Theorem

    Thm. Suppose šŗ = (š‘‰, šø) is a regular graph with transition matrix š‘ƒ which has second eigenvalue šœ†. Let š‘“: š‘‰ ā†’ ā„‚š‘‘Ć—š‘‘ be a function with | š‘“ š‘£ | ā‰¤ 1 and Ļƒš‘£ š‘“ š‘£ = 0.Then, if š‘£1, ā€¦ , š‘£š‘˜ is a stationary random walk:

    ā„™1

    š‘˜

    š‘–

    š‘“(š‘£š‘–) ā‰„ šœ– ā‰¤ 2š‘‘exp(āˆ’š‘(1 āˆ’ šœ†)š‘˜šœ–2)

  • Open Questions

    Other matrix concentration inequalities (multiplicative, low-rank, moments)

    Other Banach spaces(Schatten norms)

    More applications of complex interpolation