a new subfamily classiï¬cation of the palm family (arecaceae

24
Botanical Journal of the Linnean Society, 2006, 151, 15–38. With 3 figures © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38 15 Blackwell Publishing LtdOxford, UKBOJBotanical Journal of the Linnean Society0024-4074The Linnean Society of London, 2006? 2006 151? 1538 Original Article PALM FAMILY PHYLOGENY C. B. ASMUSSEN ET AL. *Corresponding author. E-mail: [email protected] The Palms Guest edited by William J. Baker and Scott Zona A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA phylogeny CONNY B. ASMUSSEN 1 *, JOHN DRANSFIELD 2 , VINNIE DEICKMANN 1 , ANDERS S. BARFOD 3 , JEAN-CHRISTOPHE PINTAUD 4 and WILLIAM J. BAKER 2 1 Department of Ecology, Royal Veterinary and Agricultural University Copenhagen, Rolighedsvej 21, DK- 1958 Frederiksberg, Denmark 2 Herbarium, Royal Botanic Gardens, Kew, Surrey TW9 3AE, UK 3 Department of Biological Sciences, University of Aarhus, Ny Munkegade bygn. 541, DK-8000 Århus C, Denmark 4 Institut de Recherche pour le Développement, UMR DGPC/DYNADIV, 911 Avenue Agropolis BP 64501, 34394 Montpellier cedex 5, France Received June 2005; accepted for publication November 2005 Published phylogeny reconstructions of the palm family (Arecaceae) are based on plastid DNA sequences or restric- tion fragment length polymorphisms (RFLPs), nuclear DNA sequences, morphological characters or a combination thereof, and include between 33 and 90 palm species. The present study represents all previously recognized sub- families, tribes and subtribes of palms and 161 of the 189 genera. The plastid DNA region matK was sequenced for 178 palm species and ten commelinid monocot outgroup species, and was combined with new and previously pub- lished plastid DNA sequences of trnL–trnF, rps16 intron and rbcL. The addition of matK sequences and more taxa resulted in a highly resolved and largely well-supported phylogeny. Most importantly, critical basal nodes are now fully resolved and, in most cases, strongly supported. On the basis of this phylogeny, we have established a new sub- familial classification of the palms, in which five subfamilies are recognized, rather than the six that were included in the previous classification. The circumscriptions of the subfamilies Calamoideae and Nypoideae were corrobo- rated. The phylogeny supported a new circumscription for the subfamily Coryphoideae, including all taxa previously recognized in Coryphoideae with the addition of the tribe Caryoteae, formerly of the subfamily Arecoideae. The phylogenetic analysis also supported a new delimitation for the subfamily Ceroxyloideae that contains the tribes Cyclospatheae and Ceroxyleae, and all genera formerly included in the subfamily Phytelephantoideae, but excludes the tribe Hyophorbeae. Finally, the subfamily Arecoideae was modified to exclude the tribe Caryoteae and to include the tribe Hyophorbeae. © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38. ADDITIONAL KEYWORDS: matK – Palmae – rbcL – rps16 intron – trnL–trnF. INTRODUCTION The palm family (Arecaceae, Palmae) is resolved as a monophyletic group in all higher-level molecular studies of monocots (e.g. Chase et al., 2000; Asmus- sen & Chase, 2001). During the last 10 years, sub- stantial progress has been made in the understanding of the relationships within the fam- ily. Many estimates of palm phylogeny have been published at various taxonomic levels. Nevertheless, numerous ambiguities have persisted, hindering any attempt to rearrange the formal classification of the family, such as, for example, the placements of the tribes Cyclospatheae and Phoeniceae, and of the sub-

Upload: others

Post on 03-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Botanical Journal of the Linnean Society

, 2006,

151

, 15–38. With 3 figures

© 2006 The Linnean Society of London,

Botanical Journal of the Linnean Society,

2006,

151

, 15–38

15

Blackwell Publishing LtdOxford, UKBOJ

Botanical Journal of the Linnean Society

0024-4074The Linnean Society of London, 2006? 2006

151

?1538

Original Article

PALM FAMILY PHYLOGENYC. B. ASMUSSEN ET AL.

*Corresponding author. E-mail: [email protected]

The Palms

Guest edited by William J. Baker and Scott Zona

A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA phylogeny

CONNY B. ASMUSSEN

1

*, JOHN DRANSFIELD

2

, VINNIE DEICKMANN

1

, ANDERS S. BARFOD

3

, JEAN-CHRISTOPHE PINTAUD

4

and WILLIAM J. BAKER

2

1

Department of Ecology, Royal Veterinary and Agricultural University Copenhagen, Rolighedsvej 21, DK-1958 Frederiksberg, Denmark

2

Herbarium, Royal Botanic Gardens, Kew, Surrey TW9 3AE, UK

3

Department of Biological Sciences, University of Aarhus, Ny Munkegade bygn. 541, DK-8000 Århus C, Denmark

4

Institut de Recherche pour le Développement, UMR DGPC/DYNADIV, 911 Avenue Agropolis BP 64501, 34394 Montpellier cedex 5, France

Received June 2005; accepted for publication November 2005

Published phylogeny reconstructions of the palm family (Arecaceae) are based on plastid DNA sequences or restric-tion fragment length polymorphisms (RFLPs), nuclear DNA sequences, morphological characters or a combinationthereof, and include between 33 and 90 palm species. The present study represents all previously recognized sub-families, tribes and subtribes of palms and 161 of the 189 genera. The plastid DNA region

mat

K was sequenced for178 palm species and ten commelinid monocot outgroup species, and was combined with new and previously pub-lished plastid DNA sequences of

trn

L–

trn

F,

rps

16 intron and

rbcL

. The addition of

mat

K sequences and more taxaresulted in a highly resolved and largely well-supported phylogeny. Most importantly, critical basal nodes are nowfully resolved and, in most cases, strongly supported. On the basis of this phylogeny, we have established a new sub-familial classification of the palms, in which five subfamilies are recognized, rather than the six that were includedin the previous classification. The circumscriptions of the subfamilies Calamoideae and Nypoideae were corrobo-rated. The phylogeny supported a new circumscription for the subfamily Coryphoideae, including all taxa previouslyrecognized in Coryphoideae with the addition of the tribe Caryoteae, formerly of the subfamily Arecoideae. Thephylogenetic analysis also supported a new delimitation for the subfamily Ceroxyloideae that contains the tribesCyclospatheae and Ceroxyleae, and all genera formerly included in the subfamily Phytelephantoideae, butexcludes the tribe Hyophorbeae. Finally, the subfamily Arecoideae was modified to exclude the tribe Caryoteae andto include the tribe Hyophorbeae. © 2006 The Linnean Society of London,

Botanical Journal of the Linnean Society

,2006,

151

, 15–38.

ADDITIONAL KEYWORDS:

mat

K – Palmae –

rbc

L –

rps

16 intron –

trn

L–

trn

F.

INTRODUCTION

The palm family (Arecaceae, Palmae) is resolved as amonophyletic group in all higher-level molecularstudies of monocots (e.g. Chase

et al

., 2000; Asmus-sen & Chase, 2001). During the last 10 years, sub-

stantial progress has been made in theunderstanding of the relationships within the fam-ily. Many estimates of palm phylogeny have beenpublished at various taxonomic levels. Nevertheless,numerous ambiguities have persisted, hindering anyattempt to rearrange the formal classification of thefamily, such as, for example, the placements of thetribes Cyclospatheae and Phoeniceae, and of the sub-

16

C. B. ASMUSSEN

ET AL

.

© 2006 The Linnean Society of London,

Botanical Journal of the Linnean Society,

2006,

151

, 15–38

family Phytelephantoideae. In this paper, which isfocused strictly on the circumscription of palm sub-families, we shall refer primarily to those phylogenyreconstructions that explore the systematics of thefamily at the highest level (Uhl

et al

., 1995; Baker

et al

., 1999; Asmussen, Baker & Dransfield, 2000;Asmussen & Chase, 2001; Hahn, 2002a; Lewis &Doyle, 2002). We use the formal subfamily, tribaland subtribal names in the sense of Dransfield &Uhl (1998), who divided the family into six subfami-lies varying in size from one genus (subfamilyNypoideae) to 112 genera (subfamily Arecoideae; seeAppendix). For the subfamily Calamoideae, however,we use the classification of Baker, Dransfield & Hed-derson (2000a). This study provides part of the justi-fication for a forthcoming new classification of palmsbased on phylogenetic data (Dransfield

et al

., 2005);we make references to the new classification, whereappropriate, within the figures and in the discussionsection below.

C

URRENT

STATUS

OF

PALM

FAMILY

PHYLOGENETICS

Subfamilies Calamoideae and Nypoideae

The subfamily Calamoideae is resolved as mono-phyletic in all palm family phylogenies (Uhl

et al

.,1995; Baker

et al

., 1999, 2000a; Baker, Hedderson &Dransfield, 2000b, c; Asmussen

et al

., 2000; Asmussen& Chase, 2001; Lewis & Doyle, 2001; Hahn, 2002a).Baker

et al

. (2000a, b, c) explored the relationshipswithin this subfamily and proposed a new classifica-tion for the Calamoideae with three tribes and ninesubtribes based on a combination of molecular andmorphological data.

Nypa

, the sole representative of the subfamilyNypoideae, is always resolved on an isolated branchwhen maximum parsimony is employed as the opti-mality criterion (Uhl

et al

., 1995; Baker

et al

., 1999;Asmussen

et al

., 2000; Asmussen & Chase, 2001;Lewis & Doyle, 2001; Hahn, 2002a). In a few analysesusing maximum likelihood,

Nypa

is nested in variouspositions among members of the subfamily Calam-oideae or the subfamily Coryphoideae (Hahn, 2002a),but these relationships have received scant support inother systematic studies.

The Calamoideae and the Nypoideae are the princi-pal candidates for the position as the sister taxon tothe remaining members of Arecaceae. In two recentpapers with extensive taxon and nucleotide charactersampling, the subfamily Calamoideae was resolved assister to all other members of the palm family in totalevidence analyses based on parsimony (Asmussen &Chase, 2001; Hahn, 2002a). This finding contrastsmarkedly with the first phylogenetic study of palmsbased on restriction fragment length polymorphisms(RFLPs) and morphology, in which

Nypa

resolved as

sister to the remaining members of Arecoideae, withthe Calamoideae sister to all palms excluding

Nypa

(Uhl

et al

., 1995). However, this result was probablyinfluenced by the use of only one taxon as an outgroup,

Dioscorea

(Dioscoreaceae), which is only distantlyrelated to palms and commelinid monocots as a whole(Chase

et al

., 2000), thereby increasing the potentialfor a spurious rooting. In subsequent studies, Baker

et al

. (1999) and Asmussen

et al

. (2000) did not includenonpalm outgroups, due to alignment problems, root-ing their phylogenies internally on

Nypa

following Uhl

et al

. (1995). Although their methods were explicit,the results are prone to misinterpretation. However,another study, which included nonpalm outgroups,supports

Nypa

as sister to all other palms (Lewis &Doyle, 2001). Unfortunately, in none of these studiesare the relative positions of

Nypa

or the Calamoideaestrongly supported by bootstrap analysis, renderingthe results effectively equivocal.

Subfamily Coryphoideae

More than half the phylogenetic analyses of thepalm family based on DNA sequences do not resolvethe subfamily Coryphoideae as monophyletic (Baker

et al

., 1999; Asmussen

et al

., 2000; Asmussen &Chase, 2001; Hahn, 2002a). However, the plastidRFLP phylogeny of Uhl

et al

. (1995), in which thetaxonomic sampling was heavily biased towardscoryphoids, resolved subfamily Coryphoideae includ-ing the tribe Caryoteae from the subfamilyArecoideae as a monophyletic group. The study ofLewis & Doyle (2001), based on DNA sequences of thenuclear gene, malate synthase, and that of Hahn(2002a), based on a combined, reduced data set,resolved the Coryphoideae as monophyletic. It shouldbe noted, however, that the sample size was small inboth cases. Many data sets group the tribe Caryoteaeof the subfamily Arecoideae together with members ofthe subfamily Coryphoideae, often with close relation-ships to the subtribe Coryphinae or the tribe Boras-seae (Uhl

et al

., 1995; Asmussen

et al

., 2000;Asmussen & Chase, 2001; Hahn, 2002a).

Subfamilies Ceroxyloideae and Phytelephantoideae

It is clear from most phylogenetic analyses that thesubfamily Ceroxyloideae (

sensu

Dransfield & Uhl,1998) is not monophyletic (Uhl

et al

., 1995; Baker

et al

., 1999; Asmussen

et al

., 2000; Asmussen &Chase, 2001; Lewis & Doyle, 2001; Hahn, 2002a, b).One tribe, the Hyophorbeae, is consistently resolvedwith members of the subfamily Arecoideae. The exactrelationships and positions of the tribes Ceroxyleaeand Cyclospatheae are not yet clear, however. In con-trast, the subfamily Phytelephantoideae is alwaysresolved as monophyletic (Uhl

et al

., 1995; Asmussen

et al

., 2000; Asmussen & Chase, 2001; Hahn, 2002a)

PALM FAMILY PHYLOGENY

17

© 2006 The Linnean Society of London,

Botanical Journal of the Linnean Society,

2006,

151

, 15–38

with the exception of Baker

et al

. (1999), where thetwo included species are unresolved in a polytomy atthe base of the Arecoid line (Moore, 1973).

Recent studies provide modest support for a clade ofPhytelephantoideae, Ceroxyloideae, and Arecoideae, agroup that is equivalent to the Arecoid line

sensu

Moore (1973; Asmussen & Chase, 2001; Hahn, 2002a,b). Various studies give indications of potential rela-tionships between the Ceroxyleae, Cyclospatheae, andPhytelephantoideae, or between at least two of thethree groups (Uhl

et al

., 1995; Asmussen & Chase,2001; Hahn, 2002a, b). Most strikingly, Asmussen &Chase (2001) provided evidence, albeit weakly sup-ported, that Phytelephantoideae, Cyclospatheae andCeroxyleae form a monophyletic sister group to thesubfamily Arecoideae.

Subfamily Arecoideae

Most studies point towards a broadly monophyleticsubfamily Arecoideae, with the majority includingthe tribe Hyophorbeae (subfamily Ceroxyloideae) andexcluding the tribe Caryoteae (Uhl

et al

., 1995; Baker

et al

., 1999; Asmussen

et al

., 2000; Asmussen &Chase, 2001; Hahn, 2002a, b).

P

OTENTIAL

FOR

REVISION

OF

THE

CURRENT

CLASSIFICATION

Although much progress has been made towards arobust phylogeny of the palm family, a major revisionof the prevailing classification based on publishedphylogenetic hypotheses is premature. At the highestlevel in particular, the lack of resolution and bootstrapsupport at the basal nodes forming the backbone ofthe phylogeny seriously hinders the production of arobust, lasting, circumscription of subfamilies. Forreasons outlined above, three of the current subfami-lies are in particular need of clarification, namelyCoryphoideae, Ceroxyloideae and Phytelephantoi-deae. The objectives of this study were to explore fur-ther the phylogeny of the palm family by building onprevious studies (Baker

et al

., 1999; Asmussen

et al

.,2000; Asmussen & Chase, 2001) with substantiallyexpanded taxon sampling and by adding the plastidDNA region

mat

K to the pre-existing selection of plas-tid DNA regions (

trn

L–

trn

F,

rps

16 intron and

rbc

L)used in these studies, and to use our findings to pro-pose a formal revision of the subfamily classification ofthe Arecaceae.

MATERIAL AND METHODS

S

AMPLING

This study included 178 palm species, representing162 of the 189 genera recognized in the 1998 treat-ment of Arecaceae (Dransfield & Uhl, 1998). All 36

subtribes, 14 tribes and six subfamilies in the classi-fication of Uhl & Dransfield (1987) and all 36 sub-tribes, 14 tribes and six subfamilies of Dransfield &Uhl (1998; see Appendix) were represented. All tribesand subtribes of the revised classification of theCalamoideae of Baker

et al

. (2000a) were also repre-sented. The

mat

K region was chosen as an additionalplastid DNA region because it has provided many par-simony-informative characters in other monocot stud-ies. Other plastid DNA regions (

rpl

16,

rpo

C, and

ndh

F) were tested on a small sample of species aspotential new plastid DNA markers, but these regionsshowed amplification difficulties, whereas

mat

Kamplified readily in all palm test samples. All

mat

Ksequences were produced for this study and are pub-lished here for the first time. In addition,

rbc

L,

rps

16,and

trnL–trnF sequences for taxa not previouslyincluded in our data sets were generated; all otherdata were recycled from three previous studies (Bakeret al., 1999; Asmussen et al., 2000; Asmussen &Chase, 2001; see Appendix). Ten monocot outgroupspecies were selected from among the clades mostclosely related to the palm family (Chase et al., 2000;see Appendix).

DNA EXTRACTION, POLYMERASE CHAIN REACTION (PCR) AND NUCLEOTIDE SEQUENCING

Total genomic DNA was extracted from fresh or silicagel-dried plant material using the 2× CTAB method ofDoyle & Doyle (1987) or the DNeasy Plant Mini Kit(Qiagen). Some of the 2× CTAB extractions were fol-lowed by purification on caesium chloride/ethidiumbromide gradients (1.55 g ml−1) or with the QIAquickPCR purification kit (Qiagen) with 35% guanidiniumchloride ((NH2)2C:NH.HCl). The DNA concentrationswere measured on a biophotometer (Eppendorf). Allsamples were vouchered with herbarium specimens(see Appendix).

The matK sequences were amplified from totalgenomic DNA using the primer matK-19F with trnK-2R (Table 1; Steele & Vilgalys, 1994). If amplificationwas unsuccessful, reactions were repeated usingmatK-19F with matK-1862R or in two pieces with anycombination of the available primers (Table 1). PCRreactions (100 µl) were prepared on ice by combining65 µl ddH2O, 10 µl 10× DNA polymerase buffer, 8 µl20 µmol l−1 MgCl2, 4 µl 10 mmol l−1 each dNTP, 1 µl10 mg ml−1 bovine serum albumin, 5 µl of each primer(10 µmol l−1), 1 µl 5 µ µl−1 Supertaq DNA polymerase(HT Biotechnology), and 25 ng of template DNA. Theamplifications were conducted on an MJ ResearchPTC-200 thermocycler programmed as follows: onecycle at 94 °C for 3 min, 28 cycles of 94 °C for 1 min,50 °C (or up to 60 °C for problematic DNA samples) for1 min, and 72 °C for 2 min, and a final cycle at 72 °C

18 C. B. ASMUSSEN ET AL.

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

for 5 min. The resulting PCR products were checkedon a 0.8% agarose gel with ethidium bromide and puri-fied using the QIAquick PCR purification kit (Qiagen)with 35% guanidinium chloride ((NH2)2C:NH.HCl).The amplification primers and protocols for the rbcLregion were those described in Asmussen & Chase(2001); a new primer, rbcL-1407R was designed andused for DNAs that would not amplify with rbcL-reverse (Fay et al., 1998). The rps16 intron region wasamplified using the primers of Oxelman, Lidén &Berglund (1997) and the protocols of Asmussenet al. (2000). The trnL–trnF region was amplified usingthe primers of Taberlet et al. (1991) and the protocolsfor amplification followed Asmussen et al. (2000)and Baker et al. (1999).

The concentrations of purified PCR products weremeasured on a biophotometer and the products weresequenced using the ABI PRISM BigDye terminatorcycle sequencing ready reaction kit (Perkin-Elmer, ABApplied Biosystems). For matK, the PCR amplificationprimers, matK-19F and trnK-2R, performed poorly assequencing primers and therefore six new primerswere designed as sequencing primers (Table 1). Thesequencing primers for rbcL, rps16 and trnL–trnFwere those described in Asmussen & Chase (2001),Asmussen et al. (2000) and Baker et al. (1999) inaddition to the new rbcL-1407R (Table 1). Cycle-sequencing reactions (10 µl) were prepared by combin-ing 1 µl terminator mix, 3 µl 5× cycle-sequencingbuffer (200 mmol l−1 trizma base, 5 mmol l−1 MgCl2,pH 9.0, from the BigDye terminator kit), 1 µl primer(1 µmol l−1), 25 ng DNA from the cleaned PCR productand ddH2O up to 10 µl. Cycle sequencing was con-ducted on an MJ Research PTC-200 thermocycler pro-grammed as follows: 25 cycles of 96 °C for 30 s, 50 °Cfor 15 s and 60 °C for 4 min

Cycle-sequencing products were cleaned usingDye-Ex Spin columns (Qiagen) or Sephadex G-50(Roche) following the protocol of the manufacturer.The cleaned cycle-sequencing products were analysedon a PE Applied Biosystems 377 automated DNA

sequencer (Perkin-Elmer) or a PE Applied Biosystems3100 capillary automated DNA sequencer (Perkin-Elmer). Each base position in the forward and reversesequences was checked and assembled using the pro-gram SEQUENCHER 3.0 (Gene Codes Corp.).

SEQUENCE ALIGNMENT

Initial automated alignments of consensus sequenceswere performed with the MegAlign program (Laser-gene software package, DNASTAR Inc.) and followedby refinement by hand. The alignment of rbcLsequences was straightforward due to the absence oflength variation. The alignment of matK was also rel-atively straightforward except for a number of indelsat the 3′ end. For the length-variable rps16 intron andtrnL–trnF sequences, the alignments included numer-ous indels, but they were not recoded as additionalcharacters. The aligned matK, rbcL, rps16 intron andtrnL–trnF sequence matrices were combined andanalysed together. For separate analyses of rbcL,rps16 intron and trnL–trnF, see Asmussen & Chase(2001), Asmussen et al. (2000) and Baker et al. (1999).

CLADISTIC ANALYSES

The four data sets were readily combined because theyall originated from plastid DNA and therefore haveidentical evolutionary history, which makes congru-ence tests superfluous. However, the tree statisticsindicate that the individual data sets are compatible,because the number of nodes, the number of supportednodes and the number of highly supported nodesincrease in the result of the analysis of the combineddata set (Table 2). The data sets were analysed byFitch parsimony (Fitch, 1971; unordered, equallyweighted characters) using PAUP* version 4.0 Beta 10(Swofford, 2002). The analyses yielded many trees,principally because of zero-length branches resultingfrom an inadequate number of informative characters.Thus, heuristic searches could not be run to com-pletion. Therefore, the following search strategywas used. One thousand random replicate searcheswere conducted using the tree–bisection–reconnection(TBR) branch-swapping algorithm with steepestdescent and MULPARS in effect, but holding five treesper step to minimize the time spent swapping on sub-optimal trees. A round of TBR swapping was per-formed on the trees collected during the 1000 randomreplicates, collecting 30 000 optimal trees, and thesetrees were swapped to completion. Support for cladeswas calculated by conducting 1000 bootstrap repli-cates, each with five random replicates, subtree prun-ing–regrafting (SPR) swapping, and saving no morethan five trees each replicate. Only groups thatappeared in > 50% of the trees were retained. Jack-

Table 1. Primer sequences designed for this project andnot previously published

Primer name Primer sequence

MatK-300F 5′-AGT TCA GTA CTT GTR AAA CG-3′MatK-445R 5′-GGG AAG ATA CTA ATC GCA GC-3′MatK-809F 5′-CGA TTA ACA TCT TCT GGA GC-3′MatK-971R 5′-ATG CAT GAA GGG ATC CTT GA-3′MatK-1315F 5′-TCG TGT GCT AGA ACT TTG GC-3′MatK-1334R 5′-GCC AAA GTT CTA GCA CAC GA-3′MatK-1862R 5′-CAT TGC ACA CGA CTT TAC C-3′RbcL-1407R 5′-CCA GCT TAT CTA CTG GTT CG-3′

PALM FAMILY PHYLOGENY 19

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

knife percentages and Bremer support values werecalculated for the subfamily clades and the majornodes connecting the subfamilies. A 10 000 replicatejackknife analysis was conducted with collapsebranches if the minimum length was zero, jackknifewith 36.79% deletion, emulate ‘Jac’ resampling ineffect, and a full heuristic search of five replicates,saving a maximum of five trees each replicate andnearest-neighbour interchange swapping. Bremersupport was calculated using the ‘load constraint’option, and for each node conducting 1000 randomreplicate searches using the TBR branch-swappingalgorithm with steepest descent and MULPARS ineffect and holding five trees per step. All parsimonyanalyses were performed under DELTRAN due to themalfunction of ACCTRAN in PAUP* 4b version 10.

RESULTS

SEQUENCE VARIATION

The length of sequences from the matK region (ampli-fication product of matK-19F and trnK-2R) in palmsranged from 1800 (Mauritia flexuosa) to 1847 basepairs (Kerriodoxa elegans). Most of matK and part ofthe spacer between matK and the 3′ end of the splitgene trnK were included in the alignment. The begin-ning of matK could not be identified and the last c.100 base pairs of the spacer before the 3′ end of trnKwere excluded from the alignment and analysesbecause many sequences lacked these positions due todifferences in the reverse primer used to obtain thePCR product. The data matrix thus consisted of 2385positions, of which 553 (23.19%) were potentially par-simony informative (Table 2). Approximately 50 gapareas varying from 1 to 204 bases in length were intro-duced. The larger gaps were distributed in the inter-genic spacer between matK and the 3′ end of trnK.

Only the coding region of the rbcL amplificationproduct was included in the alignment (1434 base

pairs), and the first 57 and the last 71 base pairs of therbcL gene were excluded from the analysis becausemost sequences lacked these positions (primer anneal-ing regions). The data matrix thus consisted of 1306positions, of which 192 (14.7%) were potentiallyparsimony informative (Table 2). No gaps wereintroduced.

The length of the rps16 intron sequences in palmsranged from 686 (Kerriodoxa elegans) to 954 (Maxbur-retia rupicola) bases. This is the entire intron exceptfor the first 31 and the last 5 base pairs. The align-ment consisted of 1569 positions (Table 2). There were248 (15.81%) potentially parsimony-informative char-acters. Sixty gaps varying from 1 to 341 bases inlength were introduced.

The length of the trnL–trnF sequences in palmsranged from 776 (Hedyscepe canterburyana) to884 base pairs (Wettinia hirsuta). The alignmentconsisted of 1842 positions and no characters wereexcluded on the grounds of problematic alignmentareas (Table 2). There were 219 (11.89%) potentiallyparsimony-informative characters. Fifty-five gapsvarying from 1 to 166 base pairs in length were intro-duced in the alignment.

The combined matrix of matK, rbcL, rps16 intronand trnL–trnF consisted of 7102 characters, allincluded in the analyses (Table 2). There were 1212(17.07%) potentially parsimony-informative charac-ters. No characters were excluded on the grounds ofproblematic alignment areas. The 1212 potentiallyparsimony-informative characters included 844 char-acters without any gap positions and 368 characterswith at least one gap position among the 188 includedtaxa.

The 30 000 equally most-parsimonious trees col-lected in the Fitch parsimony analysis were 4176 stepslong and had a consistency index of 0.44 (exclud-ing autapomorphies) and a retention index of 0.69(Table 2). The tree lengths of the cladograms resulting

Table 2. Tree statistics for each of the individual data sets (rbcL, trnL–trnF, rps16 intron, matK) and for the combinedrbcL, trnL–trnF, rps16 intron and matK data set

rbcL TrnL–trnF rps16 intron matK Combined

Length of alignment 1 306 1 842 1 569 2 385 7 102Number of parsimony-informative characters 192 219 248 553 1 212Tree lengths 762 655 754 1 809 4 176Number of trees > 30 000 > 30 000 > 30 000 > 30 000 > 30 000Consistency index 0.33 0.53 0.53 0.47 0.44Retention index 0.65 0.70 0.71 0.74 0.69Number of nodes in strict consensus tree 65 35 54 90 125Number of nodes with > 50% bootstrap support 16 30 45 75 99Number of nodes with > 90% bootstrap support 4 4 9 28 40

20 C. B. ASMUSSEN ET AL.

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

from the combined analyses were longer than thecombined lengths of the four individual data sets(762 + 655 + 754 + 1809 = 3980), indicating that thecombined analysis recovered homoplasy not present ineach of the individual analyses.

PHYLOGENETIC ANALYSES

The strict consensus tree of the combined data set waswell resolved and included many well-supportedclades (Fig. 1). The palm family was resolved as mono-phyletic with a bootstrap support of 100%. The mostresolved individual tree had seven polytomies of threetaxa each (Fig. 2). Five of these seven polytomies ofthe most resolved individual tree were present in allindividual trees (Fig. 2, arrows 1–5). Polytomy 6,including four coryphoid taxa, and polytomy 7, com-prising three large clades in the subfamily Arecoideae,were present only in a subgroup of the 30 000 most-parsimonious trees (Fig. 2, arrows 6 and 7). Five of theseven polytomies were positioned in the subfamilyArecoideae, where particularly backbone branchlengths were short compared with backbone branchlengths within the other four subfamilies (Fig. 2).

In the strict consensus tree, the monophyletic (100%bootstrap) subfamily Calamoideae (Fig. 1, clade 1) wasresolved as sister to the rest of the palms. WithinCalamoideae, Eugeissona (tribe Eugeissoneae) wassister to the rest of the Calamoideae (59% bootstrapsupport). Additionally, Calamoideae were divided intotwo large monophyletic groups corresponding to thetwo tribes Lepidocaryeae (91% bootstrap support) andCalameae (70% bootstrap support). The Lepidocar-yeae clade consisted of the African and American taxaMauritia (subtribe Mauritiinae), Raphia (subtribeRaphiinae) and Oncocalamus, Laccosperma and Ere-mospatha (all three from the subtribe Ancistrophylli-nae). The Calameae clade consisted of the largelySouth-east Asian taxa Korthalsia (Korthalsiinae),Salacca (Salaccinae), Calamus (Calaminae), Pigafetta(Pigafettinae), Plectocomia (Plectocomiinae) andMetroxylon (Metroxylinae).

Nypa fruticans, from the monospecific subfamilyNypoideae, was sister to the remaining palms (namelyCalamoideae not included) with a bootstrap support of97% (Fig. 1, clade 2).

The subfamily Coryphoideae, including Caryoteaefrom the subfamily Arecoideae, formed a monophyleticlineage with bootstrap support of 97% (Fig. 1, clade 3).All taxa in this clade have induplicate leaves, exceptfor the anomalous coryphoid genus Guihaia. Threemajor clades received high bootstrap support. The firstof these, with bootstrap support of 98%, consistedentirely of the New World taxa: the genus Sabal (100%bootstrap support; Fig. 1, clade a), sole member of thesubtribe Sabalinae (tribe Corypheae), and the New

World genera of the subtribe Thrinacinae (tribe Cory-pheae; 100% bootstrap support; Fig. 1, clade b). Thesecond major clade, which was weakly supported (61%bootstrap support) as sister to the third (describedbelow), was resolved with 99% bootstrap support andconsisted of exclusively Old World taxa: a highly cor-roborated (100% bootstrap support) monophyleticgroup of three members of the subtribe Coryphinae(Nannorrhops, Kerriodoxa and Chuniophoenix; Fig. 1,clade c), a highly supported (100% bootstrap support)tribe Caryoteae (subfamily Arecoideae, Fig. 1, clade d),the genus Corypha (subtribe Coryphinae; 100% boot-strap support; Fig. 1, clade e) and a highly supported(100% bootstrap support) tribe Borasseae (Fig. 1,clade f). The clade comprising Caryoteae, Corypha andthe Borasseae was monophyletic with bootstrap sup-port of 91%, whereas the support for Corypha as sisterto the Borasseae was low (66% bootstrap support). Thethird major clade received 86% bootstrap support andconsisted of the monogeneric tribe Phoeniceae (100%bootstrap support; Fig. 1, clade g) and a highly sup-ported (99% bootstrap support) clade composed of aparaphyletic subtribe Livistoninae (tribe Corypheae)within which a monophyletic, well-supported (86%bootstrap support) clade of all Old World genera ofThrinacinae (tribe Corypheae) was embedded (Fig. 1,clade h).

There was 85% bootstrap support for the clade cor-responding to Moore’s (1973) Arecoid Line comprisingthe subfamilies Ceroxyloideae, Phytelephantoideaeand Arecoideae, excluding Caryoteae (Fig. 1, clades 4and 5). The subfamily Phytelephantoideae was mono-phyletic (99% bootstrap support) and together withtwo monophyletic tribes, Cyclospatheae (100% boot-strap support) and Ceroxyleae (99% bootstrap sup-port) of the subfamily Ceroxyloideae is denoted asclade 4 on Figure 1 (63% bootstrap support).

The remaining large clade (Fig. 1, clade 5) wasweakly supported (70% bootstrap support) and con-sisted of all genera from the subfamily Arecoideae,except for Caryoteae, with the addition of the tribeHyophorbeae (subfamily Ceroxyloideae). The tribe Iri-arteeae was monophyletic (98% bootstrap support)and sister to a clade (76% bootstrap support) of theremaining members of clade 5. Within this latterclade, the base of which is highly unresolved, Som-mieria and Pelagodoxa (subtribe Iguanurinae) formeda monophyletic group (94% bootstrap support). Themonophyly of the tribe Hyophorbeae (subfamilyCeroxyloideae) was highly supported by bootstrap(100%). The tribe Geonomeae was resolved as non-monophyletic, Welfia and Pholidostachys forming aclade with Manicaria (subtribe Manicariinae; 89%bootstrap support), whereas a clade of Asterogyne,Geonoma, Calyptronoma and Calyptrogyne (80% boot-strap support) resolved elsewhere. The latter group of

PALM FAMILY PHYLOGENY 21

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

Geonomeae was sister to a monophyletic subtribeEuterpeinae (56% bootstrap support). The tribeCocoeae was not supported as monophyletic: Beccari-ophoenix (subtribe Beccariophoenicinae) was sister toSclerosperma (Sclerospermatinae) with less than 50%bootstrap support. The remaining members of Cocoeaeformed an unsupported monophyletic group withReinhardtia as the sister group, again without sup-port. The subtribe Elaeidinae (Elaeis) was included ina monophyletic group with the subtribe Bactridinae(Desmoncus, Bactris, Aiphanes and Acrocomia; 73%bootstrap support); and the subtribes Butiinae (Alla-goptera, Syagrus, Cocos, Voanioala, Jubaeopsis) andAttaleinae (Attalea) formed a well-supported mono-phyletic group (91% bootstrap). Most of the speciesrepresenting Indo-Pacific pseudomonomerous generafrom the tribe Areceae resolved in an unsupported andhighly unresolved clade, with some notable exceptions(Pelagodoxa, Sommieria, Iguanura). However, numer-ous smaller groups were resolved within this clade.Two subtribe Arecinae species pairs, Areca triandraand Nenga pumila, and Hydriastele microspadix andH. chaunostachys, the latter representing the recentlysynonymized genus Gronophyllum (Baker & Loo,2004) constituted monophyletic lineages with 84 and78% bootstrap support, respectively, but were notresolved as sister groups. Further clades resolvedwithin the Indo-Pacific pseudomonomerous Areceaeclade and supported by bootstrap include: Rho-palostylis baueri and Hedyscepe canterburyana (sub-tribe Archontophoenicinae; 53% bootstrap support),Masoala (subtribe Masoalinae; 82% bootstrap sup-port), Marojejya (subtribe Masoalinae; 93% bootstrapsupport), Basselinia and Alloschmidia (subtribe Igua-nurinae; 87% bootstrap support), Acanthophoenix,Tectiphiala and Oncosperma (subtribe Oncosper-matinae; 50% bootstrap support), Heterospathe andAlsmithia (subtribe Iguanurinae; 80% bootstrapsupport), Laccospadix and Linospadix (subtribe Lino-spadicinae; 99% bootstrap support), Cyphokentia,Moratia, Lavoixia, Brongniartikentia and Clino-sperma (subtribe Iguanurinae; 63% bootstrap sup-port), and Ptychosperma, Ponapea, Balaka, Veitchia,Carpentaria, Wodyetia, Brassiophoenix and Ptycho-coccus (subtribe Ptychospermatinae; 62% bootstrapsupport).

DISCUSSION

THE SEQUENCES

The matK sequences produced more than twice thenumber of parsimony-informative characters (553) forthe same taxon sample when compared with the otherregions: rbcL (192), trnL–trnF (219) and rps16 intron(248; Table 2). This is in agreement with the resultsfrom other studies where two or more of these plastid

DNA areas were used (Shaw et al., 2005). The rbcLgene produced the fewest parsimony-informativecharacters (192), but these variable charactersresulted in 65 resolved nodes in the palm family,whereas the trnL–trnF region and the rps16 intronproduced only 35 and 54 resolved nodes, respectively,despite supplying more informative characters (219and 248; Table 2). The number of clades with morethan 90% bootstrap support was relatively low in eachof the individual data sets (four, four and nine), exceptfor matK (28), but the combined data set produced thelargest number of highly supported (> 90%) clades (40;Table 2).

THE NEW SUBFAMILY CLASSIFICATION

The dense taxon sampling and the large number ofnucleotide characters included in this study and thehigh levels of resolution and support in the resultingtrees are unprecedented in higher-level palm phyloge-netic research. Our results are sufficiently robust tojustify a formal reclassification of palm subfamiliesand are equally convincing at lower taxonomic levelsin some areas (Fig. 3). Herein, we describe the ratio-nale for recognizing five subfamilies in a forthcomingformal reclassification of the palms (Dransfield et al.,2005).

Subfamily placements for most genera of palmsremain unchanged in the majority of cases withrespect to the previous classification (Uhl & Drans-field, 1987; Dransfield & Uhl, 1998; see Appendix).Nevertheless, the new subfamily classificationrequires three major rearrangements (Figs 1, 2): (1)the tribe Caryoteae from the subfamily Arecoideaesensu Dransfield & Uhl (1998) is moved to a revisedsubfamily Coryphoideae; (2) subfamily Phytelephan-toideae changes rank to tribe Phytelephanteae and isincluded within the new circumscription of the sub-family Ceroxyloideae; and (3) the tribe Hyophorbeaefrom the subfamily Ceroxyloideae (sensu Dransfield &Uhl, 1998) is moved to the subfamily Arecoideae.

SUBFAMILIES CALAMOIDEAE AND NYPOIDEAE

This study strongly supports the monophyly of thesubfamily Calamoideae and firmly positions it as sis-ter to the rest of the palms (Fig. 1, clade 1). Moreover,our results corroborate those of Asmussen & Chase(2001) and the total evidence analyses of Hahn(2002a). The tribal and subtribal classification ofCalamoideae (Baker et al., 2000a) is also corroboratedin this study. The position of the subfamily Nypoideaeas sister to all palms excluding Calamoideae isstrongly supported and its status as a monogenericsubfamily is confirmed, in accordance with all previ-ous studies (Fig. 1, clade 2; Uhl et al., 1995; Baker

22 C. B. ASMUSSEN ET AL.

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

Figure 1. The strict consensus tree of 30 000 equally most-parsimonious cladograms resulting from Fitch parsimonyanalyses of combined matK, rbcL, rps16 intron and trnL–trnF data sets. Bootstrap percentages for the clades are givenabove the branches. Five clades are labelled 1–5 for the discussion of the new subfamily classification in the text. Theclades corresponding to the five subfamilies of the new classification are labelled with the subfamily name. Another eightclades are labelled a–h for the discussion of the new tribal classification within the subfamily Coryphoideae. The changesto the classification of Dransfield & Uhl (1998) are indicated with boxes to the right.

Ceroxylon quindiuenseJuania australisOraniopsis appendiculataRavenea louveliiAphandra nataliaPhytelephas aequatorialisAmmandra decaspermaPhytelephas macrocarpaPseudophoenix sargentiiPseudophoenix viniferaMaxburrrtia rupicolaRhapis excelsaRhapidophyllum hystrixGuihaia argyrataTrachycarpus fortuneiChamaerops humilisBrahea berlandieriAcoelorrhaphe wrightiiSerenoa repensColpothrinax wrightiiPritchardia arecinaPritchardia pacificaWashingtonia robustaJohannesteijsmannia altifronsPholidocarpus macrocarpusPritchardiopsis jeanneneyiLicuala kunstleriLivistona chinensisCopernicia pruniferaPhoenix reclinataPhoenix dactyliferaPhoenix canariensisBismarckia nobilisSatranala decussilvaeHyphaene thebaicaMedemia argunBorassodendron machadonisBorassus flabilliferLodoicea maldivicaLatania verschaffeltiiCorypha umbraculiferaCorypha talieraArenga hookerianaArenga undulatifoliaWallichia disticaCaryota mitisCaryota ophiopellisKerriodoxa elegansNannorrhops ritchianaChuniophoenix nanaHemithrinax compactaThrinax morrisiiSchippia concolorTrithrinax campestrisZombia antillarumCoccothrinax argentataThrinax radiataChelyocarpus uleiCryosophila warscewiczianaItaya amicorumSabal bermudanaSabal minorNypa fruticansMetroxylon salomonensePlectocomia mulleriPigafetta elataCalamus aruensisSalacca ramosianaKorthalsia chebEremospatha wendlandianaLaccosperma acutiflorumOncocalamus tuleyiRaphia fariniferaMauritia flexuosaEugeissona tristisHanguana malayanaTradescantia pallidaAnigozanthos manglesiiCanna edulisMusa roseaFargesia sp.Typha angustifoliaVriesia psittacinaDasypogon bromelifoliusKingia australis

SUBFAMILY ARECOIDEAE

100

PALMS

4

3

2

1

5

100

97

97

57

100

100

100

63

8386

100

62

66

10091

7070

9453

100

100

98

70

63100

9896

8710099

61

91

66

100

100

6555

92

7182

58

86

10067

99

100

53

86

75

85

63

100

67

99

9991

58

70

82

100

Caryoteae, formerlyArecoideae

FormerlyPhytelephantoideae

SUBFAMILY CEROXYLOIDEAE

SUBFAMILY CORYPHOIDEAE

SUBFAMILY NYPOIDEAE

SUBFAMILY CALAMOIDEAE

continued

b

a

f

g

h

e

d

c

59

52

52

PALM FAMILY PHYLOGENY 23

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

Ptychosperma macarthuriiPonapea ledermannianusBalaka seemanniiVeitchia arecinaCarpentaria arcuminataWodyetia bifurcataBrassiophoenix schumanniiPtychococcus paradoxusCyphokentia macrostachysMoratia ceriferaLavoixia macrocarpaBrongniartikentia lanuginosaClinosperma bractealeLinospadix monostachyaLaccospadix australasicaDransfieldia micranthaHeterospathe elataHeterospathe longipesCarpoxylon macrospermumSatakentia liukiuensisBentinckia nicobaricaClinostigma savoryanumAcanthophoenix rubraTectiphiala feroxOncosperma tigillariumAreca triandraNenga pumilaAlloschmidia glabrataBasselinia velutinaMarojejya darianiiMarojejya insignisMasoala madagascariensisMasoala konaRhopalostylis baueriHedyscepe canterburyanaHydriastele microspadixHydriastele chaunostachys

Actinorhytis calappariaArchontophoenix purpureaActinokentia divaricataChambeyronia macrocarpaKentiopsis oliviformisCampecarpus fulcitusCyphophoenix nucele

Cyphosperma balansaePhysokentia rosea

Veillonia albaNeoveitchia storckiiDypsis lutescensLemurophoenix halleuxiiCalyptrocalyx albertisianaPhoenicophorium borsigianumRoscheria melanochaetesCyrtostachys rendaDictyosperma albumLepidorrhachis mooreanaLoxococcus rupicolaRhopaloblaste augustaAllagoptera arenariaSyagrus smithiiAttalea alleniiCocos nuciferaVoanioala gerardiiJubaeopsis caffraAcrocomia aculeataAcrocomia crispaAiphanes aculeataBactris gasipaesDesmoncus orthacanthosElaeis guineensisReinhardtia simplexPrestoea pubensNeonicholsonia watsoniiEuterpe oleraceaHyospathe macrorhachisCalyptrogyne ghiesbreghtianaCalyptronoma occidentalisGeonoma congestaAsterogyne martianaChamaedorea microspadixGaussia mayaSynechanthus warscewiczianusHyophorbe lagenicaulisWendlandiella gracilisWelfia regiaPholidostachys pulchraManicaria saccifera

Podococcus barteriPodococcus barteriSclerosperma manniiBeccariophoenix madagascariensisPelagodoxa henryanaSommieria leucophyllaOrania lauterbachianaOrania ravakaRoystonea oleracea

Leopoldinia pulchra

Iguanura wallichianaIriartella stenocarpaWettinia hirsutaDictyocaryum lamarckianum

5

Socratea exorrhizaIriartea deltoidea

70

98

77

76

78

80

53

99

52

93

82

62

84

87

81

100

94

92

99

66

8574

8091

60

73

80

91

100

56

8282

6589

56

5094

8763

99

Hyophorbeae, formerlyCeroxyloideae

SUBFAMILY ARECOIDEAE

continued

53

92

51

61

Figure 1. Continued

24 C. B. ASMUSSEN ET AL.

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

Ptychosperma macarthuriiPonapea ledmannianus

Balaka seemanniiVeitchia arecina

Carpentaria arcuminataWodyetia bifurcata

Brassiophoenix schumanniiPtychococcus paradoxus

Lepidorrhachis mooreanaArchontophoenix purpurea

Cyphophoenix nuceleVeillonia alba

Rhopalostylis baueriHedyscepe canterburyanaCyphosperma balansae

Physokentia roseaAlloschmidia glabrata

Basselinia velutinaCalyptrocalyx albertisiana

Neoveitchia storckiiCyphokentia macrostachysMoratia cerifera

Lavoixia macrocarpaBrongniartikentia lanuginosaClinosperma bracteale

Linospadix monostachyaLaccospadix australasica

Dransfieldia micranthaHeterospathe elata

Heterospathe longipesActinorhytis calapparia

Chambeyronia macrocarpaKentiopsis oliviformis

Actinokentia divaricataMasoala madagascariensis

Masoala konaRoscheria melanochaetesHydriastele microspadix

Hydriastele chaunostachysCarpoxylon macrospermum

Satakentia liukiuensisBentinckia nicobarica

Clinostigma savoryanumDictyosperma album

Lemurophoenix halleuxiiLoxococcus rupicola

Rhopaloblaste augustaMarojejya darianii

Marojejya insignisDypsis lutescens

Acanthophoenix rubraTectiphiala ferox

Oncosperma tigillariumAreca triandra

Nenga pumilaCyrtostachys renda

Phoenicophorium borsigianumCampecarpus fulcitus

Pelagodoxa henryanaSommieria leucophylla

Iguanura wallichianaPrestoea pubensNeonicholsonia watsonii

Euterpe oleraceaHyospathe macrorhachisCalyptrogyne ghiesbreghtia

Calyptronoma occidentalisGeonoma congestaAsterogyne martiana

Welfia regiaPholidostachys pulchraManicaria sacciferaOrania ravaka

Leopoldinia pulchraOrania lauterbachiana

Allagoptera arenariaSyagrus smithii

Attalea alleniiCocos nucifera

Voanioala gerardiiJubaeopsis caffra

Gastrococos crispaBactris gasipaes

Aiphanes aculeataDesmoncus orthacanthos

Acrocomia aculeataElaeis guineensisReinhardtia simplex

Chamaedorea microspadixGaussia maya

Synechanthus warscezianusHyophorbe lagenicaulis

Wendlandiella gracilisPodococcus barteri

Podococcus barteriRoystonea oleracea

Sclerosperma manniiBeccariophoenix madaensis

Iriartella stenocarpaWettinia hirsuta

Socratea exorrhizaDictyocaryum lamarckianumIriartea deltoidea

Ceroxylon quindiuenseJuania australis

Oraniopsis appendiculataRavenea louvelii

Aphandra nataliaPhytelephas aequatorialis

Ammandra decaspermaPhytelephas macrocarpa

Pseudophoenix sargentiiPseudophoenix vinifera

Maxburrrtia rupicolaRhapis excelsa

Rhapidophyllum hystrixGuihaia argyrataTrachycarpus fortuneiChamaerops humilis

Brahea berlandieriAcoelorraphe wrightii

Serenoa repensColpothrinax wrightii

Pritchardia arecinaPritchardia pacifica

Washingtonia robustaJohannesteijst altifronsPholidocarpus macrocarpus

Pritchardiopsis jeanneneyiLicuala kunstleri

Livistona chinensisCopernicia prunifera

Phoenix reclinataPhoenix dactylifera

Phoenix canariensisBismarckia nobilis

Satranala decussilvaeHyphaene thebaica

Medemia argunBorassodendron machadonis

Borassus flabilliferLodoicea maldivica

Latania verschaffeltiiCorypha umbraculifera

Corypha talieraArenga hookeriana

Arenga undulatifoliaWallichia distica

Caryota mitisCaryota ophiopellis

Kerriodoxa elegansNannorrhops ritchiana

Chuniophoenix nanaHemithrinax compactaThrinax morrisii

Zombia antillarumCoccothrinax argentata

Schippia concolorCryosophila warscewicziana

Itaya amicorumChelyocarpus ulei

Thrinax radiataTrithrinax campestris

Sabal bermudanaSabal minor

Nypa fruticansMetroxylon salomonense

Plectocomia mulleriPigafetta elata

Calamus aruensisSalacca ramosiana

Korthalsia chebEremospatha wendlandiana

Laccosperma acutiflorumOncocalamus tuleyi

Raphia fariniferaMauritia flexuosa

Eugeissona tristis

10 changes

OUTGROUPS

6

1

7

2

SUBFAMILYCALAMOIDEAE

SUBFAMILY NYPOIDEAE

SU

BF

AM

ILY C

OR

YP

HO

IDE

AE

SUBFAMILYCEROXYLOIDEAE

SU

BF

AM

ILY A

RE

CO

I DE

AE

5

3

4

PALM FAMILY PHYLOGENY 25

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

et al., 1999; Asmussen et al., 2000; Asmussen &Chase, 2001; Lewis & Doyle, 2001; Hahn, 2002a), not-withstanding a few unusual maximum likelihoodtopologies presented by Hahn (2002a).

SUBFAMILY CORYPHOIDEAE

The matK sequences were particularly useful for theresolution of the subfamily Coryphoideae. However,the addition of more genera probably also contributedto the improved resolution of the relationships com-pared with previous studies (Asmussen & Chase,2001). The new subfamily Coryphoideae (Fig. 1, clade3) is modified only by the inclusion of the tribeCaryoteae, a relationship that can also be foundamong the most-parsimonious solutions emergingfrom many other phylogenetic analyses of moleculardata in the palm family (Uhl et al., 1995; Baker et al.,1999; Asmussen et al., 2000; Asmussen & Chase,2001; Hahn, 2002a). However, until now, a robustmonophyletic group consisting of the subfamilyCoryphoideae and the tribe Caryoteae had onlybeen recovered by Uhl et al. (1995) and Hahn (2002a).

The position of Coryphoideae as sister to all palmsexcept the Calamoideae and Nypa had only previ-ously been recovered by Hahn (2002a) in a highlyreduced taxon sample.

The relationship between the Coryphoid genera iswell resolved, and there are high bootstrap values formany of the subclades (Fig. 1, clade 3). Two of thethree tribes in Dransfield & Uhl’s (1998) classificationof the subfamily Coryphoideae are resolved asmonophyletic: the tribes Borasseae (Fig. 1, clade f)and Phoeniceae (Fig. 1, clade g). The third tribe,Corypheae, is not monophyletic, and just one of thefour constituent subtribes, Sabalinae, is monophyletic(Fig. 1, clade a). The significance of these relationshipsfor classification depends on which nodes are recog-nized and the ranks that they are allocated. In theinterests of nomenclatural stability, we propose thatas many as possible of the current tribes and subtribesare maintained, but major rearrangements of the tribeCorypheae and three of its four subtribes are neededto satisfy the criterion of monophyly (Fig. 1, clade 3).Such a reorganization (Dransfield et al., 2005) resultsin eight tribes (Fig. 1, clades a–h) and a number ofsubtribes, all of which find support among other stud-ies (Uhl et al., 1995; Asmussen et al., 2000; Asmussen& Chase, 2001; Hahn, 2002a).

SUBFAMILIES CEROXYLOIDEAE AND ARECOIDEAE

The bootstrap support for the subfamilies Ceroxy-loideae and Arecoideae is low (63 and 70%, respec-tively). However, the monophyly of both subfamilies isstrongly supported by data from low copy nuclearDNA genes (W. J. Baker, unpubl. data). Furthermore,the Arecoideae is well defined by the floral triad, not-withstanding the floral cluster of the Hyophorbeaeand the presence of triads in Caryoteae. Although theCeroxyloideae is morphologically heterogeneous, it isdefined by all taxa having solitary flowers. The sub-family Phytelephantoideae (sensu Dransfield & Uhl,1998) is highly supported as monophyletic (99% boot-strap support), which is in agreement with other stud-ies (Barfod, 1991; Uhl et al., 1995; Asmussen et al.,2000; Asmussen & Chase, 2001; Hahn, 2002a, b).However, given that Phytelephantoideae is nestedbetween two tribes of Ceroxyloideae, Ceroxyleae and

Figure 2. One cladogram with branch lengths of the 30 000 equally most-parsimonious cladograms resulting from Fitchanalyses of the combined matK, rbcL, rps16 intron and trnL–trnF data sets. A representative of the most resolvedcladograms was chosen. Outgroups were excluded to make the cladogram fit one page. The cladogram is fully resolvedexcept for seven polytomies, which are labelled 1–7. The polytomies labelled 1–5 were present in all 30 000 most-parsimonious cladograms. The clades corresponding to the five subfamilies of the new classification are indicated to theright.

Figure 3. A summary tree showing the relationship of thefive subfamilies in the new classification. The number ofgenera in each subfamily is given below the branches foreach subfamily. Bootstrap percentages that support thesubfamilies are given above the branches and jackknifepercentages and Bremer support values are given belowthe branches.

Calamoideae

Nypoideae

Coryphoideae

Ceroxyloideae

Arecoideae

100

100

97

100

97

85

63

70

21 genera

45 genera

8 genera

112 genera

1 genus100/46

100/28

99/6

100/16

87/3

93/5

63/1

62/1

26 C. B. ASMUSSEN ET AL.

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

Cyclospatheae, as sister to the former, the subfamilycan no longer be recognized at the same rank and isplaced as a tribe within the new concept of the sub-family Ceroxyloideae (Fig. 1, clade 4). In the studies ofHahn (2002a, b), the Phytelephantoideae and the tribeCeroxyleae were similarly resolved, but the Cyclos-patheae had a different position. The remainingstudies on palm family phylogenies placed thePhytelephantoideae unresolved as a member of a poly-tomy (Uhl et al., 1995; Baker et al., 1999; Asmussenet al., 2000; Lewis & Doyle, 2002). The inclusion of thetribe Hyophorbeae, formerly of the subfamily Ceroxy-loideae (sensu Dransfield & Uhl, 1998), in the sub-family Arecoideae, as well as the exclusion of the tribeCaryoteae, is in accordance with all previous molecu-lar phylogenies of the palm family (Fig. 1, clade 5). Thelimits of the subfamily Arecoideae require no furtheralterations.

CONCLUSION AND FUTURE PLANS

The addition of matK sequences and more taxa to theprevious palm data sets of Asmussen & Chase (2001)provided the resolution and support required to refinethe subfamily classification of the palm family (Fig. 3).Five subfamilies, all monophyletic, rather than six,are now recognized (Dransfield et al., 2005): (1) thesubfamily Calamoideae, as circumscribed in Drans-field & Uhl (1998); (2) the subfamily Nypoideae, withjust one species, Nypa fruticans; (3) the subfamilyCoryphoideae, comprising those genera included byDransfield & Uhl (1998), with the addition of the tribeCaryoteae; (4) the subfamily Ceroxyloideae, includingthe tribes Cyclospatheae and Ceroxyleae, and thethree phytelephantoid genera; (5) the subfamilyArecoideae, following the concept of Dransfield & Uhl(1998), but with the addition of the tribe Hyophorbeaeand the exclusion of the tribe Caryoteae. This newsubfamily classification will form the backbone of anew edition of Genera Palmarum (Uhl & Dransfield,1987; J. Dransfield, N. W. Uhl, C. B. Asmussen, W. J.Baker, M. M. Harley & C. E. Lewis, unpubl. data).

Within the new subfamilies, high resolution andbootstrap support are recovered in the Calamoideae,Nypoideae, Coryphoideae and, to some extent, theCeroxyloideae. The subfamily Arecoideae is, however,poorly resolved, and the internal nodes generallyreceive low bootstrap support. The low resolution andbootstrap support in Arecoideae are principally aresult of a relatively low number of parsimony-informative characters in this portion of the tree. Themost significant phylogenetic ambiguities remain inthree areas: (1) poorly supported nodes for and somewithin the Ceroxyloideae; (2) poor resolution and sup-port for and within the subfamily Arecoideae; (3) poorsupport and resolution in the clades of coryphoid gen-

era formerly referred to the subtribes Livistoninaeand Thrinacinae. To address these problems and toconsolidate further our findings, we plan to add lowcopy nuclear DNA sequences and additional plastidDNA sequences to this data set and expand the taxonsample to include all genera of palms. Despite theseshortcomings, however, we are confident that the well-supported relationships presented here will be robustto the addition of new data and that our revised sub-family circumscriptions represent significant stepstowards a natural and stable classification of palmsthat will stand the test of time.

ACKNOWLEDGEMENTS

This project was supported by grants from the DanishResearch Council to Conny Asmussen and AndersBarfod. We thank Charlotte Hansen, University ofCopenhagen and Hans Hjort, University of Aarhusfor performing the automated sequencing. We areextremely grateful to all those individuals and insti-tutions who have supported our work by providingmaterial for DNA extraction, especially FairchildTropical Botanic Garden, the Montgomery BotanicalCentre, the Royal Botanic Gardens, Kew, Dr FinnBorchsenius and Phillipp Trénel, University ofAarhus, Dr Carl Lewis, Fairchild Tropical BotanicGarden, and Dr Natalie Uhl, Bailey Hortorium. Wealso wish to thank an anonymous reviewer for helpfulcomments.

REFERENCES

Asmussen CB, Baker WJ, Dransfield J. 2000. Phylogeny ofthe palm family (Arecaceae) based on rps16 intron and trnL–trnF plastid DNA sequences. In: Wilson KL, Morrison DA,eds. Systematics and evolution of monocots. Collingwood,Victoria: CSIRO Publishing, 525–537.

Asmussen CB, Chase MW. 2001. Coding and noncoding plas-tid DNA in palm family systematics. American Journal ofBotany 88: 1103–1117.

Baker WJ, Asmussen CB, Barrow S, Dransfield J,Hedderson TA. 1999. A phylogenetic study of the palmfamily (Palmae) based on chloroplast DNA sequences fromthe trnL–trnF region. Plant Systematics and Evolution 219:111–126.

Baker WJ, Dransfield J, Hedderson TA. 2000a. Phylogeny,character evolution, and a new classification of the Calamoidpalms. Systematic Botany 25: 297–322.

Baker WJ, Hedderson TA, Dransfield J. 2000b. Molecularphylogenetics of subfamily Calamoideae (Palmae) based onnrDNA ITS and cpDNA rps16 intron sequence data. Molec-ular Phylogenetics and Evolution 14: 195–217.

Baker WJ, Hedderson TA, Dransfield J. 2000c. Molecularphylogenetics of Calamus (Palmae) based on 5S nrDNAspacer sequence data. Molecular Phylogenetics and Evolu-tion 14: 218–231.

PALM FAMILY PHYLOGENY 27

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

Baker WJ, Loo AHB. 2004. A synopsis of the genus Hydri-astele (Arecaceae). Kew Bulletin 59: 61–68.

Barfod AS. 1991. A monographic study of the subfamilyPhytelephantoideae (Arecaceae). Opera Botanica 105: 1–73.

Chase MW, Soltis DE, Soltis PS, Rudall PJ, Fay MF,Hahn WJ, Sullivan S, Joseph J, Molvray M, Kores PJ,Givnish TJ, Sytsma KJ, Pires JC. 2000. Higher-level sys-tematics of the monocotyledons: an assessment of currentknowledge and a new classification. In: Wilson KL, MorrisonDA, eds. Systematics and evolution of monocots. Colling-wood, Victoria: CSIRO Publishing, 3–16.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedurefrom small quantities of fresh leaf tissue. Phytochemical Bul-letin 19: 11–15.

Dransfield J, Uhl NW. 1998. Palmae. In: Kubitzki K, ed. Thefamilies and genera of vascular plants, IV: Flowering plants,monocotyledons. Berlin: Springer, 306–389.

Dransfield J, Uhl NW, Asmussen CB, Baker WJ,Harley MM, Lewis CE. 2005. A new phylogenetic classifi-cation of the palm family, Arecaceae. Kew Bulletin 60: 559–569.

Fay MF, Bayer C, Alverson WS, de Bruijn AY, Chase MW.1998. Plastid rbcL sequence data indicate a close affinitybetween Diegodendron and Bixa. Taxon 47: 43–50.

Fitch WM. 1971. Toward defining the course of evolution: min-imal change for a specific tree topology. Systematic Zoology20: 406–416.

Hahn WJ. 2002a. A molecular phylogenetic study of thePalmae (Arecaceae) based on atpB, rbcL, and 18S nrDNAsequences. Systematic Biology 51: 92–112.

Hahn WJ. 2002b. A phylogenetic analysis of the Arecoid Lineof palms based on plastid DNA sequence data. MolecularPhylogenetics and Evolution 23: 189–204.

Lewis CE, Doyle JJ. 2001. Phylogenetic utility of the nuclear

gene malate synthase in the palm family (Arecaceae). Molec-ular Phylogenetics and Evolution 19: 409–420.

Lewis CE, Doyle JJ. 2002. A phylogenetic analysis of tribeAreceae (Arecaceae) using two low-copy nuclear genes. PlantSystematics and Evolution 236: 1–17.

Moore HE. 1973. The major groups of palms and their distri-bution. Gentes Herbariorum 11: 27–141.

Oxelman B, Lidén M, Berglund D. 1997. Chloroplast rps16intron phylogeny of the tribe Sileneae (Caryophyllaceae).Plant Systematics and Evolution 206: 393–410.

Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J,Siripun KC, Winder CT, Schilling EE, Small RL. 2005.The tortoise and the hare II: relative utility of 21 noncodingchloroplast DNA sequences for phylogenetic analysis. Amer-ican Journal of Botany 91: 142–166.

Steele KP, Vilgalys R. 1994. Phylogenetic analyses ofPolemoniaceae using nucleotide sequences of the plastidgene matK. Systematic Botany 19: 126–142.

Swofford DL. 2002. PAUP*. Phylogenetic analysis using par-simony (*and other methods), Version 4.0. Beta 10. Sunder-land, Massachusetts: Sinauer.

Taberlet P, Gielly L, Pautou G, Bouvet J. 1991. Universalprimers for amplification of three non-coding regions of chlo-roplast DNA. Plant Molecular Biology 17: 1105–1109.

Uhl NW, Dransfield J. 1987. Genera Palmarum: a classifica-tion of palms based on the work of H. E. Moore Jr. Lawrence,Kansas: International Palm Society and L. H. BaileyHortorium.

Uhl NW, Dransfield J, Davis JI, Luckow MA, Hansen KS,Doyle JJ. 1995. Phylogenetic relationships among palms:cladistic analyses of morphological and chloroplast DNArestriction site variation. In: Rudall PJ, Cribb PJ, Cutler DF,Humphries CJ, eds. Monocotyledons: systematics and evolu-tion. Richmond: Royal Botanic Gardens, 623–661.

28 C. B. ASMUSSEN ET AL.

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

AP

PE

ND

IX

Vou

cher

an

d da

taba

se i

nfo

rmat

ion

(E

MB

L/G

enB

ank/

DD

BJ

data

base

s) f

or t

he

taxa

use

d in

th

is s

tudy

. H

erba

riu

m a

cron

yms

are

give

n i

n p

aren

thes

es. T

he

firs

tco

lum

n g

ives

th

e su

bfam

ily

clas

sifi

cati

on o

f Dra

nsfi

eld

& U

hl (

1998

) an

d th

e se

con

d co

lum

n g

ives

th

e n

ew s

ubf

amil

y, t

riba

l an

d su

btri

bal c

lass

ifica

tion

of D

ran

sfiel

det

al.

(in

pre

ss)

Su

bfam

ily

clas

sifi

cati

on (

1998

)S

UB

FA

MIL

Y,

trib

e,su

btri

beS

peci

esV

ouch

er i

nfo

rmat

ion

rbcL

rps1

6 in

tron

trn

L–t

rnF

mat

K

CA

LA

MO

IDE

AE

CA

LA

MO

IDE

AE

Eu

geis

son

eae

Eu

geis

son

a tr

isti

s G

riff

.B

aker

501

(K

EP

)A

J404

774

AJ2

4086

9A

J241

278

AM

1145

40L

epid

ocar

yeae

An

cist

roph

ylli

nae

On

coca

lam

us

tule

yiS

un

derl

.S

un

der

lan

d 1

759

(K)

AJ4

0477

6A

J240

871

AJ2

4137

6A

M11

4541

Ere

mos

path

aw

end

lan

dia

na

Bec

c.D

ran

sfiel

d J

D 7

004

(K)

AM

1178

12A

J240

868

AJ2

4127

7A

M11

4542

Lac

cosp

erm

a ac

uti

flor

um

(Bec

c.)

J.D

ran

sf.

Dra

nsfi

eld

JD

700

6 (K

)A

J404

772

AJ2

4086

7A

J241

276

AM

1145

43

Rap

hii

nae

Rap

hia

far

inif

era

(Gae

rtn

.) H

ylan

der

Ru

ther

ford

156

(K

)A

J829

907

AJ2

4218

4A

M11

3612

AM

1145

44

Mau

riti

inae

Mau

riti

a fl

exu

osa

L.f.

Ely

et

al. 1

7 (K

)A

J404

777

AJ2

4087

2A

J241

281

AM

1145

45C

alam

eae

Kor

thal

siin

aeK

orth

alsi

a ch

eb B

ecc.

Bak

er 5

13 (

K)

AM

1101

88A

J242

175

AM

1136

13A

M11

4546

Sal

acci

nae

Sal

acca

ram

osia

na

Mog

ea19

79–4

409

(K)

AM

1101

89A

J242

176

AM

1136

14A

M11

4547

Met

roxy

lin

aeM

etro

xylo

n s

alom

onen

se(W

arb.

) B

ecc.

Zon

a 65

1 (F

TG

)A

M11

0190

AM

1167

69A

M11

3615

AM

1145

48

Pig

afet

tin

aeP

igaf

etta

ela

ta (

Mar

t.)

H.W

endl

.B

aker

508

(K

)A

J829

897

AJ2

4217

1A

M11

3616

AM

1145

49

Ple

ctoc

omii

nae

Ple

ctoc

omia

mu

ller

i B

lum

eB

aker

563

(K

)A

J829

899

AJ2

4216

8A

M11

3617

AM

1145

50C

alam

inea

eC

alam

us

aru

ensi

s B

ecc.

Dra

nsfi

eld

JD

757

1 (K

)A

J404

775

AJ2

4087

0A

J241

279

AM

1145

51N

YP

OID

EA

EN

YP

OID

EA

EN

ypa

fru

tica

ns

Wu

rmb

N.W

. Uh

l s.

n.

(BH

)A

J404

778

AJ2

4087

3A

J241

282

AM

1145

52C

OR

YP

HO

IDE

AE

CO

RY

PH

OID

EA

ES

abal

eae

Sab

al b

erm

ud

ana

L.H

.Bai

ley

1982

–560

2 (K

)A

J404

766

AJ2

4086

2A

J241

271

AM

1145

53

Sab

al m

inor

(N

.J.J

acqu

in)

Per

soon

1964

–454

0 (K

)A

M11

0191

AM

1167

70A

M11

3618

AM

1145

54

PALM FAMILY PHYLOGENY 29

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

Cry

osop

hil

eae

Sch

ippi

a co

nco

lor

Bu

rret

Bak

er 9

95 (

FT

G)

AJ4

0474

9A

J404

924

AJ4

0489

1A

M11

4555

Tri

thri

nax

cam

pest

ris

(Bu

rmei

st.)

Dru

de &

G

rise

b.

1938

–270

03 (

K)

AJ4

0474

5A

J240

844

AJ2

4125

3A

M11

4556

Zom

bia

anti

llar

um

(D

esc.

)L

.H.B

aile

yR

. San

der

s 17

63 (

FT

G)

AM

1101

92A

M11

6771

AM

1136

19A

M11

4557

Coc

coth

rin

ax a

rgen

tata

(Jac

q.)

L.H

.Bai

ley

1973

–126

08 (

K)

AJ4

0475

1A

J240

848

AJ2

4125

7A

M11

4558

Hem

ith

rin

ax c

ompa

cta

(Gri

seb.

& H

.Wen

dl.)

H

ook.

f.

C.E

. Lew

is 0

2–07

2 (H

AJB

)A

J829

869

AM

1167

72A

M11

3620

AM

1145

59

Th

rin

ax m

orri

sii

H.W

endl

.J.

Ron

cal

043

(FT

G)

AM

1101

93A

M11

6773

AM

1136

21A

M11

4560

Th

rin

ax r

adia

ta L

odd.

ex

Sch

ult

. & S

chu

lt.f.

1933

–047

031

(K)

AJ4

0475

0A

M11

6774

AJ2

4125

6A

M11

4561

Ch

elyo

carp

us

ule

i D

amm

erB

alsl

ev 6

407

(AA

U)

AJ4

0474

6A

J240

845

AJ2

4125

4A

M11

4562

Cry

osop

hil

aw

arsc

ewic

zian

a B

artl

ett

1991

−109

2 (K

)A

J404

747

AJ2

4084

6A

J241

255

AM

1145

63

Itay

a am

icor

um

H.E

.Moo

reB

aker

990

(F

TG

)A

J404

748

AJ4

0492

3A

J404

890

AM

1145

64P

hoe

nic

eae

Ph

oen

ix r

ecli

nat

a Ja

cq.

Goy

der

et

al. 3

928

(K)

AJ4

0476

7A

J240

863

AJ2

4127

2A

M11

4565

Ph

oen

ix c

anar

ien

sis

Ch

abau

dB

arro

w 7

5 (K

)A

M11

0194

AM

1167

75A

M11

3622

AM

1145

66

Ph

oen

ix d

acty

life

ra L

.B

arro

w 7

7 (K

)A

M11

0195

AM

1167

76A

M11

3623

AM

1145

67L

ivis

ton

eae

Rh

apid

inae

Ch

amae

rops

hu

mil

is L

.B

arro

w 7

6 (K

)A

J404

754

AM

1167

77A

J241

260

AM

1145

68G

uih

aia

argy

rata

(S.

K.L

ee&

F.N

.Wei

) S.

K.L

ee,

F.N

.Wei

& J

.Dra

nsf

.

1984

–447

0 (K

)A

J404

755

AJ2

4085

2A

J241

261

AM

1145

69

Tra

chyc

arpu

s fo

rtu

nei

(Hoo

k.)

H.W

endl

.D

ran

sfiel

d s

.n.

(K)

AJ4

0475

2A

J404

925

AJ4

0489

2A

M11

4570

Rh

apid

oph

yllu

m h

ystr

ix(P

urs

h) H

.Wen

dl. &

Dru

de01

3–67

0130

1 (K

)A

J404

753

AM

1167

78A

J241

259

AM

1145

71

Max

burr

etia

ru

pico

la(R

idle

y) F

urt

ado

C.E

. Lew

is 0

2–08

0 (F

TG

)A

J829

884

AM

1167

79A

M11

3624

AM

1145

72

Rh

apis

exc

elsa

Hen

ry e

xR

ehde

r19

87–2

573

(K)

AJ4

0475

6A

J240

853

AJ2

4126

2A

M11

4573

Su

bfam

ily

clas

sifi

cati

on (

1998

)S

UB

FA

MIL

Y,

trib

e,su

btri

beS

peci

esV

ouch

er i

nfo

rmat

ion

rbcL

rps1

6 in

tron

trn

L–t

rnF

mat

K

30 C. B. ASMUSSEN ET AL.

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

Liv

isto

nin

aeL

ivis

ton

a ch

inen

sis

(Jac

q.)

R.B

r. ex

Mar

t.19

82–5

601

(K)

AJ4

0475

7A

J240

854

AJ2

4126

3A

M11

4574

Lic

ual

a ku

nst

leri

Bec

c.19

85–1

497

(K)

AJ4

0475

9A

J240

856

AJ2

4126

5A

M11

4575

Joh

ann

este

ijsm

ann

iaal

tifr

ons

(Rei

chb.

f. &

Z

oll.)

H.E

.Moo

re

1985

–151

5 (K

)A

J404

758

AJ2

4085

5A

J241

264

AM

1145

76

Ph

olid

ocar

pus

mac

roca

rpu

s B

ecc.

B. C

hee

473

32 (

KE

P)

AJ8

2989

4A

M11

6780

AM

1136

25A

M11

4577

Pri

tch

ard

iops

is j

ean

nen

eyi

Bec

c.P

inta

ud

315

(P

)A

M11

0196

AM

1167

81A

M11

3626

AM

1145

78

Un

plac

ed g

ener

a in

Liv

isto

nea

eA

coel

orra

phe

wri

ghti

iH

.Wen

dl.

D. B

ogle

r 12

47 (

FT

G)

AM

1101

97A

M11

6782

AM

1136

27A

M11

4579

Bra

hea

ber

lan

die

ri B

artl

ett

C.E

. Lew

is 0

3–01

1 (F

TG

)A

M11

0198

AM

1167

83A

M11

3628

AM

1145

80C

olpo

thri

nax

wri

ghti

i H

.W

endl

.R

. Rac

ine

41 (

FT

G)

AJ8

2986

2A

M11

6784

AM

1136

29A

M11

4581

Cop

ern

icia

pru

nif

era

(Mil

l.) H

.E.M

oore

C.E

. Lew

is 0

3–01

2 (F

TG

)A

M11

0199

AM

1167

85A

M11

3630

AM

1145

82

Pri

tch

ard

ia a

reci

na

Bec

c.B

aker

118

3 (K

)A

J829

905

AM

1167

86A

M11

3631

AM

1145

83P

ritc

har

dia

pac

ifica

See

m.

& H

.Wen

dl.

1952

–355

01 (

K)

AM

1102

00A

M11

6787

AM

1136

32A

M11

4584

Ser

enoa

rep

ens

(Bar

tram

)J.

K.S

mal

l19

58–6

6102

(K

)A

J404

760

AM

1167

88A

J241

266

AM

1145

85

Was

hin

gton

ia r

obu

sta

H.W

endl

.C

.E. L

ewis

03–

013

(FT

G)

AM

1102

01A

M11

6789

AM

1136

33A

M11

4586

Ch

un

iop

hoe

nic

eae

Ch

un

ioph

oen

ix n

ana

Bu

rret

1986

–301

8 (K

)A

J404

764

AJ2

4086

0A

J241

269

AM

1145

87K

erri

odox

a el

egan

sJ.

Dra

nsf

.19

87–2

685

(K)

AJ4

0476

5A

J240

861

AJ2

4127

0A

M11

4588

Nan

nor

rhop

s ri

tch

ian

aH

.Wen

dl.

1990

–113

2 (K

)A

J404

763

AJ2

4085

9A

J241

268

AM

1145

89

AR

EC

OID

EA

EC

aryo

teae

Car

yota

mit

is L

our.

464–

85.0

5037

(K

)A

J404

790

AJ2

4088

3A

J241

292

AM

1145

90C

aryo

ta o

phio

pell

is D

owe

Bak

er 9

89 (

FT

G)

AJ4

0479

1A

J404

930

AJ4

0489

7A

M11

4591

Are

nga

hoo

keri

ana

(Bec

c.)

Wh

itm

ore

085–

85.0

1492

(K

)A

J404

788

AJ2

4088

2A

J241

291

AM

1145

92

Are

nga

un

du

lati

foli

a B

ecc.

Bak

er 9

87 (

FT

G)

AJ4

0478

9A

J404

929

AJ4

0489

6A

M11

4593

Wal

lich

ia d

isti

cha

T.A

nde

rs.

L-8

0.07

70 (

BH

)A

J404

792

AJ2

4088

4A

J241

293

AM

1145

94

Su

bfam

ily

clas

sifi

cati

on (

1998

)S

UB

FA

MIL

Y,

trib

e,su

btri

beS

peci

esV

ouch

er i

nfo

rmat

ion

rbcL

rps1

6 in

tron

trn

L–t

rnF

mat

K

Ap

pen

dix

Con

tin

ued

PALM FAMILY PHYLOGENY 31

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

CO

RY

PH

OID

EA

EC

oryp

hea

eC

oryp

ha

um

brac

uli

fera

L.

1954

–353

01 (

K)

AJ4

0476

1A

J240

858

AJ2

4126

7A

M11

4595

Cor

yph

a ta

lier

a R

oxb.

Bak

er 9

84 (

FT

G)

AJ4

0476

2A

J404

926

AJ4

0489

3A

M11

4596

Bor

asse

aeH

yph

aen

inae

Bis

mar

ckia

nob

ilis

Hil

debr

. & H

.Wen

dl.

Bay

ton

R.P

. 43

(K)

AJ8

2985

2A

M11

6790

AM

1136

34A

M11

4597

Sat

ran

ala

dec

uss

ilva

eB

een

tje

& J

.Dra

nsf

.B

een

tje

& D

ran

sfiel

d 4

810

(K)

AJ4

0477

1A

J240

866

AJ2

4127

5A

M11

4598

Hyp

hae

ne

theb

aica

Mar

t.19

94–3

803

(K)

AJ4

0477

0A

J240

865

AJ2

4127

4A

M11

4599

Med

emia

arg

un

Wu

ert.

ex

H.W

endl

.B

aker

986

(F

TG

)A

J829

885

AM

1167

91A

M11

3635

AM

1146

00

Lat

anii

nae

Lat

ania

ver

sch

affe

ltii

Lem

.J.

Ron

cal

64 (

FT

G)

AF

8298

78A

M11

6792

AM

1136

36A

M11

4601

Lod

oice

a m

ald

ivic

a(J

.F.G

mel

.) P

ers.

1994

–323

1 (K

)A

J404

769

AJ2

4086

4A

J241

273

AM

1146

02

Bor

asso

den

dro

nm

ach

adon

is (

Rid

l.) B

ecc.

1989

–339

4 (K

)A

J404

768

AJ4

0492

7A

J404

894

AM

1146

03

Bor

assu

s fl

abel

life

r L

.W

ilki

n, S

ud

dee

& T

hap

yai

1160

(K

)A

M11

0202

AM

1167

93A

M11

3637

AM

1146

04

CE

RO

XY

LO

IDE

AE

CE

RO

XY

LO

IDE

AE

Cyc

losp

ath

eae

Pse

ud

oph

oen

ix s

arge

nti

iH

.Wen

dl.

FT

G 8

2–44

1C (

BH

)A

J404

779

AJ2

4087

4A

J241

283

AM

1146

05

Pse

ud

oph

oen

ix v

inif

era

(Mar

t.)

Bec

c.B

aker

100

2 (F

TG

)A

J404

780

AJ4

0492

8A

J404

895

AM

1146

06

Cer

oxyl

eae

Cer

oxyl

on q

uin

diu

ense

(H.K

arst

) H

.Wen

dl.

1976

–116

0 (K

)A

J404

781

AJ2

4087

5A

J241

284

AM

1146

07

Juan

ia a

ust

rali

s D

rude

ex

Hoo

k.f.

P. T

rén

el 4

(A

AU

)A

J829

874

AM

1167

94A

M11

3638

AM

1146

08

Ora

nio

psis

app

end

icu

lata

(F.M

.Bai

ley)

J.D

ran

sf.,

A.K

.Irv

ine

& N

.W.U

hl

1988

–227

(K

)A

J404

782

AJ2

4087

6A

J241

285

AM

1146

09

Rav

enea

lou

veli

i B

een

tje

1988

–236

9 (K

)A

J404

783

AJ2

4087

7A

J241

286

AM

1146

10

Su

bfam

ily

clas

sifi

cati

on (

1998

)S

UB

FA

MIL

Y,

trib

e,su

btri

beS

peci

esV

ouch

er i

nfo

rmat

ion

rbcL

rps1

6 in

tron

trn

L–t

rnF

mat

K

32 C. B. ASMUSSEN ET AL.

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

PH

YT

EL

EP

HA

NT-

OID

EA

EP

hyt

elep

hea

eA

mm

and

ra d

ecas

perm

aO

.F.C

ook

L-7

7.08

309

(BH

)A

J404

838

AJ4

0495

5A

J404

922

AM

1146

11

Aph

and

ra n

atal

ia (

A.J

.H

ende

rson

& B

alsl

ev)

Bar

fod

Bak

er 9

85 (

K)

AJ4

0483

7A

J404

954

AJ4

0492

1A

M11

4612

Ph

ytel

eph

as a

equ

ator

iali

sS

pru

ce19

93−9

4 (K

)A

J404

835

AJ2

4090

8A

J241

317

AM

1146

13

Ph

ytel

eph

as m

acro

carp

aR

uiz

& P

av.

1992

–248

0 (K

)A

J404

836

AJ2

4090

7A

J241

316

AM

1146

14

AR

EC

OID

EA

EA

RE

CO

IDE

AE

Iria

rtee

aeIr

iart

ella

ste

noc

arpa

Bu

rret

B.M

illá

n,

J.C

.Pin

tau

d,

C.V

egas

728

(U

NM

SM

)A

M11

0203

AM

1167

95A

M11

3639

AM

1146

15

Dic

tyoc

aryu

mla

mar

ckia

nu

m (

Mar

t.)

H.W

endl

.

Asm

uss

en 1

11 (

CP

)A

M11

0204

AM

1167

96A

M11

3640

AM

1146

16

Iria

rtea

del

toid

ea R

uiz

&P

av.

Hen

der

son

042

(B

H)

AJ4

0479

3A

J240

885

AJ2

4129

4A

M11

4617

Soc

rate

a ex

orrh

iza

H.W

endl

.B

aker

992

(F

TG

)A

M11

0205

AM

1167

97A

M11

3641

AM

1146

18

Wet

tin

ia h

irsu

ta B

urr

etB

aker

991

(F

TG

)A

J404

794

AJ4

0493

1A

J404

898

AM

1146

19

CE

RO

XY

LO

IDE

AE

Ch

amae

dor

eeae

Hyo

phor

be l

agen

icau

lis

(L.H

.Bai

ley)

H

.E.M

oore

1983

–674

(K

)A

J404

785

AJ2

4087

9A

J241

288

AM

1146

20

Wen

dla

nd

iell

a gr

acil

isD

amm

. va

r. po

lycl

ada

(Bu

rret

) A

.Hen

ders

on

Zon

a 75

4 (F

TG

)A

M11

0206

AM

1167

98A

M11

3642

AM

1146

21

Syn

ech

anth

us

war

scew

iczi

anu

s H

.Wen

dl.

Kn

ud

sen

& A

smu

ssen

64

0 (A

AU

)A

J404

786

AJ2

4088

0A

J241

787

AM

1146

22

Ch

amae

dor

ea m

icro

spad

ixB

urr

etB

H 6

0–81

1 (B

H)

AJ4

0478

7A

J240

881

AJ2

4129

0A

M11

4623

Gau

ssia

may

a (O

.F.C

ook)

H.J

.Qu

ero

& R

ead

1958

–801

01 (

K)

AJ4

0478

4A

J240

878

AJ2

4128

7A

M11

4624

AR

EC

OID

EA

EP

odoc

occe

aeP

odoc

occu

s ba

rter

i G

.Man

n&

H.W

endl

.R

eits

ma

2840

(B

H)

AM

1102

07A

J240

886

AJ2

4129

5A

M11

4625

Pod

ococ

cus

bart

eri

G.M

ann

& H

.Wen

dl.

Su

nd

erla

nd

180

3 (K

)A

M11

0208

AM

1167

99A

M11

3643

AM

1146

26

Su

bfam

ily

clas

sifi

cati

on (

1998

)S

UB

FA

MIL

Y,

trib

e,su

btri

beS

peci

esV

ouch

er i

nfo

rmat

ion

rbcL

rps1

6 in

tron

trn

L–t

rnF

mat

K

Ap

pen

dix

Con

tin

ued

PALM FAMILY PHYLOGENY 33

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

Ora

nie

aeO

ran

ia l

aute

rbac

hia

na

Bec

c.L

-78.

0662

(B

H)

AJ4

0479

6A

J240

887

AJ2

4129

6A

M11

4627

Ora

nia

rav

aka

H.B

een

tje

Dra

nsfi

eld

JD

773

1 (K

)A

M11

0209

AM

1168

00A

M11

3644

AM

1146

28S

cler

ospe

rmea

eS

cler

ospe

rma

man

nii

H.W

endl

.S

un

der

lan

d T

CH

S 1

794

(K)

AJ4

0482

3A

J404

948

AJ4

0491

5A

M11

4629

Roy

ston

eae

Roy

ston

ea o

lera

cea

(Jac

q.)

O.F

.Coo

k19

63–5

7401

(K

)A

J404

805

AJ4

0493

6A

J404

903

AM

1146

30

Rei

nh

ard

tiea

eR

ein

har

dti

a si

mpl

ex(H

.Wen

dl.)

Dru

de e

xD

amm

er

1988

–366

(K

)A

J404

799

AJ4

0493

3A

J404

900

AM

1146

31

Coc

osea

eA

ttal

ein

aeB

ecca

riop

hoe

nix

mad

agas

cari

ensi

s Ju

m.

et H

.Per

rier

1989

–353

2 (K

)A

J404

826

AJ4

0495

1A

J404

918

AM

1146

32

Juba

eops

is c

affr

a B

ecc.

T.B

. Sik

hak

han

e 13

9 (N

H)

AJ8

2987

6A

M11

6801

AM

1136

45A

M11

4633

Voa

nio

ala

gera

rdii

J.

Dra

nsf

.D

ran

sfiel

d J

D 6

389

(K)

AM

1102

10A

M11

6802

AM

1136

46A

M11

4634

All

agop

tera

are

nar

ia(G

omes

) K

un

tze

BH

79.

312

(BH

)A

J404

828

AJ2

4090

2A

J241

311

AM

1146

35

Att

alea

all

enii

H.E

.Moo

reK

nu

dse

n &

Asm

uss

en

612

(AA

U)

AJ4

0482

9A

J240

903

AJ2

4131

2A

M11

4636

Coc

os n

uci

fera

L.

1968

–448

0 (K

)A

M11

0211

AM

1168

03A

M11

3647

AM

1146

37S

yagr

us

smit

hii

(H.E

.Moo

re)

Gla

ssm

.B

alsl

ev 6

404

(AA

U)

AJ4

0482

7A

J240

901

AJ2

4131

0A

M11

4638

Bac

trid

inae

Acr

ocom

ia a

cule

ata

(Jac

q.)

Lod

d. e

x M

art.

Bak

er 1

000

(FT

G)

AM

1102

12A

M11

6804

AM

1136

48A

M11

4639

Acr

ocom

ia c

risp

a (K

un

th)

C.F

.Bak

er e

x B

ecc.

J. R

onca

l 79

(F

TG

)A

M11

0213

AM

1168

05A

M11

3649

AM

1146

40

Aip

han

es a

cule

ata

Wil

ld.

Bor

chse

niu

s 59

9 (A

AU

)A

J404

831

AJ4

0495

3A

J404

920

AM

1146

41B

actr

is g

asip

aes

Ku

nth

C.E

. Lew

is 0

2–02

7 (F

TG

)A

M11

0214

AM

1168

06A

M11

3650

AM

1146

42D

esm

oncu

s or

thac

anth

osM

art.

Zon

a 62

0 (F

TG

)A

M11

0215

AM

1168

07A

M11

3651

AM

1146

43

Ela

eidi

nae

Ela

eis

guin

een

sis

Jacq

.19

87–2

16 (

K)

AJ4

0483

0A

J404

952

AJ4

0491

9A

M11

4644

Man

icar

ieae

Man

icar

ia s

acci

fera

Gae

rtn

.C

.E. L

ewis

03–

010

(FT

G)

AJ4

0479

7A

J240

888

AJ2

4129

7A

M11

4645

Su

bfam

ily

clas

sifi

cati

on (

1998

)S

UB

FA

MIL

Y,

trib

e,su

btri

beS

peci

esV

ouch

er i

nfo

rmat

ion

rbcL

rps1

6 in

tron

trn

L–t

rnF

mat

K

34 C. B. ASMUSSEN ET AL.

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

Eu

terp

eae

Hyo

spat

he

mac

rorh

ach

isB

urr

etB

alsl

ev 6

421

(AA

U)

AJ4

0480

4A

J240

891

AJ2

4130

0A

M11

4646

Eu

terp

e ol

erac

ea M

art.

L-7

0.00

17 (

BH

)A

J404

802

AJ2

4088

9A

J241

298

AM

1146

47P

rest

oea

pube

ns

H.E

.Moo

reK

nu

dse

n &

Asm

uss

en

619

(AA

U)

AM

1102

16A

M11

6808

AM

1136

52A

M11

4648

Neo

nic

hol

son

ia w

atso

nii

Dam

mer

L-8

1.03

03 (

BH

)A

J404

803

AJ2

4089

0A

J241

299

AM

1146

49

Geo

nom

atea

eW

elfi

a re

gia

H. W

endl

.K

nu

dse

n &

Asm

uss

en

607

(AA

U)

AJ8

2991

7A

M11

6809

AM

1136

53A

M11

4650

Ph

olid

osta

chys

pu

lch

raH

.Wen

dl. e

x B

urr

etK

nu

dse

n &

Asm

uss

en

613

(AA

U)

AM

1102

17A

M11

6810

AM

1136

54A

M11

4651

Cal

yptr

ogyn

egh

iesb

regh

tian

a (L

inde

n&

H.W

endl

.) H

.Wen

dl.

Kn

ud

sen

& A

smu

ssen

62

7 (A

AU

)A

M11

0218

AM

1168

11A

M11

3655

AM

1146

52

Cal

yptr

onom

a oc

cid

enta

lis

(Sw

.) H

.E.M

oore

FT

G 7

1375

D (

FT

G)

AJ4

0483

2A

J240

904

AJ2

4131

3A

M11

4653

Ast

erog

yne

mar

tian

a(H

.Wen

dl.)

H.W

endl

. ex

Dru

de

L-8

1.02

84 (

BH

)A

J404

833

AJ2

4090

5A

J241

314

AM

1146

54

Geo

nom

a co

nge

sta

H.W

endl

. ex

Spr

uce

Bor

chse

niu

s 34

8 (A

AU

)A

M11

0219

AJ2

4090

6A

J241

315

AM

1146

55

Leo

pol

din

ieae

Leo

pold

inia

pu

lch

ra M

art.

Rom

ero

3060

(V

EN

)A

J404

798

AJ4

0493

2A

J404

899

AM

1146

56P

elag

odox

eae

Pel

agod

oxa

hen

ryan

a B

ecc.

1988

−293

5 (K

)A

J829

892

AM

1168

12A

M11

3656

AM

1146

57S

omm

ieri

a le

uco

phyl

laB

ecc.

1992

–347

7 (K

)A

M11

0220

AM

1168

13A

M11

3657

AM

1146

58

Are

ceae

Arc

hon

toph

oen

icin

aeA

ctin

orh

ytis

cal

appa

ria

H.W

endl

. & D

rude

C.E

. Lew

is 9

7–01

1 (F

TG

)A

J829

847

AM

1168

14A

M11

3658

AM

1146

59

Arc

hon

toph

oen

ix p

urp

ure

aH

odel

& D

owe

Pin

tau

d 4

92 (

TL

)A

J404

806

AJ4

0493

7A

J404

904

AM

1146

60

Act

inok

enti

a d

ivar

icat

a(B

ron

gn.)

Dam

mer

Pin

tau

d 3

51 (

K)

AM

1102

21A

M11

6815

AM

1136

59A

M11

4661

Ch

ambe

yron

ia m

acro

carp

a(B

ron

gn. V

ieil

l. ex

Bec

c.P

inta

ud

361

(K

, NY

)A

M11

0222

AM

1168

16A

M11

3660

AM

1146

62

Ken

tiop

sis

oliv

ifor

mis

(Bro

ngn

. & G

ris)

Bro

ngn

.P

inta

ud

358

(K

, NO

U, N

Y)

AJ4

0480

9A

J240

892

AJ2

4178

8A

M11

4663

Su

bfam

ily

clas

sifi

cati

on (

1998

)S

UB

FA

MIL

Y,

trib

e,su

btri

beS

peci

esV

ouch

er i

nfo

rmat

ion

rbcL

rps1

6 in

tron

trn

L–t

rnF

mat

K

Ap

pen

dix

Con

tin

ued

PALM FAMILY PHYLOGENY 35

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

Are

cin

aeA

reca

tri

and

ra R

oxb.

1984

–229

5 (K

)A

J404

819

AJ4

0494

5A

J404

912

AM

1146

64N

enga

pu

mil

a (M

art.

)H

.Wen

dl.

var.

pach

ysta

chys

(B

lum

e)F

ern

ando

Bak

er 9

94 (

FT

G)

AJ4

0481

8A

J404

944

AJ4

0491

1A

M11

4665

Bas

seli

nii

nae

All

osch

mid

ia g

labr

ata

(Bec

c.)

H.E

.Moo

reP

inta

ud

468

(K

)A

J829

849

AM

1168

17A

M11

3661

AM

1146

66

Bas

seli

nia

vel

uti

na

Bec

c.P

inta

ud

365

(P

)A

M11

0223

AM

1168

18A

M11

3662

AM

1146

67C

ampe

carp

us

fulc

itu

s(B

ron

gn.)

H.W

endl

. ex

Bec

c.

Pin

tau

d 4

83 (

TL

)A

M11

0224

AM

1168

19A

M11

3663

AM

1146

68

Cyp

hop

hoe

nix

nu

cele

H.E

.Moo

reP

inta

ud

372

(K

, NO

U, N

Y,

P)

AJ4

0482

1A

M11

6820

AJ2

4130

9A

M11

4669

Cyp

hos

perm

a ba

lan

sae

(Bro

ngn

.) H

.Wen

dl.

ex S

alom

on

Pin

tau

d 4

91 (

TL

)A

M11

0225

AM

1168

21A

M11

3664

AM

1146

70

Ph

ysok

enti

a ro

sea

H.E

.Moo

reP

inta

ud

452

(T

L)

AJ8

2989

6A

M11

6822

AM

1136

65A

M11

4671

Vei

llon

ia a

lba

H.E

.Moo

reP

inta

ud

470

(T

L)

AM

1102

26A

M11

6823

AM

1136

66A

M11

4672

Car

poxy

lin

aeC

arpo

xylo

nm

acro

sper

mu

m H

.Wen

dl.

& D

rude

Zon

a 72

2 (F

TG

)A

J829

859

AM

1168

24A

M11

3667

AM

1146

73

Sat

aken

tia

liu

kiu

ensi

s(H

atu

sim

a) H

.E.M

oore

Pin

tau

d 4

46 (

K)

AM

1102

27A

M11

6825

AM

1136

68A

M11

4674

Neo

veit

chia

sto

rcki

i B

ecc.

Ron

cal

73A

J829

888

AM

1168

26A

M11

3669

AM

1146

75C

lin

ospe

rmat

inae

Cyp

hok

enti

a m

acro

stac

hya

Bro

ngn

.P

inta

ud

482

(T

L)

AJ8

2986

4A

M11

6827

AM

1136

70A

M11

4676

Mor

atia

cer

ifer

aH

.E.M

oore

Pin

tau

d 4

69 (

TL

)A

M11

0228

AM

1168

28A

M11

3671

AM

1146

77

Lav

oixi

a m

acro

carp

aH

.E.M

oore

Pin

tau

d 3

64 (

P)

AJ8

2987

9A

M11

6829

AM

1136

72A

M11

4678

Bro

ngn

iart

iken

tia

lan

ugi

nos

a H

.E.M

oore

Pin

tau

d 3

68 (

P)

AJ8

2985

4A

M11

6830

AM

1136

73A

M11

4679

Cli

nos

perm

a br

acte

ale

(Bro

ngn

.) B

ecc.

Pin

tau

d 3

49 (

K, N

Y)

AJ8

2986

1A

M11

6831

AM

1136

74A

M11

4680

Su

bfam

ily

clas

sifi

cati

on (

1998

)S

UB

FA

MIL

Y,

trib

e,su

btri

beS

peci

esV

ouch

er i

nfo

rmat

ion

rbcL

rps1

6 in

tron

trn

L–t

rnF

mat

K

36 C. B. ASMUSSEN ET AL.

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

Dyp

sidi

nae

Dyp

sis

lute

scen

s (H

.Wen

dl.)

Bee

ntj

e &

J.D

ran

sf.

1978

–119

6 (K

)A

J404

800

AJ4

0493

4A

J404

901

AM

1146

81

Lem

uro

phoe

nix

hal

leu

xii

J.D

ran

sf.

Bak

er 1

008

(K)

AM

1102

29A

J404

935

AJ4

0490

2A

M11

4682

Mar

ojej

ya d

aria

nii

J.D

ran

sf. &

N.U

hl

Bak

er 9

98 (

K)

AJ4

0482

5A

J404

950

AJ4

0491

7A

M11

4683

Mar

ojej

ya i

nsi

gnis

Hu

mbe

rtB

aker

101

6 (K

)A

M11

0230

AM

1168

32A

M11

3675

AM

1146

84

Mas

oala

mad

agas

cari

ensi

sJu

m.

1992

–355

2 (K

)A

J404

824

AJ4

0494

9A

J404

916

AM

1146

85

Mas

oala

kon

a B

een

tje

Bak

er 1

038

(K)

AM

1102

31A

M11

6833

AM

1136

76A

M11

4686

Lin

ospa

dici

nae

Cal

yptr

ocal

yxal

bert

isia

nu

s B

ecc.

Bak

er 1

109

(K)

AM

1102

32A

M11

6834

AM

1136

77A

M11

4687

Lin

ospa

dix

mon

osta

chya

(Mar

t.)

H. W

endl

.F

red

riks

en e

t al

. C-2

10 (

C)

AJ4

0481

1A

J404

941

AJ4

0490

8A

M11

4688

Lac

cosp

adix

au

stra

lasi

caH

.Wen

dl. &

Dru

deL

-79.

0850

(B

H)

AJ4

0481

2A

J240

895

AJ2

4130

4A

M11

4689

On

cosp

erm

atin

aeO

nco

sper

ma

tigi

llar

ium

(Jac

k) R

idl.

R. S

and

ers

1768

(F

TG

)A

M11

0233

AM

1168

35A

M11

3678

AM

1146

90

Aca

nth

oph

oen

ix r

ubr

a(B

ory)

H.W

endl

.C

.E. L

ewis

98–

067

(BH

)A

M11

0234

AM

1168

36A

M11

3679

AM

1146

91

Tec

tiph

iala

fer

oxH

.E.M

oore

C.E

. Lew

is 9

8–07

0 (B

H)

AJ8

2991

4A

M11

6837

AM

1136

80A

M11

4692

Pty

chos

perm

atin

aeP

tych

ospe

rma

mac

arth

uri

i(H

.Wen

dl. e

x H

.J.V

eitc

h)

H.W

endl

. ex

Hoo

k. f

.

Zon

a 86

9 (F

TG

)A

M11

0235

AM

1168

38A

M11

3681

AM

1146

93

Pon

apea

led

erm

ann

ian

aB

ecc.

Zon

a 87

8 (F

TG

)A

J829

903

AM

1168

39A

M11

3682

AM

1146

94

Bal

aka

seem

ann

ii B

ecc.

L-6

9.04

04 (

BH

)A

J404

814

AJ2

4089

6A

J241

305

AM

1146

95V

eitc

hia

are

cin

a B

ecc.

Bak

er 1

003

(FT

G)

AJ4

0481

3A

J404

942

AJ4

0490

9A

M11

4696

Car

pen

tari

a ar

cum

inat

a(H

.Wen

dl. &

Dru

de)

Bec

c.B

aker

999

(F

TG

)A

J829

858

AM

1168

40A

M11

3683

AM

1146

97

Wod

yeti

a bi

furc

ata

A.K

.Irv

ine

FT

G 8

5–11

113

(FT

G)

AM

1102

36A

M11

6841

AM

1136

84A

M11

4698

Bra

ssio

phoe

nix

sch

um

ann

ii (

Bec

c.)

Ess

igL

-72.

0031

(B

H)

AJ4

0481

5A

J240

897

AJ2

4130

6A

M11

4699

Pty

choc

occu

s pa

rad

oxu

s(S

chef

f.) B

ecc.

Bak

er 5

72 (

K)

AJ8

2990

6A

M11

6842

AM

1136

85A

M11

4700

Su

bfam

ily

clas

sifi

cati

on (

1998

)S

UB

FA

MIL

Y,

trib

e,su

btri

beS

peci

esV

ouch

er i

nfo

rmat

ion

rbcL

rps1

6 in

tron

trn

L–t

rnF

mat

K

Ap

pen

dix

Con

tin

ued

PALM FAMILY PHYLOGENY 37

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

Rh

opal

osty

lidi

nae

Rh

opal

osty

lis

bau

eri

H.W

endl

. & D

rude

va

r. ba

uer

i

Pin

tau

d 3

84 (

NY

)A

J404

808

AJ4

0493

9A

J404

906

AM

1147

01

Hed

ysce

pe c

ante

rbu

ryan

a(C

.Moo

re &

F.M

uel

l.) H

.W

endl

. & D

rude

Pin

tau

d 4

07 (

TL

)A

J404

807

AJ4

0493

8A

J404

905

AM

1147

02

Ver

sch

affe

ltii

nae

Ph

oen

icop

hor

ium

bors

igia

nu

m (

K.K

och

) S

tun

tz

1986

–234

6 (K

)A

M11

0237

AM

1168

43A

M11

3686

AM

1147

03

Ros

cher

ia m

elan

och

aete

s(H

.Wen

dl.)

H.W

endl

.19

85−1

825

(K)

AM

1102

38A

J404

947

AJ4

0491

4A

M11

4704

Un

plac

ed g

ener

a in

Are

ceae

Ben

tin

ckia

nic

obar

ica

Bec

c.P

inta

ud

457

(T

L)

AM

1102

39A

M11

6844

AM

1136

87A

M11

4705

Cli

nos

tigm

a sa

vory

anu

m(R

ehde

r &

E.H

.Wil

son

)H

.E.M

oore

& F

osbe

rg

Pin

tau

d 4

42 (

MA

K)

AM

1102

40A

M11

6845

AM

1136

88A

M11

4706

Cyr

tost

ach

ys r

end

a B

lum

e19

82–5

882

(K)

AJ4

0481

0A

J404

940

AJ4

0490

7A

M11

4707

Dic

tyos

perm

a al

bum

H.W

endl

. & D

rude

C.E

. Lew

is 9

8–06

1 (B

H)

AM

1102

41A

M11

6846

AM

1136

89A

M11

4708

Dra

nsfi

eld

ia m

icra

nth

a(B

ecc.

) W

.J. B

aker

& Z

ona

C.E

. Lew

is s

.n.

(FT

G)

AM

1102

42A

M11

6847

AM

1136

90A

M11

4709

Het

eros

path

e el

ata

(Bec

c.)

F.B

.Ess

ig &

B.E

.You

ng

C.E

. Lew

is 9

9–03

4 (G

UA

M)

AM

1102

43A

M11

6848

AM

1136

91A

M11

4710

Het

eros

path

e lo

ngi

pes

(H.E

.Moo

re)

Nor

up

Pin

tau

d 4

61 (

TL

)A

J829

850

AM

1168

49A

M11

3692

AM

1147

11

Hyd

rias

tele

mic

rosp

adix

(Bec

c.)

Bu

rret

Bak

er 5

73 (

K)

AJ4

0481

7A

J404

943

AJ4

0491

0A

M11

4712

Hyd

rias

tele

ch

aun

osta

chys

(Bu

rret

) H

.E.M

oore

L-7

2.03

59 (

BH

)A

J404

816

AJ2

4089

8A

J241

307

AM

1147

13

Igu

anu

ra w

alli

chia

na

(Mar

t.)

Ben

tham

et

Hoo

k.f.

ex B

ecc.

1985

–148

8 (K

)A

J404

820

AJ4

0494

6A

J404

913

AM

1147

14

Lep

idor

rhac

his

moo

rean

a(F

.Mu

ell.)

O.F

.Coo

kB

aker

116

7 (K

)A

J829

881

AM

1168

50A

M11

3693

AM

1147

15

Lox

ococ

cus

rupi

cola

H.W

endl

.19

90–2

497

(K)

AJ8

2988

2A

M11

6851

AM

1136

94A

M11

4716

Rh

opal

obla

ste

augu

sta

(Ku

rz)

H.E

.Moo

reC

.E. L

ewis

99–

044

(FT

G)

AM

1102

44A

M11

6852

AM

1136

95A

M11

4717

Su

bfam

ily

clas

sifi

cati

on (

1998

)S

UB

FA

MIL

Y,

trib

e,su

btri

beS

peci

esV

ouch

er i

nfo

rmat

ion

rbcL

rps1

6 in

tron

trn

L–t

rnF

mat

K

38 C. B. ASMUSSEN ET AL.

© 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 151, 15–38

Ou

tgro

up

s (f

amil

y)D

asyp

ogon

acea

eK

ingi

a au

stra

lis

R.B

r.C

has

e 22

30 (

K)

AM

1102

45A

M11

6853

AM

1136

96A

M11

4718

Das

ypog

onac

eae

Das

ypog

on b

rom

elif

oliu

sR

.Br.

Ch

ase

2229

(K

)A

M11

0246

AM

1168

54A

M11

3697

AM

1147

19

Han

guan

acea

eH

angu

ana

mal

ayan

aM

err.

1998

–147

5 (K

)A

M11

0247

AM

1168

55A

M11

3698

AM

1147

20

Hae

mod

orac

eae

An

igoz

anth

os m

angl

esii

D.D

onA

smu

ssen

109

(C

P)

AM

1102

48A

M11

6856

AM

1136

99A

M11

4721

Poa

ceae

Far

gesi

a sp

.A

smu

ssen

105

(C

P)

AM

1102

49A

M11

6857

AM

1137

00A

M11

4722

Typ

hac

eae

Typ

ha

angu

stif

olia

L.

Asm

uss

en 1

07 (

CP

)A

M11

0250

AM

1168

58A

M11

3701

AM

1147

23C

ann

acea

eC

ann

a ed

uli

s K

er-G

awl.

Asm

uss

en 1

04 (

CP

)A

M11

0251

AM

1168

59A

M11

3702

AM

1147

24M

usa

ceae

Mu

sa r

osea

Bak

erA

smu

ssen

101

(C

P)

AM

1102

52A

M11

6860

AM

1137

03A

M11

4725

Bro

mel

iace

aeV

ries

ia p

sitt

acin

a L

indl

.A

smu

ssen

102

(C

P)

AM

1102

53A

M11

6861

AM

1137

04A

M11

4726

Com

mel

inac

eae

Tra

des

can

tia

pall

ida

(Ros

e) D

.R.H

un

tA

smu

ssen

103

(C

P)

AM

1102

54A

M11

6862

AM

1137

05A

M11

4727

Su

bfam

ily

clas

sifi

cati

on (

1998

)S

UB

FA

MIL

Y,

trib

e,su

btri

beS

peci

esV

ouch

er i

nfo

rmat

ion

rbcL

rps1

6 in

tron

trn

L–t

rnF

mat

K

Ap

pen

dix

Con

tin

ued