a new algorithm of evaluation of wigner distribution

1
IROWG 2021 [email protected] Conclusion β€’ Wigner Distribution Function (WDF) and Kirkwood Distribution Function (WDF) are powerful means of the analysis of ROsignal structure . β€’ WDF provides a better visualization, as compared to KDF. However, the evaluation of WDF is much more computationally expensive : it requires a large number of long -term Fourier Transforms . β€’ Using the convolution relations between WDF and KDF, and Fractional Fourier (FrFT) Transform Properties, we developed a new algorithm for the evaluation of WDF convolved with a smoothing window function . The algorithm requires a relatively small number of FrFTs, while FrFT is approximately as computationally expensive as the standard FT. Fractional Fourier Transform Consider a phase space rotation ( , ) ⟢ (, ) by angle : = cos + sin , = βˆ’ sin + cos , The 1 st and 2 nd type generating function 2 , , of this transform is evaluated as follows: 1 = + , 2 = βˆ’ , 1 , , = βˆ’ 2 sin βˆ’ 2 + 2 sin 2 cos , 2 , , = 2 cos βˆ’ 2 + 2 cos 2 sin . The corresponding Fourier Integral Operator represented as a 1 st and 2 nd type operators, is written as follows: ≑ οΏ½ 0 = 1 2 sin οΏ½ exp 2 cos βˆ’ 2 + 2 cos 2 sin 0 = = 1 βˆ’2 cos οΏ½ exp βˆ’ 2 sin βˆ’ 2 + 2 sin 2 cos οΏ½ 0 , where οΏ½ 0 is the Fourier transform of 0 . The properties of Fractional Fourier Transform: 1. The group property: οΏ½ ∘ οΏ½ = οΏ½ ∘ οΏ½ = οΏ½ + , οΏ½ βˆ’1 = οΏ½ βˆ’ , οΏ½ 0 = . 2. The Fourier Transform implements the phase space rotation by ⁄ 2 : οΏ½ ⁄ 2 = οΏ½ 3. The WDF invariance with respect to FrFT: , = 2 οΏ½ βˆ’ 2 οΏ½ + 2 exp = , . 4. Operator οΏ½ is the fractional power ⁄ 2 of the Fourier Transform. The Evaluation of Smoothed WDF from KDF The evaluation of KDF is computationally cheap as compared to WDF: WDF requires a large number of long-term Fourier transform; KDF requires just one. Using the properties of the FrFT and the convolution relations between WDF and KDF, we can write the following relations: , = 2 οΏ½ + exp 1 2 οΏ½ (, , ), (, , ) = , βˆ— 1 2 οΏ½ , , , , , = = , βˆ— 1 0 2 + 2 . This results in the algorithm of evaluation of WDF convolved with the window function: 1. Multiple application of FrFT to the wave field; 2. Evaluation of KDF for different rotation angles ; 3. Averaging (, , ), (, , ) over angle . 4. The number of different angles for averaging may be chosen relatively small. Examples of KDF for Test Signals Subjected to FrFT Wigner and Kirkwood Distribution Functions Wigner Distribution Function (WDF): , = 2 οΏ½ βˆ’ 2 + 2 exp = = οΏ½ οΏ½ βˆ’ 2 οΏ½ + 2 exp , where is the β•£Δ„β–« Ε„Δ³ΕŒΓΔ•β†’ β•£β•šΓβ”ΌΔŽβ•£β•£Δ³ΔΉβ†’ β•šΓΔ•Ε„ , is the corresponding frequency, is wavenumber, and is the observed wave field. Kirkwood Distribution Function (KDF): , = 2 οΏ½ + exp = = βˆ’ 2 exp βˆ’ 2 οΏ½ οΏ½ exp οΏ½ οΏ½ . KDF Properties 1. KDF is a complex, sign-alternating function (WDF is a real sign-alternating function). 2. Positive projections (similar to WDF): οΏ½ , = οΏ½ 2 , οΏ½ , = 2 . 3. Positive full energy (similar to WDF): οΏ½ , = = οΏ½ 2 = οΏ½ οΏ½ 2 . 4. Global univalent phase: = exp , οΏ½ = οΏ½ exp , = , exp , , , = βˆ’ βˆ’ . 5. Convolution relations between KDF and WDF: , = , βˆ— , , , = exp 2 , , = , βˆ— , , , = exp βˆ’2 References 1. P.A.M. Dirac, Note on exchange phenomena in the Thomas atom, Proc. Camb. Phil. Soc. 26, 376-395 (1930). 2. H. Weyl, The Theory of Groups and Quantum Mechanics (Dover, New York, 1931). 3. W. Heisenberg, Über die inkohΓ€rente Streuung von RΓΆntgenstrahlen, Physik. Zeitschr. 32, 737-740 (1931). 4. E.P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, June 1932, 749-759. 5. J.G. Kirkwood, Quantum statistics of almost classical assemblies, Phys. Rev. 44 , July 1933, 31-37. 6. J. Ville, ThΓ©orie et Applications de la Notion de Signal Analytique, Cables et Transmission, 2A: (1948) 61-74. 7. V.I. Tatarskii. Wigner Representation of Quantum Mechanics. – Advances in Physics, 1983, V. 139, No 4. – p. 587–619. 8. L. Cohen. Time-Frequency Distribution – A Review, Proceedings of the IEEE, V. 77, No. 7, 1989, 941–981. 9. Boashash. Time Frequency Signal Analysis and Processing. A Comprehensive Reference. – Amsterdam: Elsevier, 2003. – 744 p. 10. A.L. Virovlyanskiy. Ray theory of long-range propagation of sound in ocean. Nizhniy Novgorod: Institute of Applied Physics RAS, 2006. β€”164 pp. 11. V. I. Klyatskin. Stochastic equations. Theory and its application to acoustics, hydrodynamics, and Radiophysics. Moscow: Fizmatlit, 2008. 12. M.A. Alonso, Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles, The Institute of Optics, University of Rochester, Rochester, New York 14627, USA, Doc. ID 148673, 2011, 272 pp. 13. M.E. Gorbunov, Physical and mathematical principles of satellite radio occultation sounding of the Earth’s atmosphere. Mo s co w : GEOS, 2 0 19 , 3 0 0 p p . ISBN 9 78 -5 -8 9 118 -78 0 -1. Introduction Time-frequency representation is a powerful technique for the analysis of radio occultation (RO) data. It includes sliding-spectrum analysis, or spectrogram, Wigner Distribution Function (WDF), Kirkwood Distribution Function (KDF), and their modifications based on the reassignment technique. Using these techniques, a signal as a 1-D function of time is mapped to 2-D phase or ray space, where each point can be associated with a geometric optical ray.This space is parameterized by coordinate and momentum.Two possible parameterizations: (time – Doppler frequency) and (impact parameter – bending angle) are linked to each other by a canonical transform. WDF demonstrates a higher resolution as compared to spectrogram and more regular behavior as compared to KDF.On the other hand,the evaluation of WDF requires high computational costs, while the evaluation of KDF is fast. In this study,we apply the theory of WDF,KDF,and Fourier integral operators (FIOs) to develop a fast algorithm of the evaluation of WDF. We employ the fact that between WDF and KDF there are forward and inverse convolution relations.We consider the rotation group of the phase space.This group consists of canonical transforms,which are implemented as FIOs describing the dynamics of the harmonic oscillator. Such FIOs form the group of fractional Fourier transforms. The fundamental property of WDF is its invariance with respect to canonical transforms.KDF does not possess this property.However,we consider KDF averaged over the rotation group.Because KDF equals WDF convolved with the corresponding kernel,its straightforward to arrive at the expression of the KDF averaged over the rotation group. WDF is invariant, and, therefore, the averaged KDF equals WDF convolved with the averaged convolution kernel. The latter is explicitly expressed through Bessel function. Finally, this procedure results in WDF smoothed over a quantum cell in the phase space. We implemented the algorithm numerically. The fractional Fourier transform can be represented as a composition of multipliers and Fourier transforms,which means that it allows a fast numerical implementation.We perform averaging over a finite number of rotation angles,which allows the performance optimization.We give examples of processing artificial and real ROevents. A new algorithm of evaluation of Wigner Distribution Function with application to radio occultation analysis 1 A.M.Obukhov Institute of Atmospheric Physics, 2 Spire Global, Inc., 3 Hydrometeorological Research Center of Russian Federation Michael Gorbunov 1,2 ,3 , Oksana Koval 1 Acknowledgement This work was supported by Russian Foundation for Basic Research (grant No 20 -05 -00189 A). Occultation Events Processing KDF L1 KDF L2 WDF L1 WDF L2 Figure 3: Examples of KDF and WDF for COSMIC RO events . Figure 4: Examples of KDF and WDF for Spire RO events . Despite the higher noise level in this figure, complicated multipath structures in the lower troposphere can be clearly identified in Spire WDF results . This is consistent with our observation that lower tropospheric statistics are very similar for Spire and CII results (see the poster by Irisov et al. at this Conference). Figure 1: Real part of KDF of apodized monochromatic test signal for =0 Β°, 2 2 .5 Β°, 4 5 Β°, 6 0 Β°, a n d 9 0 Β°, in unitless coordinates (, ). =0Β° = 2 2 .5 Β° = 45Β° = 60Β° = 9 0 Β°.

Upload: others

Post on 26-May-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A new algorithm of evaluation of Wigner Distribution

IROWG 2021 [email protected]

Conclusion

β€’ Wigner Distribution Function (WDF) and Kirkwood Distribution Function (WDF) arepowerful means of the analysis of ROsignal structure .

β€’ WDF provides a better visualization, as compared to KDF. However, the evaluation ofWDF is much more computationally expensive : it requires a large number of long -termFourier Transforms .

β€’ Using the convolution relations between WDF and KDF, and Fractional Fourier (FrFT)Transform Properties, we developed a new algorithm for the evaluation of WDFconvolved with a smoothing window function . The algorithm requires a relatively smallnumber of FrFTs, while FrFT is approximately as computationally expensive as thestandard FT.

Fractional Fourier TransformConsider a phase space rotation (π‘₯π‘₯, πœ‰πœ‰) ⟢ (𝑦𝑦, πœ‚πœ‚) by angle 𝛼𝛼:

𝑦𝑦 = π‘₯π‘₯ cos𝛼𝛼 + πœ‰πœ‰ sin𝛼𝛼 ,πœ‚πœ‚ = βˆ’π‘₯π‘₯ sin𝛼𝛼 + πœ‰πœ‰ cos𝛼𝛼 ,

The 1st and 2nd type generating function 𝑆𝑆2 𝑦𝑦, π‘₯π‘₯,𝛼𝛼 of this transform is evaluated as follows:𝑑𝑑𝑆𝑆1 = πœ‚πœ‚ 𝑑𝑑𝑦𝑦 + π‘₯π‘₯ π‘‘π‘‘πœ‰πœ‰,𝑑𝑑𝑆𝑆2 = πœ‚πœ‚ 𝑑𝑑𝑦𝑦 βˆ’ πœ‰πœ‰ 𝑑𝑑π‘₯π‘₯,

𝑆𝑆1 𝑦𝑦, πœ‰πœ‰,𝛼𝛼 = βˆ’πœ‰πœ‰2 sin𝛼𝛼 βˆ’ 2πœ‰πœ‰π‘¦π‘¦ + 𝑦𝑦2 sin𝛼𝛼

2 cos𝛼𝛼 ,

𝑆𝑆2 𝑦𝑦, π‘₯π‘₯,𝛼𝛼 =𝑦𝑦2 cos𝛼𝛼 βˆ’ 2π‘₯π‘₯𝑦𝑦 + π‘₯π‘₯2 cos𝛼𝛼

2 sin𝛼𝛼 .

The corresponding Fourier Integral Operator represented as a 1st and 2nd type operators, is written as follows:

πœ“πœ“π›Όπ›Ό 𝑦𝑦 ≑ οΏ½π›·π›·π›Όπ›Όπœ“πœ“0 =1

2πœ‹πœ‹πœ‹πœ‹ sin𝛼𝛼� exp πœ‹πœ‹

𝑦𝑦2 cos𝛼𝛼 βˆ’ 2π‘₯π‘₯𝑦𝑦 + π‘₯π‘₯2 cos𝛼𝛼2 sin𝛼𝛼 πœ“πœ“0 π‘₯π‘₯ 𝑑𝑑π‘₯π‘₯ =

=1

βˆ’2πœ‹πœ‹πœ‹πœ‹ cos𝛼𝛼� exp βˆ’πœ‹πœ‹

πœ‰πœ‰2 sin𝛼𝛼 βˆ’ 2πœ‰πœ‰π‘¦π‘¦ + 𝑦𝑦2 sin𝛼𝛼2 cos𝛼𝛼

οΏ½πœ“πœ“0 πœ‰πœ‰ π‘‘π‘‘πœ‰πœ‰ ,

where οΏ½πœ“πœ“0 πœ‰πœ‰ is the Fourier transform of πœ“πœ“0 π‘₯π‘₯ .

The properties of Fractional Fourier Transform:

1. The group property:�𝛷𝛷𝛼𝛼 ∘ �𝛷𝛷𝛽𝛽 = �𝛷𝛷𝛽𝛽 ∘ �𝛷𝛷𝛼𝛼 = �𝛷𝛷𝛼𝛼+𝛽𝛽,�𝛷𝛷𝛼𝛼

βˆ’1 = οΏ½π›·π›·βˆ’π›Όπ›Ό,�𝛷𝛷0 = 𝐼𝐼.

2. The Fourier Transform implements the phase space rotation by β„πœ‹πœ‹ 2 :�𝛷𝛷 β„πœ‹πœ‹ 2πœ“πœ“ = οΏ½πœ“πœ“

3. The WDF invariance with respect to FrFT:

πœŒπœŒπ›Όπ›Όπ‘Šπ‘Š 𝑦𝑦, πœ‚πœ‚ =π‘˜π‘˜2πœ‹πœ‹οΏ½πœ“πœ“π›Όπ›Ό 𝑦𝑦 βˆ’

𝑠𝑠2

οΏ½πœ“πœ“π›Όπ›Ό 𝑦𝑦 +𝑠𝑠2 exp πœ‹πœ‹π‘ π‘ πœ‚πœ‚ 𝑑𝑑𝑠𝑠 = πœŒπœŒπ‘Šπ‘Š π‘₯π‘₯, πœ‰πœ‰ .

4. Operator �𝛷𝛷𝛼𝛼 is the fractional power ⁄2𝛼𝛼 πœ‹πœ‹ of the Fourier Transform.

The Evaluation of Smoothed WDF from KDFThe evaluation of KDF is computationally cheap as compared to WDF: WDF requires a large number of long-term Fourier transform; KDF requiresjust one. Using the properties of the FrFT and the convolution relations between WDF and KDF, we can write the following relations:

πœŒπœŒπ›Όπ›Όπ‘₯π‘₯π‘₯π‘₯ 𝑦𝑦, πœ‚πœ‚ =

π‘˜π‘˜2πœ‹πœ‹πœ“πœ“π›Όπ›Ό 𝑦𝑦 οΏ½οΏ½Μ„οΏ½πœ“π›Όπ›Ό 𝑦𝑦 + 𝑠𝑠 exp πœ‹πœ‹π‘ π‘ πœ‚πœ‚ 𝑑𝑑𝑠𝑠

12πœ‹πœ‹οΏ½πœŒπœŒπ›Όπ›Ό

π‘₯π‘₯π‘₯π‘₯ 𝑦𝑦(𝛼𝛼, π‘₯π‘₯, πœ‰πœ‰), πœ‚πœ‚(𝛼𝛼, π‘₯π‘₯, πœ‰πœ‰) 𝑑𝑑𝛼𝛼 = πœŒπœŒπ‘Šπ‘Š π‘₯π‘₯, πœ‰πœ‰ βˆ—1

2πœ‹πœ‹οΏ½π‘‡π‘‡π‘₯π‘₯π‘₯π‘₯π‘Šπ‘Š 𝑦𝑦 𝛼𝛼, π‘₯π‘₯, πœ‰πœ‰ , πœ‚πœ‚ 𝛼𝛼, π‘₯π‘₯, πœ‰πœ‰ 𝑑𝑑𝛼𝛼 =

= πœŒπœŒπ‘Šπ‘Š π‘₯π‘₯, πœ‰πœ‰ βˆ—1πœ‹πœ‹ 𝐽𝐽0 π‘₯π‘₯2 + πœ‰πœ‰2 .

This results in the algorithm of evaluation of WDF convolved with the window function:1. Multiple application of FrFT to the wave field;2. Evaluation of KDF for different rotation angles 𝛼𝛼;3. Averaging πœŒπœŒπ›Όπ›Ό

π‘₯π‘₯π‘₯π‘₯ 𝑦𝑦(𝛼𝛼, π‘₯π‘₯, πœ‰πœ‰), πœ‚πœ‚(𝛼𝛼, π‘₯π‘₯, πœ‰πœ‰) over angle 𝛼𝛼.4. The number of different angles for averaging may be chosen relatively small.

Examples of KDF for Test Signals Subjected to FrFT

Wigner and Kirkwood Distribution Functions

Wigner Distribution Function (WDF):

πœŒπœŒπ‘Šπ‘Š π‘₯π‘₯, πœ‰πœ‰ =π‘˜π‘˜2πœ‹πœ‹οΏ½πœ“πœ“ π‘₯π‘₯ βˆ’

𝑠𝑠2 οΏ½Μ„οΏ½πœ“ π‘₯π‘₯ +

𝑠𝑠2 exp πœ‹πœ‹π‘˜π‘˜π‘ π‘ πœ‰πœ‰ 𝑑𝑑𝑠𝑠 =

= οΏ½ οΏ½Μ„πœ“πœ“ πœ‰πœ‰ βˆ’πœŽπœŽ2

οΏ½πœ“πœ“ πœ‰πœ‰ +𝜎𝜎2 exp πœ‹πœ‹π‘˜π‘˜π‘₯π‘₯𝜎𝜎 π‘‘π‘‘πœŽπœŽ ,

where π‘₯π‘₯ is the β•£Δ„β–«Ε„Δ³ΕŒΓΔ•β†’β•£β•šΓβ”ΌΔŽβ•£β•£Δ³ΔΉβ†’β•šΓΔ•Ε„, πœ‰πœ‰ is the corresponding frequency, π‘˜π‘˜ is wavenum ber, and πœ“πœ“ π‘₯π‘₯ is the observed wave field.

Kirkwood Distribution Function (KDF):

𝜌𝜌π‘₯π‘₯π‘₯π‘₯ π‘₯π‘₯, πœ‰πœ‰ =π‘˜π‘˜2πœ‹πœ‹πœ“πœ“

π‘₯π‘₯ οΏ½οΏ½Μ„οΏ½πœ“ π‘₯π‘₯ + 𝑠𝑠 exp πœ‹πœ‹π‘˜π‘˜π‘ π‘ πœ‰πœ‰ 𝑑𝑑𝑠𝑠 =

=βˆ’πœ‹πœ‹π‘˜π‘˜2πœ‹πœ‹ πœ“πœ“ π‘₯π‘₯ exp βˆ’πœ‹πœ‹π‘˜π‘˜π‘₯π‘₯πœ‰πœ‰

πœ‹πœ‹π‘˜π‘˜2πœ‹πœ‹οΏ½οΏ½Μ„οΏ½πœ“

οΏ½π‘₯π‘₯ exp πœ‹πœ‹π‘˜π‘˜ οΏ½π‘₯π‘₯πœ‰πœ‰ 𝑑𝑑 οΏ½π‘₯π‘₯ .

KDF Properties

1. KDF is a com plex, s ign-alternating function (WDF is a real s ign-alternating function).2. Pos itive projections (s im ilar to WDF):

�𝜌𝜌π‘₯π‘₯π‘₯π‘₯ π‘₯π‘₯, πœ‰πœ‰ 𝑑𝑑π‘₯π‘₯ = οΏ½πœ“πœ“ πœ‰πœ‰ 2,

�𝜌𝜌π‘₯π‘₯π‘₯π‘₯ π‘₯π‘₯, πœ‰πœ‰ π‘‘π‘‘πœ‰πœ‰ = πœ“πœ“ π‘₯π‘₯ 2.

3. Pos itive full energy (s im ilar to WDF):

�𝜌𝜌π‘₯π‘₯π‘₯π‘₯ π‘₯π‘₯, πœ‰πœ‰ 𝑑𝑑π‘₯π‘₯ π‘‘π‘‘πœ‰πœ‰ = 𝐸𝐸 = οΏ½ πœ“πœ“ π‘₯π‘₯ 2𝑑𝑑π‘₯π‘₯ = οΏ½ οΏ½πœ“πœ“ πœ‰πœ‰ 2π‘‘π‘‘πœ‰πœ‰ .

4. Global univalent phase:πœ“πœ“ π‘₯π‘₯ = π‘Žπ‘Ž π‘₯π‘₯ exp πœ‹πœ‹π‘˜π‘˜π‘†π‘† π‘₯π‘₯ ,οΏ½πœ“πœ“ πœ‰πœ‰ = οΏ½π‘Žπ‘Ž πœ‰πœ‰ exp πœ‹πœ‹π‘˜π‘˜οΏ½ΜƒοΏ½π‘† πœ‰πœ‰

𝜌𝜌π‘₯π‘₯π‘₯π‘₯ π‘₯π‘₯, πœ‰πœ‰ = π‘Žπ‘Žπ‘₯π‘₯π‘₯π‘₯ π‘₯π‘₯, πœ‰πœ‰ exp πœ‹πœ‹π‘˜π‘˜π‘†π‘†π‘₯π‘₯π‘₯π‘₯ π‘₯π‘₯, πœ‰πœ‰ ,𝑆𝑆π‘₯π‘₯π‘₯π‘₯ π‘₯π‘₯, πœ‰πœ‰ = 𝑆𝑆 π‘₯π‘₯ βˆ’ �̃�𝑆 πœ‰πœ‰ βˆ’ π‘₯π‘₯πœ‰πœ‰.

5 . Convolution rela tions between KDF and WDF:πœŒπœŒπ‘Šπ‘Š π‘₯π‘₯, πœ‰πœ‰ = 𝜌𝜌π‘₯π‘₯π‘₯π‘₯ π‘₯π‘₯, πœ‰πœ‰ βˆ— 𝑇𝑇π‘₯π‘₯π‘₯π‘₯

π‘Šπ‘Š π‘₯π‘₯, πœ‰πœ‰ ,

𝑇𝑇π‘₯π‘₯π‘₯π‘₯π‘Šπ‘Š π‘₯π‘₯, πœ‰πœ‰ =

π‘˜π‘˜πœ‹πœ‹ exp 2πœ‹πœ‹π‘˜π‘˜ πœ‰πœ‰ π‘₯π‘₯ ,

𝜌𝜌π‘₯π‘₯π‘₯π‘₯ π‘₯π‘₯, πœ‰πœ‰ = πœŒπœŒπ‘Šπ‘Š π‘₯π‘₯, πœ‰πœ‰ βˆ— π‘‡π‘‡π‘Šπ‘Šπ‘₯π‘₯π‘₯π‘₯ π‘₯π‘₯, πœ‰πœ‰ ,

π‘‡π‘‡π‘Šπ‘Šπ‘₯π‘₯π‘₯π‘₯ π‘₯π‘₯, πœ‰πœ‰ =

π‘˜π‘˜πœ‹πœ‹ exp βˆ’2πœ‹πœ‹π‘˜π‘˜ πœ‰πœ‰ π‘₯π‘₯

References

1. P.A.M. Dirac, Note on exchange phenom ena in the Thom as a tom , Proc. Cam b. Phil. Soc. 26 , 376-395 (1930 ). 2. H. Weyl, The Theory of Groups and Quantum Mechanics (Dover, New York, 1931). 3. W. Heisenberg, Über die inkohΓ€rente Streuung von RΓΆntgens trahlen, Phys ik. Zeitschr. 32, 737-740 (1931). 4. E.P. Wigner, On the quantum correction for therm odynam ic equilibrium , Phys . Rev. 40 , June 1932, 749-75 9 .5 . J.G. Kirkwood, Quantum s ta tis t ics of a lm os t class ical assem blies , Phys . Rev. 44 , July 1933, 31-37.6 . J. Ville , ThΓ©orie et Applications de la Notion de Signal Analytique, Cables et Transm iss ion, 2A: (1948 ) 61-74.7. V.I. Tatarskii. Wigner Representation of Quantum Mechanics . – Advances in Phys ics , 198 3, V. 139 , No 4. – p. 5 8 7–619 .8 . L. Cohen. Tim e-Frequency Dis tribution – A Review, Proceedings of the IEEE, V. 77, No. 7, 198 9 , 941–98 1.9 . Boashash. Tim e Frequency Signal Analys is and Process ing. A Com prehens ive Reference. – Am sterdam : Elsevier, 20 0 3. – 744 p.10. A.L. Virovlyanskiy. Ray theory of long-range propagation of sound in ocean. Nizhniy Novgorod: Ins titute of Applied Phys ics RAS,

20 0 6 . β€”164 pp.11. V. I. Klyatskin. Stochas tic equations . Theory and its application to acous tics , hydrodynam ics , and Radiophys ics . Moscow:

Fizm atlit , 20 0 8 .12. M.A. Alonso, Wigner functions in optics : describing beam s as ray bundles and pulses as particle ensem bles , The Ins titute of

Optics , Univers ity of Roches ter, Roches ter, New York 14627, USA, Doc. ID 148 673, 20 11, 272 pp.13. M.E. Gorbunov, Phys ical and m athem atical principles of sa tellite radio occulta tion sounding of the Earth’s a tm osphere.

Moscow: GEOS, 20 19 , 30 0 pp. ISBN 978 -5 -8 9118 -78 0 -1.

IntroductionTim e-frequency representation is a powerful technique for the analys is of radio occulta tion (RO) data . It includes s liding-spectrumanalys is , or spectrogram , Wigner Dis tribution Function (WDF), Kirkwood Dis tribution Function (KDF), and their m odifications basedon the reass ignm ent technique. Using these techniques , a s ignal as a 1-D function of tim e is m apped to 2-D phase or ray space,where each point can be associa ted with a geom etric optical ray. This space is param eterized by coordinate and m om entum . Twopossible param eterizations : (t im e – Doppler frequency) and (im pact param eter – bending angle) are linked to each other by acanonical transform . WDF dem onstra tes a higher resolution as com pared to spectrogram and m ore regular behavior as com paredto KDF. On the other hand, the evaluation of WDF requires high com putational cos ts , while the evaluation of KDF is fas t .In this s tudy, we apply the theory of WDF, KDF, and Fourier integral operators (FIOs) to develop a fas t a lgorithm of the evaluation ofWDF. We em ploy the fact that between WDF and KDF there are forward and inverse convolution rela tions . We cons ider the rotationgroup of the phase space. This group cons is ts of canonical transform s , which are im plem ented as FIOs describing the dynam ics ofthe harm onic oscilla tor. Such FIOs form the group of fractional Fourier transform s . The fundam ental property of WDF is itsinvariance with respect to canonical transform s . KDF does not possess this property. However, we cons ider KDF averaged over therota tion group. Because KDF equals WDF convolved with the corresponding kernel, its s tra ightforward to arrive at the express ion ofthe KDF averaged over the rota tion group. WDF is invariant, and, therefore, the averaged KDF equals WDF convolved with theaveraged convolution kernel. The latter is explicit ly expressed through Bessel function. Finally, this procedure results in WDFsm oothed over a quantum cell in the phase space.We im plem ented the algorithm num erically. The fractional Fourier transform can be represented as a com pos ition of m ultipliersand Fourier transform s , which m eans that it a llows a fas t num erical im plem entation. We perform averaging over a finite num ber ofrota tion angles , which allows the perform ance optim ization. We give exam ples of process ing artificia l and real RO events .

A new algorithm of evaluation of Wigner Distribution Function with application to radio occultation analysis

1 A.M.Obukhov Ins titute of Atm ospheric Phys ics ,2 Spire Global, Inc.,3 Hydrom eteorological Research Center of Russ ian Federation

Michael Gorbunov1,2,3, Oksana Koval1

Acknowledgement

This work was supported by Russian Foundation for Basic Research (grant No 20 -05 -00189 A).

Occultation Events Processing

KDF L1 KDF L2

WDF L1 WDF L2

Figure 3: Examples of KDF and WDF for COSMIC RO events.

Figure 4: Examples of KDF and WDF for Spire RO events . Despite the higher noise level in this figure,complicated multipath structures in the lower troposphere can be clearly identified in Spire WDF results .This is consistent with our observation that lower tropospheric statistics are very similar for Spire and CIIresults (see the poster by Irisov et al. at this Conference).

Figure 1:Real part of KDF of apodized monochromatic test signal for 𝛼𝛼 =0 Β°, 22.5 Β°, 45 Β°, 60 Β°, and 90 Β°, in unitless coordinates (𝑦𝑦, πœ‚πœ‚).

𝛼𝛼 =0 Β° 𝛼𝛼 = 22.5 Β° 𝛼𝛼 = 45 Β°

𝛼𝛼 = 60 Β° 𝛼𝛼 = 90 Β°.𝑦𝑦

𝑦𝑦 𝑦𝑦 𝑦𝑦

𝑦𝑦