a-posteriori error estimation for godunov finite …higher order godunov fv method higher order...

39
Stanford Workshop on Error Estimation, Uncertainty, and Reliability Aug. 20-22, 2005 A-Posteriori Error Estimation for Godunov Finite Volume Methods Tim Barth Exploration Technology Directorate NASA Ames Research Center Moffett Field, California 94035-1000 USA [email protected] 1

Upload: others

Post on 11-Jul-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Stanford Workshop on Error Estimation, Uncertainty, and Reliability

Aug. 20-22, 2005

A-Posteriori Error Estimation for GodunovFinite Volume Methods

Tim BarthExploration Technology Directorate

NASA Ames Research CenterMoffett Field, California 94035-1000 USA

[email protected]

1

Page 2: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Additional Information

http://science.nas.nasa.gov/~barth/stanford_workshop/*

• These slides:

fv_error_estimation.pdf

• Related lecture notes (Chapter 3):

lecture_notes.pdf

2

Page 3: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Objectives

• Construct the (exact) non-perturbative error representation formula

for user specified functionals for the class of high order Godunov

finite volume methods including

– MUSCL (van Leer)

– TVD (Harten)

– UNO (Harten-Osher-Engquist-Chakravarthy)

– ENO (Harten-Engquist-Osher)

• Devise computable error estimates

• Demonstrate sharpness of the estimates

• Use the estimates in an adaptive meshing procedure

3

Page 4: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Objectives

• Construct the (exact) non-perturbative error representation formula

for user specified functionals for the class of high order Godunov

finite volume methods including

– MUSCL (van Leer)

– TVD (Harten)

– UNO (Harten-Osher-Engquist-Chakravarthy)

– ENO (Harten-Engquist-Osher)

• Devise computable error estimates

• Demonstrate sharpness of the estimates

• Use the estimates in an adaptive meshing procedure

3-a

Page 5: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Objectives

• Construct the (exact) non-perturbative error representation formula

for user specified functionals for the class of high order Godunov

finite volume methods including

– MUSCL (van Leer)

– TVD (Harten)

– UNO (Harten-Osher-Engquist-Chakravarthy)

– ENO (Harten-Engquist-Osher)

• Devise computable error estimates

• Demonstrate sharpness of the estimates

• Use the estimates in an adaptive meshing procedure

3-b

Page 6: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Objectives

• Construct the (exact) non-perturbative error representation formula

for user specified functionals for the class of high order Godunov

finite volume methods including

– MUSCL (van Leer)

– TVD (Harten)

– UNO (Harten-Osher-Engquist-Chakravarthy)

– ENO (Harten-Engquist-Osher)

• Devise computable error estimates

• Demonstrate sharpness of the estimates

• Use the estimates in an adaptive meshing procedure

3-c

Page 7: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Higher Order Godunov FV Method

Higher order Godunov formulation in operator composition form

un+10 = Π0 · E(τ) ·R0

q(·)un0

• R0q , q-th order reconstruction operator

• E(τ), evolution in the small

• Π0, cell averaging operator

u0,K = Π0u|K =1

meas(K)

K

u da

Additional requirements

•R0q(x)Π0u = u(x) +O(hq+1) whenever u is smooth

•Π0|KR(x)u0 = u0|K , ∀K ∈ T yielding a diagonal mass matrix

4

Page 8: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

The Basic Idea

Observations:

1. Godunov finite volume (FV) methods and the discontinuous

Galerkin (DG) methods both utilize discrete broken space, VBq ,

approximation

2. Godunov FV methods can be written abstractly as a

Petrov-Galerkin variant of the Discontinuous Galerkin (DG)

method: Find u ∈ VB0 such that

BDG(R0qu, v) = F (v), ∀v ∈ VB

0 , R0q : VB

0 7→ VBq

Consequence:

• Any a posteriori error estimation theory for BDG(·, ·) that assumes

general (unequal) broken trial and test spaces applies directly to

Godunov FV methods

5

Page 9: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

The Basic Idea

Observations:

1. Godunov finite volume (FV) methods and the discontinuous

Galerkin (DG) methods both utilize discrete broken space, VBq ,

approximation

2. Godunov FV methods can be written abstractly as a

Petrov-Galerkin variant of the Discontinuous Galerkin (DG)

method: Find u ∈ VB0 such that

BDG(R0qu, v) = F (v), ∀v ∈ VB

0 , R0q : VB

0 7→ VBq

Consequence:

• Any a posteriori error estimation theory for BDG(·, ·) that assumes

general (unequal) broken trial and test spaces applies directly to

Godunov FV methods

5-a

Page 10: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

The Basic Idea

Observations:

1. Godunov finite volume (FV) methods and the discontinuous

Galerkin (DG) methods both utilize discrete broken space, VBq ,

approximation

2. Godunov FV methods can be written abstractly as a

Petrov-Galerkin variant of the Discontinuous Galerkin (DG)

method: Find u ∈ VB0 such that

BDG(R0qu, v) = F (v), ∀v ∈ VB

0 , R0q : VB

0 7→ VBq

Consequence:

• Any a posteriori error estimation theory for BDG(·, ·) that assumes

general (unequal) broken trial and test spaces applies directly to

Godunov FV methods

5-b

Page 11: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Error Representation of Functionals

Objective: Estimate the error

J(u)− J(uh)

where J(·) is a given functional.

Related Preceding Work (partial listing):

• Eriksson, Estep, Hansbo, Johnson

• Becker and Rannacher

• Suli and Houston

• Oden and Prudhomme

• Giles and Pierce

• Barth and Larson

6

Page 12: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Coping with Nonlinearity

Mean-value linearized forms:

B(u, v) = B(R0qu0, v) +B(u−R0

qu0, v) ∀ v ∈ VB

M(u) = M(R0qu0) +M(u−R0

qu0),

Example: B(u, v) = (L(u), v) with L(u) differentiable

L(uB)− L(uA) =

∫ uB

uA

dL =

∫ uB

uA

dL

dudu

=

∫ 1

0

dL

du(u(θ)) dθ · (uB − uA) = L,u · (uB − uA)

with u(θ) ≡ uA + (uB − uA) θ.

B(u, v) = B(R0qu0, v) + (L,u · (u−R0

pu0), v)

= B(R0qu0, v) +B(u−R0

qu0, v) ∀v ∈ VB

Orthogonality relationship: B(u−R0qu0, v) = 0 ∀ v ∈ VB

0

7

Page 13: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Coping with Nonlinearity

Mean-value linearized forms:

B(u, v) = B(R0qu0, v) +B(u−R0

qu0, v) ∀ v ∈ VB

M(u) = M(R0qu0) +M(u−R0

qu0),

Example: B(u, v) = (L(u), v) with L(u) differentiable

L(uB)− L(uA) =

∫ uB

uA

dL =

∫ uB

uA

dL

dudu

=

∫ 1

0

dL

du(u(θ)) dθ · (uB − uA) = L,u · (uB − uA)

with u(θ) ≡ uA + (uB − uA) θ.

B(u, v) = B(R0qu0, v) + (L,u · (u−R0

pu0), v)

= B(R0qu0, v) +B(u−R0

qu0, v) ∀v ∈ VB

Orthogonality relationship: B(u−R0qu0, v) = 0 ∀ v ∈ VB

0

7-a

Page 14: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Coping with Nonlinearity

Mean-value linearized forms:

B(u, v) = B(R0qu0, v) +B(u−R0

qu0, v) ∀ v ∈ VB

M(u) = M(R0qu0) +M(u−R0

qu0),

Example: B(u, v) = (L(u), v) with L(u) differentiable

L(uB)− L(uA) =

∫ uB

uA

dL =

∫ uB

uA

dL

dudu

=

∫ 1

0

dL

du(u(θ)) dθ · (uB − uA) = L,u · (uB − uA)

with u(θ) ≡ uA + (uB − uA) θ.

B(u, v) = B(R0qu0, v) + (L,u · (u−R0

pu0), v)

= B(R0qu0, v) +B(u−R0

qu0, v) ∀v ∈ VB

Orthogonality relationship: B(u−R0qu0, v) = 0 ∀ v ∈ VB

0

7-b

Page 15: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Error Representation: Godunov FV Case

Primal Godunov FV Problem: Find u0 ∈ VB0 such that

BDG(R0qu0, v) = FDG(v) ∀ v ∈ VB

0 .

Linearized dual problem: Find Φ ∈ VB such that

BDG(v,Φ) = M(v) ∀ v ∈ VB.

Error representation formula: (BDG(·, ·) and nonlinear M(·))

M(u)−M(R0qu0) = M(u−R0

qu0) (mean-value M)

= BDG(u−R0qu0,Φ) (dual problem)

= BDG(u−R0qu0,Φ− π0Φ) (orthogonality)

= BDG(u,Φ− π0Φ)−BDG(R0qu0,Φ− π0Φ) (mean-value B)

= FDG(Φ− π0Φ)−BDG(R0qu0,Φ− π0Φ), (variational problem)

Final error representation formula

M(u)−M(R0qu0) = FDG(Φ− π0Φ)−BDG(R0

qu0,Φ− π0Φ)

8

Page 16: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Abstract A-Posteriori Estimate

We wish to study the sharpness of the following sequence of direct

estimates

∣M(u)−M(R0qu0)

∣ =∣

∣BDG(R0qu0,Φ− π0Φ)− FDG(Φ− π0Φ)

∣ (basic representation)

= |∑

K

(

BK(R0qu0,Φ− π0Φ)− FK(Φ− π0Φ)

)

| (element assembly)

≤∑

K

(

BK(R0qu0,Φ− π0Φ)− FK(Φ− π0Φ)

)∣

∣ (triangle inequality)

≤∑

K

RK(R0qu0) ·WK(Φ− π0Φ) (Cauchy-Schwarz)

BK(·, ·) and FK(·) are restrictions of BDG(·, ·) and FDG(·) to the element

K

9

Page 17: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Adaptive Meshing

Define for each element K

ηK = BK(R0qu0,Φ− π0Φ)− FK(Φ− π0Φ)

BK(·, ·) and FK(·) are restrictions of BDG(·, ·) and FDG(·) to the element K

Adaptation Indictor:

∣M(u)−M(R0qu0)

∣ ≤∑

K

|ηK |

Stopping Criteria:∣

∣M(u)−M(R0qu0)

∣ = |∑

K

ηK |

10

Page 18: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Adaptive Meshing

1. Construct an intial mesh Th

2. Compute the numerical approximation to the primal problemon the current mesh Th

3. Compute a numerical approximation and postprocessing of thedual problem on the current mesh Th

4. Compute ηK for all elements in Th

5. If( |∑

K ηK | < TOL) STOP

6. Otherwise, refine and coarsen a user specified fraction of thetotal number of elements according to the size of |η|K , generatea new mesh Th and GOTO 2

11

Page 19: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Approximating Φ− π0Φ

Some strategies for approximating Φ− π0Φ

(1) Inherent two scale approximation: Compute the dual problem: Find

Φ0 ∈ VB0 such that

B(v0, R0qΦ0) = J(v0), ∀ v0 ∈ VB

0

and approximate

Φ− π0Φ ≈ R0qΦ0 − Φ0

(2) Least-Squares patch recovery post-processing:

(Zienkiewicz,Zhu,Aalto,Perala) Compute the dual problem: Find

Φ0 ∈ VB0 such that

B(v0, R0qΦ0) = J(v0), ∀ v0 ∈ VB

0

and approximate using patch recovery technique Rqq+r for r > 0

Φ− π0Φ ≈ Rqq+rR0qΦ0 − Φ0

12

Page 20: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Approximating Φ− π0Φ

(3) Higher order reconstruction: Compute the dual problem: Find

Φ0 ∈ VB0 such that

B(v0, R0qΦ0) = J(v0), ∀ v0 ∈ VB

0

and approximate using the reconstruction operator for r > 0

Φ− π0Φ ≈ R0q+rΦ0 − Φ0

(4) Global High Order Solves: Solve the dual problem global using a

higher order method

(5) Local High Order Solves: Solve the dual problem on local patches

using a higher order method

(6) ... ?

13

Page 21: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

A Least Squares Reconstruction Operator

In the present calculations, a least square reconstruction operator R0q has

been implemented based on the following design principles:

1. Exact Π0 projection in element K. The Π0,K projection of

R0q,N (K)u0 is exact in element K,

Π0,KR0q,N (K)u0 = u0,K for each u0 ∈ VB

0 .

2. Constrained least squares fitting on a patch N (K). The L2

deviation of the Π0,K′ projection of R0q,N (K)u0 from given

cell-averaged data in patch elements K′ ∈ N (K) is minimized

subject to constraints

‖u0 −Π0R0q,N (K) u0‖N (K) = min

w∈Qq(N (K))‖u0 −Π0w‖N (K),

for all u0 ∈ VB0 .

14

Page 23: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Least Squares Patch Postprocessing

0.01 0.1h

1e-05

0.0001

0.001

0.01

0.1

1

Glo

bal E

rror

||R01 u0-u||L2

||R21R0

1 u0-u||L2 (Post-processed)

|R01 u0-u|H1

|R21R0

1 u0-u|H1 (Post-processed)

Global L2 and H1 semi-norm error.

16

Page 24: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Numerical Calculations

Advection Test Problem: div(λu) = 0, λ = (y,−x)

Primal ProblemDual Problem

(Outflow Functional)Dual Problem

(Mollified PW Value)Dual Problem

(Integral Average)

0.0100 0.1000h

10-6

10-5

10-4

10-3

10-2

10-1

Func

tiona

l Err

or

|∆M||B(R1

0 u0, Φ−Φ0) - F(Φ−Φ0)|

|B(R10 u0, R1

0Φ0−Φ0) - F(R10Φ0−Φ0)|

|B(R10 u0, R2

1R1

0Φ0−Φ0) - F(R21R1

0Φ0−Φ0)|

ΣK |BK(R10 u0, R2

1R1

0Φ0−Φ0) - FK(R21R1

0Φ0−Φ0)|

Godunov FV with Linear ReconstructionOutflow Functional

0.010 0.100h

10-7

10-6

10-5

10-4

10-3

10-2Fu

nctio

nal E

rror

|∆M|

|B(R10 u0, Φ−Φ0) - F(Φ−Φ0)|

|B(R10 u0, R1

0Φ0−Φ0) - F(R10Φ0−Φ0)|

|B(R10 u0, R2

1R1

0Φ0−Φ0) - F(R21R1

0Φ0−Φ0)|

ΣK |BK(R10 u0, R2

1R1

0Φ0−Φ0) - FK(R21R1

0Φ0−Φ0)|

Godunov FV with Linear ReconstructionMollified Pointwise Value Functional

0.010 0.100h

10-6

10-5

10-4

10-3

10-2

Func

tiona

l Err

or

|∆M||B(R1

0 u0, Φ−Φ0) - F(Φ−Φ0)|

|B(R10 u0, R1

0Φ0−Φ0) - F(R10Φ0−Φ0)|

|B(R10 u0, R2

1R1

0Φ0−Φ0) - F(R21R1

0Φ0−Φ0)|

ΣK |BK(R10 u0, R2

1R1

0Φ0−Φ0) - FK(R21R1

0Φ0−Φ0)|

Godunov FV with Linear ReconstructionIntegral Average Functional

17

Page 25: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Numerical Calculations

Advection Test Problem: div(λu) = 0, λ = (y,−x). Mollified Pointwise

Value Functional:

Adapt

Levels #cells |∆M |

0 400 1.9E-3

1 602 9.4E-4

2 1232 1.7E-5

3 3418 5.8E-8

18

Page 26: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Numerical Calculations: Ringleb Flow

Ringleb Flow Test Problem

• Exact Solution of the 2-D Compressible Euler Equations

• Streamline pairs chosen to simulate turning duct geometry

• Solution is not represented exactly in Pk

555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555

555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555

M > 1M < 1

|V| = constant

Schematic Coarsest Mesh

19

Page 27: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Numerical Calculations: Ringleb Flow

Force Component Functional in the direction ψ

Mψ(u) = Forceψ(u) =

Γwall

(n · ψ) Pressure(u) d x

Let ψ be a constant vertically directed vector. Compute the Ringleb flow

primal and dual solutions computed using a FV discretization with linear

reconstruction

Iso-density contours of the pri-

mal solution.

Iso-density contours of the

dual solution.

20

Page 28: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Numerical Calculations: Ringleb Flow

Ringleb flow vertical force functional. Piecewise Linear Reconstruction

21

Page 29: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Numerical Calculations: Ringleb Flow

Figure 1: Ringleb channel geometry. Dual energy isocontours so-lution corresponding to mollified delta functional (left) and finaladapted mesh (3 levels) (right).

22

Page 30: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Multi-element Airfoil Computation

Test Problem: M∞ = 0.1, α = 15.0◦ flow over multiple component airfoil.

Domain Triangulation (2500 Vertices)

23

Page 31: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Multi-Element Airfoil Computation

Mach number contours of multielement airfoil Euler solution computed

with linear reconstruction

24

Page 32: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Lift Functional

Dual x-momentum solution, lift functional, Mψ(u) with ψ ⊥ V elocity

25

Page 33: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Drag Functional

Dual x-momentum solution, drag functional, Mψ(u) with ψ ‖ V elocity

26

Page 34: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Multi-Element Airfoil

Error in lift functional assuming “exact” solution from DG(3)solution of 5500 cell mesh

#cells ∆M errorest θ

1200 5.50E-4 4.52E-3 8.22

1950 4.45E-4 3.12E-3 7.01

3300 2.89E-4 1.42E-3 4.98

5500 9.76E-5 9.33E-4 9.56

errorest ≡ B(R01u0, R

02Φ0 − Φ0)− F (R0

2Φ0 − Φ0)

θ ≡ errorest

∆M

27

Page 35: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Multi-Element Airfoil

Figure 2: Multiple component airfoil meshes. Original mesh (left)and final adapted mesh with 50k triangles (right).

28

Page 36: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Multi-Element Airfoil

10000 100000elements

1.0e−03

1.0e−02

1.0e−01

Func

tiona

l Err

or

Figure 3: Multiple component airfoil problem. Functional error ver-sus number of triangle elements during intermediate levels of refine-ment.

29

Page 37: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Transonic Airfoil

NACA0012 Airfoil, Mach = .85, α = 2.0◦.

Figure 4: Isodensity contours of primal solution (left) and corre-sponding contours of the dual density solution (right) for the liftfunctional.

30

Page 38: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Transonic Airfoil

Figure 5: NACA airfoil, M∞ = .85, α = 2.0◦. Final adapted mesh(3 levels refinement).

31

Page 39: A-Posteriori Error Estimation for Godunov Finite …Higher Order Godunov FV Method Higher order Godunov formulation in operator composition form un+1 0= Π 0 ·E(τ) ·R 0 q(·)u n

Concluding Summary and Remarks

• By exploiting the a posteriori error theory developed for the DG

method, an a posteriori error estimation theory for the Godunov

finite volume method has been developed

• The Petrov-Galerkin structure of the Godunov FV methods suggests

a simple estimate of Φ− π0Φ for the continuous dual problem

Open problems

• Analysis of discontinuous coefficients in the dual problem

• Mean-value linearization and non-differentiability

• Approximating Φ− π0Φ and post-processing

32