a reproduced copy - nasa · 2013-08-30 · nasa-cr-176853 19860022058 a reproduced copy of...

50
.. . - -- .... NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672 Aug 65 NJ\S.\ VIRGINI,\ 111111111 111I111f 1111111111 I11I1 111111111 IIIr NF01681 https://ntrs.nasa.gov/search.jsp?R=19860022058 2020-02-03T12:40:53+00:00Z

Upload: others

Post on 17-Jan-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

.. .

- --....

NASA-CR-176853 19860022058

A Reproduced Copy OF

Reproduced for NASA

by the

NASA Scientific and Technical Information Facility

FFNo 672 Aug 65

Ll8P"~r.Y. NJ\S.\

.HAM~TON< VIRGINI,\

111111111 111I111f 1111111111 I11I1 111111111 IIIr NF01681

https://ntrs.nasa.gov/search.jsp?R=19860022058 2020-02-03T12:40:53+00:00Z

Page 2: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

,I

", ; , , I, I t ~ ~ .

f i' ~,

r ~. \. ~ r ~l n to'i

'.;

;li , I

.+ 1 . ~

.. .

::

--

Final Technical Report

Grant No, NAGW-816 //.'1 - ?_.~_. ,. ~ .::, I ''':;' .. -' I

Title of the Grant:

Theoretical and Experimental Investigation o~ Vortex Breakdown

Principal Investiqator:

Prof. Egon Krause, Ph.D.

Periocl covered by report:

JlJnf. 1,1985 - May 31, 1986

Address:

Aerodynamisches Institut

FWTH Aachen

Wullnerstr. zwischen 5 und 7

5100 Aachen

West Germany

(NAS;"-C[\-176353) TIlEORET rUL AND EXPERl~EN1AL INVES11GA1ION CF VCRTEX BFEAKCOWN Final Technical ~efo~t, 1 Jun. 1505 - 31 Ma.y 15E6 ('I€chnis·.;he lIochschule) 117 p CSCL 01A G3/02

Na6-31530

Unclas 43281

Page 3: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

I I

I

I ~ =

f r [

( "'-, r

I I I I

I ! ! I

t

l

" Introduction

The phenomenon of vortex breakdown is of considerable importance for flows under

critical conditions about delta wings. The leading edge vortices on the leeward side

of the wing can be termed slender until breakdown is about to occur. The

slenderness of the vortices is characterized by the ratio of the core radius Rand

the length L of the undisturbed vortex, i.e. R/L« 1. As long as the sl.:mderness

condition is satisfied, the equations of motion can be simplified considerably for

the description of the flow in the vor~ex. The integration of the simplified

equations is then possible for lorge Reynolds numbers. The breakdown itself must

be analysed by solving the full Navier-Stokes equation. With the slender vortex

approximation the overall computation time can be very much reduced, since the

largest portion of the flow can be determined from the simplified equations, and

extremely fine resolution is only required for the breakdown region, where the full

Navier-Stokes equations must be employed.

The work carried out under this contract is concerned with the formulation and

solution of the slender-vortex approximation and its numerical solution for

incompressible and compressible flow; with the initiation of experimental work and

the validation of the solution; and finally the prescription and determination of

permissable inflow conditions for the slender-vortex approximation. The results of

this analyses are presented in several publications (1), (2), (3), [4J; copies

of the preprints and manuscripts are enclosed.

Formulation of the Problem

The slender-vortex approximation for compressible viscous flow was first formu­

J3ted in Refs. (1) and 12). Therein it was shown that the flow is basicly

governed by the local axial pressure gradient, which can be expressed through an

integro-differential equation. According to this analysis the pressure gradient is

mr:inii' delermined by the radial distributions of the circumferential velocity

component, and the temperature. It c:;uld be shown that a hot core tends to

stimulate breakdown and that a cold core delays it. The direct influence of the

compressibility is that the variable density tries to counteract the influence of

positive axial pressure gradients, thereby delaying breakdown.

I · , · i

1.

f ' , · , :', ~

f ,

I ' ~ ; ; ! , I

: 1 : j

.1 · I 1 i q

....

Page 4: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

. -

Perrnissnhle Inflow Conditions

The slenderness condition imposed on the flow does not permit one to prescribe

arbitrary inflow conditions, which are required for the integration of the simplified

equations of motion. The inflow conditions are given by a set of radial profilas. for

the axial and circumferential velocity profiles, and the temperature. It Vias shown

in (11 and (2) that the inclination of the traces of the stream lines v/u in the

axial plane satisfiet a second-order nonlinear ordinary differential equation, to be

integrated in the radial direction. The coefficients of that equation are solely

determined by the inflow conditions. Since the inclination of the traces of the

streamlines must obey the slenderness condition, the solution of the equation for

v/u decides as to whether or not the prescribed inflow conditions for u, w, and T

can he admitted. This is described in detail in Ref. [2] •

Numerical Solution

Finite-difference solutions of the slender vorlex approximation were developed for

incompressible flows, and compressible flows. The differential equations were

casted into locally linearized implicit difference equations, which can be inverted

by recursion. Details of the solution for incompressible flow are described in 14);

the solution for compressible flow is described in 12J, and (3]. n.B most

important results computed with the solution so far are also reported in the

references just mentioned: In Ref. (4), it is shown, for example, that the solution

reacts sensibly to axial pressure gradients; comparison calculation were carried for

the experimental data of Faler and Leibovich. Th3 comparison, discussed in

[4} shows that for vorticities with large swirl, the breakdown point c£.nnot be

predicted with the slender vortex approoximation, since it does not take into

acocunt the upstream influence of the breakdown region.

In Refs. (2) and 13) the results t'btained so far for compressible flows are

discussed. The influence of the freestream Mach number and of the temperature

distribution prescribed for the inflow cross section on the flow development in the

downstream direction is clearly demonstrated.

Conclusions

The slender-vortex approximation was analysed for incompressible and com-

. i I .~

l: .. ;~

Page 5: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

-

pressible flow. First the equations of motion were reduced inan order of magnitude

analysis. Then compatiblity conditions were formulated for the inflow conditions.

-Thereafter finite-difference-solutions were constructed for incompressible and

compressible flow. Finally it was shown that these solutions can be used to describe

the flow in slender vortices. The analysis of the breakdown process must, however,

be excluded, since its upstream influel1ce cannot be predicted with the slender

vortex approximation. The investigation of this problem is left for future work.

Literature

[ 1 J E. K:-ause: "Schlanke Wirbel in kompressibler Stromung". ZAMM, Band 67,

Heft 4/5. To be published.

[21 C. 1-1. Liu, E. Krause, S. Menne: "Admissable Upstream Conditions for

Slender Compre3sible Vorti::es". AIAA I ASME 4th Fluid Mechanics,

Plasma Dynamics and Lasers Conference, May 12 - 14, 1986, Atlanta, GA,

AIAA-86-1093.

( 31 E. Krause, S. Menne, C. H. Liu: "Initiation of Breakdown in Slender

Co~pressible Vortices". 10 International Conference on Numerical

Methods in Fluid Dynamics, 23 - 27 June, 1986, Beijing, China. To be

published.

[4] L. Reyna, S. Menne: ''Numerical Prediction of Flow in Slender Vortices".

Accepted for publication in Computers and Fluids.

r

- ,

Page 6: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

• !

SCHLANKE WIRBEL IN KOMPRESSIBLER STRtiMUNG

E. Krause

Aerodynamisches Institut der RWTH Aachen

Willlnerstr. zw. 5 und 7, 5100 Aachen

Der EinfluG der Kompressibilitat auf schlanke Wirbel in stationnrt'7", reibungsbe­

haftcter Stromung wird dargestellt. Eine entsprechende AbleitL ng fUr rei bungs­

frt:ie Stromung ist in (1) und fUr instationare Stromungen in [2 J gegeben •

. Fur die Untersuchung wird angenommen, daG die Achse des Wirt.cls parallel zur

ankommenden Stromung 1st und daG die Stromung im Wirbel r(Jtationssymme- .

trisch ist. Bezeichnet R den Kernradius in dem Querschnitt senkrecht zur

Anstromrichtung, in dem der Wirbel erzeugt wird, und L die unbekannte Uinge

des Wirbels, gemessen in Stromungsrichtung,

aufplatzt, so erfordert die Schlankheitsbedingung

v R· ; -: 01-1« 1 u L

Gber die de:" Wirbel nicht

(1) .

Dabei ist v die rndiale und u die axiale Geschwindigkeitskomponente. Die mit

Gleichung (1) vereinfachten Erhaltungsgleichungen fUr Masse, Impuls und

Energie entsprechen der Grenzschichtapproximation:

Masse: L 1 9 u 1 + ..!. l 1 9 v r) = 0 ax r or

(2)

Impuls, x-, r- und G -Richtung:

au au an ~ 0 1 au 9U -+9v - =-~ +- - rll-) ax ar ax r ar ar

131

9w2 _ ap r ~"ar 1"

(5) ... _

Energie aT aT ap ap 1 a aT a r 2 au 2 cp l9u -+9v -l:u-+v-+--IrX-)+ll[Ir-I-ll +1-)) ax ar ax ar r ar ar ar r2 ar

(6) Das System wird mit der Zustandsgleichung 9 = P/(RT) geschlossen, Vlobci R die Gaskonstante ist. Zur Uisung des Gleichungssystems (2)-(6) mUsscn Ein­

strombedingungen

v:y_. n$r: u:f.lrl w:' .. lrl. T:f .. lrl 17\

i .1

" "j

Page 7: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

• !

Symmetriebedingungen auf der Wirbelachse -----_._" .- ..... --- -- -.. -- - - - - .. - -..

r = 0 ; x < x . au - v - w - aT - 0 0- . ar - - - ar - . 18)

und Randbedingungen fUr r- CO

19)

vorgegeben werden. Die Funktionen f1

(r) - f 3(r) und gl(x) und g2(x) mussen als

bekannt vorausgesetzt werden.

Wegen der Schlankheitsbedingung (1) kannen f 1 (r) - f 3(r) jedoch nicht willkurlich

vorgegeben werden. Dies geht aus folgender Betrachtung hervnr: Aus der

Kontinuitats-, Energie- und Zustandsgleichung laOt sich ~ ~ durch folgende

Beziehung ausdrucken: - -.. --. - ... ------- --. --_._.- ... _-- --_. -

_au_ = __ u_..£l?. _ ~ _a_T + 1_1<_-1_) -5 v __ 1 __ o-19 vr )+ _H_ ax Kp ox T ar r a 9r ar 9CpT

(101

Die GraGe H steht zur Abkurzung fUr die Dissipationsfunktion und den Warme­

leitungsterm in der Energiegleichung. Nach Einsetzen von G!eichung (10) in die

x-Impu!sgleichung erhalt man nach Integration:

- .::L = exp (- II [![( 1-~ 1 ~ ~ ) exp (II dr' u 0 a L 9U ax

r _/ [_1_ (ll1/9 U - H/cp T 1 exp (II dr')

o 9u

(111

Die GraOe III steht zur Abkurzung der Schubspannung in der x-Impu,,'gleichung

und I bedeutet

r w 2 dr' 1=/ (1+---.r1-

o aL r' (12)

Bei bekannten Einstrambedingungen f 1 (r) - f 3(r) kann v/u n3ch Gleichung (10)

bestimmt werden, wenn der artliche Druckgradient a pI 0 x unbekannt ist. Er

HiGt sich durch Differentation n~ch x und anschliel3ender. Integration aus

Gleichung (5) gewinnen:

..£l?. '..£l?. ax (x,r)= ax (x.r-co)

/co( nw) [2 0 ( ) w aT w3 ) ( v) , + ~ - - r'w - - - + --- - dr

r r' r' ar' Tor' cpT r' U

-i w2 .££. dr·-iI2n 2- ~H) ~dr'

r a 2 r' ax r cpT r'u (13)

Die Grol3e 112 steht zur Abkurzung fUr die Schubspannung in der Q -Impuls­

gleichung.

I f: " :j

:1 .1 .!

Page 8: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

- ! Nach Gleichung (13) ergibt sich stets ein nichtverschwindender Druckgradient

~ ~ (x,r), da in reibungsbehaftetcr Stromung v/u stets von Null verschieden ist.

Ein heiner Kern kann dabei. den Druckgradienten vergroOern, wahrend die

Umfangskomponente den Druckgradienten verkleinert. Dieser andert· seinen

Einflur3 mit der axialen Machzahl. Das geht aus der x-Impulsgleichung .hervor,

die sich in folgende Form bringen laOt: -----._-_.-._-_ .... __ .. _-- .. - .. ---_. __ .... _-

_a (_v) __ r1- ~u2 I ~1 ap '1 w 2 ) v , 1 a { au I (x-11 -- .--.,- --~-- rTJ- .-~H ar u a pu ax 0" ur QU~ r or ar po"u

( 14)

GJeichung (14) zeigt, daO bei Uberschalldurchstromung des Wirbels, d.h. uta > 1

der crste Term sein Vorzeichen andert.

Sollen nur die Funktionen f 1 (r) - f 3(r) auf ihre Kompatibilit5t mit der Schlank­

heitsbedingung, Gleichung (1), im Einstrom~uerschnitt GberprGft werden, kann

dies durch Elimination der Druckgradienten aus den Impulsgleichungen gesche­

hen: Durch entsprechende Differentation nach x bzw. r und Subtraktion der

resultierenden Ausdrucke voneinander, erhalt rnan nach Zusammenfassen

a 22 ( ~) • G, (x, r ) -~ { ~ I • G2 (x, r)( ~). G3( x ,r I = a ar u ar u u

(151

Die Funktionen G 1 (x,r) - G3{x,r) lassen sich unmittelbar aus den Einstrombedin­

gungen ermitteln. Integration von' Gleichung (IS). ergibt dann die radiale

Verteilung v/u, so daO nbgescrl:itzt werden kann, ob die Schlankheitsbedingung,

Gleichung (l), erfUllt ist.

Literatur

1. Krause, E., e'er CnfluG der Kompre!'sibiliUit auf schlanke Wirbel, Aerodyn. lnstitut, RWTH Aachen, H:lft 27, S. 19-23, 1985.

2. Kraus'e, Eo, On Slender V\)rtices, in: Flow of Real Fluids, G.E.A. Meier, F. Obermeier (Eds.), l ectur~ Notes in Phy~ics, Vol. 235, Springer Verlag, S. 211-218, 1985.

Page 9: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

.. •

I "

NUMERICAL PREDICTION OF FLOW IN SLENDER VORTICES

* •• Luis Reyna and Stefan Menne

Aerodynamisches institut, RWTH Aachen, West Germany

Abstract

We study the slender vortex approximation with attention put on high Reynolds

number behaviour. It is shown that the breakdown of the approximation coincides

, with the criticality' condition as introduced by Benjamin [12J • We study free

vortices with and without an adverse pressure gradient for viscous and inviscid

flows. Finally we compare to experimental results from Faler and Leibovich [B] ..

*

*.

This research was conducted while the first co-author was at the Aero­

dynamisches Institut as an Alexander von Humboldt-scholar.

Correspondence and proofs for correction should be transmitted to Stefan

Menne, Aerodynamisches Institul, Wlillnerstr. zw. Nr. 5/7, 5100 Aachen, West

Germany.

';.'

:;

:',

;.~

. ... "

, "

Page 10: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

· .... -.... ·~r / ., .... : :', ",' I

: .. 'j

" .

f'

; . .

:~

. , ,..-* ," .. . . .. .." ..

""; f . .j

*"'t

~~f1

NUMERICAL PREDICTION OF FLOW IN SLENDER VORTICES

. --Luis Reyna and Stefan Menne

Aerodynamisches Institut, RWTH Aachen, West Germany

1. Introduction

Vortex breakdown was initially observed by Peckham and Atkinson [11 for leading

edge vorth::es formed on delta wings at large angle of attack and with large tip

angles. The phenomenon has a drastic influence on the aerodynamical behaviour of

the flow. In flows around wings its presence strongly decreases the Ii ft [2,3] and·

in combustion chambers it can be used to design flame holders [4] • Despite of the

large amount of research on this subject, the problem of vortex bre3kdown can not

be yet considered as being fully understood. The presertt state of the art can be

found in the review articles by Ludwieg [5], Hall [6] and Leibovich [7] .

In experimental investigations Faler and Leibovich [8] found six different cases

of breakdown for a swirl flow in a divergent tube. Two of thf: n are nearly

axisymmetric and called bL.bble type, the remaining have either a spiral or heli­

coidal shape. The spiral form is marked by a kink followed by a cork-screw shaped

twisting of the vortex filament. In this case non-axisymmetric effects are im-

".~ portant and have to be included in the analysis of the flow [ 9] •

*

**

This research was conducted while the first co-author was at the Aero-

dynamisqhes /nstitut as an Alexander von Humbolclt-scholar.

Correspondence and prol)fs for correction should be transmit ted to Stefan

Menne, Aerodynamisches Institut, WUllnerstr. zw. Nr. 5/7, 5100 Aachen, West

Germany •

~------------~--------~.r---------

Page 11: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

n ~ .j ;J,

.i i

0·' , t

i , I

i (

~

, l ~ : . ,0, .. -, ;·1

1 , ~ t I

,,- ~ , . :. ~- ; ic..f .. >i "'I n ""! ' ..

.!

Vortex breakdown theories assume axial symmetry except Lud,,· ... ey's [10] whic.h

regards it as a hydrodynamical instability of nearly axisymmetric flow. The

important but unanswered question is the dependence of the breakdown type on the

approaching flow. In order to explain the phenomenon Squire [11 J ' Benjamin

[12,13J and Bossel [1 l l,15 J introduced the concept of critical state. The flow is

called supercritical when perturbations can onlt propagate downstream and subcritical

when there is an upstream influence. Squire [l1J suggested upstream perturba­

tions would accumulate and produce breakdown at the critical state where the flow

proceeds from super to subcritical and the phase velocity of the perturbations is

zero. Benjamin [ 12] showp.d the existence of two equivalent solutions to a

conjugate flow, one being supercritical and the other subcritical. He then regards

breakdown as a sudden transition from super to subcritical states, similar to the

hydraulic jump. It is not possible to predict vortex· breakdown with this theory, but

it allows a classification of flows. The significance of the theory can be seen in an

experimental observation of Faler and Leibovi"ch [ 8] : "All flows that exhibit

vortex breakdown of the "axisymmetric" form (which we classify as types 0 and 1

disturbance form!:) or "spiral" form (our type 2) are supercritical upstre<lm, In the

sense of Benjamin."

The details of breakdown can be studied by numerical integration of the full

Ni'lvier-Stokes equations. Lavan, Nielsen and Fejer [16] , Kopecky and Torrance

[ 17], Grabowski and Berger [ 18] computed axisymmetric, laminar, incom­

pressible and stationary swirling flows. -Grabowski and Berger [ 18] found a

backward flow for subcritical initial profiles in contrast to the classification of

Benjamin [ 12J . Since the double r·ing stucture was not present inside the bubble,

Faler and Leibovich concluded due to their experiments [19] that the numerical .-,

~ solution shculd take into account time dependent periodic asymmmetric motions

[19] . The time dependent calculation .done by Shi [20] showed correctly this

structure. The computed flow was stationary upstream o~ the breakdown point but

instationary and nearly time periodic downstream of it. This and similar

computations ~re restricted to low Reynolds numbers, much lower than the ones

present in technical applications.

Plow pictures show nearly cylindric.'11 stre<lm surfaces upstream and this observa­

tion can be used in order to derive ar. approximation of the Navier-Stokes equations

usually called the slender vortex approximation. The assumption behind this

approximation i:: analogous to the one frorn boundary layer theory. The slender

.. _-----,

Page 12: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

vortelC approximation has been used by Gartshore [21,22] , Hall [23-25] , Bossel

[ 26], Mager [ 27], Nakamura and Uchida [28] and Shi [20]. The

approximation based on small gradients and small radial velocities fails at the

breakdown point but is vaiid upstream I\f it and generaily for stable vortices.

The purpose of this paper is to study the high Reynolds number behaviour of the

slender vortex approximation. In chapter 2 we prove that the breakdown of the

approximation occurs at the critical state as remarked by Ludwieg [5]. In chapter} we present numerical solutions for different Reynolds numbers. In the

limit of no viscosity the external pressure gradient determines the breakdown. First

preliminary results are shown in [29] . Finally we compare to experimental data

and discuss the advantages and limitations of the approximation.

2. Slender vortex approximation

Consider now the Navier-Stokes equations written in cylindrical coordinates

(x, r, G) with correspondir.~ velocities (u,v,w) in a nondimensional form. The axial

and 'radial velocity compo:-aents are normalized with the axial velocity and the

pressure with its value at the initial static..n for r~ co. The lengths are normalized

with the vortex core radius which marks the region of viscous flow. The

circumferential velocity is normalized with its value at the initial station at the

edge of the vortex core.

Including the slenderness condition

and assuming steady axial symmetric flow leads to a system of equations

A.L.4x t 'IT.(..(.r -t t>x =:: R: f (r,ul")r "D wl. rr =r-

M. WI( "; 'IT-i:-(rW)r '0. ~ [~(rw)r]r \

(r..u.)x + (r'\T)r =- 0

(1.0..)

(2.1)

(2c)

(2d..) called the slender vortex approximation. Here the Reynolds number is based on the

vortex core dimension and the undisturbed axial velocity and p is the pressure.

-_ .. \'

Page 13: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

i ,

Notice that the type of this syst'!m is n·o.-./ parabolic for viscous flow and hyperbolic

for invic;cid flow cO:Jplad to two ordinary differential equations.' The first such

•• equation is the momentum equation in the radial direction and the sc':ond

t p

(rtr)rr - ~ (r'I.T}r t f,u~r3 (rlw%)r - ; (~M.r)r] (ru-) c

== ~~ [-~ (~ (r,ur)r)r + ~~ (f(rw)r)r ]

can bc easily derived from (2).

Due to the slenderness condition the approximation based on small gradients and on

a small radial velocity fails in the neigho~urhood of the breakdown point. ,l\ccording

to the theories of Sq:Jire [11] and Benjumin [12] the flow is supercritical

upstream of this position and perturbations can only propagate downstre:lm. As a

consequence the influence of the t-.reakdown bubble is not contained :n the slender

vortex approximation.

Symmetry conditons are imposed along the r = 0 axi:;:

A..t.t-= 0 I '\T:=O J W= 0 (Lfa.)

At the outer radiu~ thr. type of the system allows three boundary conditions for

viscous flow and one for the pressure for inviscid flow; the physical boundary

conditions for free vortices are

(-p't' i,u.:z.)(r, X) --> C J (lfb)

r~co

where C is a constant taken from the initial conditions and p. (x) is the axternal

prcssur'!. These boundary conditions are also valid for the inviscid s),stem when the

radial velocity has a negative sign at infini~y, otherwise only the pressure

can be given

(Ire)

The slender ·vortex approximation in vorticity, circulation, stream-function

formulation becomes

,u f)C + 1T fr -;c. (~T'r)r

.Q = (~"fr)r

• '---~.-----. "'-~-~--."""""--:--.-.'

-"~"""

(5"1»

(5c)

r I t

i i(

Page 14: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

.. ..

with the vortic:ity I2. = -ur ' local circulation rr = rw, slrenm-functiiJn 'If nr-d

v~locity compor ~nt.s

.., I..J.. ::: C - r ·\t'r

'lr; 1: "fx In the vorticity, circulation, stream-function formulation the swirl influence is

given explicitly in the vorticity tran~p')rt. eq,·~·ion by the term I, 3 r / in ::ontra~t r

to the form~lation in primitive variables where this coupling fol!ows impll~itly)v';,

the pressure. For an isoltlted vortex it is advantageous to consider the pe .. tu~b?t.ion

of the stream-function from paralh:1 flow. In this case the parameter 8 in eq.(ba)

is equal to onej elo;e £ i: equal to Z!!rt),

The boundary conditions. (4) corresponding to the vorticity-stream-function for­

mulation are at the axis of symmetry

J (- ) +0..,

At the outer radius t!.e boundary conditior.s (l;b) t.anslo~e into

)

r~oo r_co

where C =,(Pi

+ ~u~) is a constant ~a!{en from the initial conditions .,nd p .... (x) is

the external pressure. The parameter p-> specifies the rate of the circumferential

velocity lit the edge of the vortex core to the axi;:d velocity at infinity in the initial

station. "l'hese boundary condit;ol"s are .;:so valid for the inviscid sy"tem w"en the

radial velocity has a negative sign at infinity, otherwise only the pressure

-) can be given

1'-~ l'co (x) t-+co

Finally for viscous flows in a pipe the no-slip conditior.

,IJ.. =. 0,.', "tf~ 0 J W i= 0 holds at the outer radius.

For free vortices the corresponding bou:·.dary conditions for (3) are

'\T d...J.J..oo tr=O at:. r==o and. 'lTr+--r+~== 0 a.t r~co

where v..,.. ex) = -{ 2(C-Pc.o (x»'is a given function.

,. .... .. ~-.

(t cl.)

(7-e.)

Page 15: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

t

'I ". ~

t ~

~,

~. -:. , i ;..

J . .... 1 -, "1'. ., " ,-'=.-,,' ~-. :e ,. i ~ . ... [..--

~: ~.

I :/ ;l: •

.

.(

f ): r * ~, ~ , I .,\ ,.,

'.t .. . ,4

.-,~.-h "

r-J.~_ . 't

'~> tt ~ ,'A #"; .,1!t-.~-. 1\' , t!~,.J

: \

..

-. , 4

'" :'\

Initial conditions ha\~ to be provided for the axial nnd circumferential velocity

M.. (r, Xo) = Mo (Y')

W Cr, '1<'0) ::= \\10 er)

The pressure, the radial velocity, the vorticity, the circulation and the stream-

. function can be obtained from them.

Solutions of the slender vortey approximation can cease to exist due to two

different mechanisms: first, when the axial velocity vanishes somewhere in the

flow and second, when the radial velocity become~ unbounded. The first case is

similar to the boundary layer separation while the second is related to the

criticality condition introduced by Benjamin [12]. The se("'ond situation arises

since there is no viscosity present along the axial direction and therefore

unbounded gradients along it can appear. Since the viscosity present in (2) only

controls tt)e radial gradients of the axial and circumferential velocity components

axial gradients and also the radial velocity can grow infinitely. Moreover, in this

case the solution tends to that of the homogeneous problem (3).

Indeed numerical solutions of the slender vortex approxir:'ation sh,w that the

viscous forces are really small compared to pressure and inertia forces near

breakdown of the slender vortex equations.

As in boundary layer theory t'1e behaviour of the approximated .md the full Navier­

Stokes s)'slem are identical shortly before breakdown when the proper boundary

conditions are imposed. We return to the point when comparing predictions of the

slender vortex approximation and expcrimental results.

We now comtJare this breakdown' condition to the criticality condition ~s introduced

by Benjamin [12] (see a!so Hall [6 J ). Benjamin co'nsiders steady, inviscid and axisymm~tric flow. Intl'oducing the

streamfunctio~ 'f' with u = ~ 'rr and v = - ~~, the tot31 head h = P + ~u2 +v2 +\,,.2)

and the circulation r = rw the equation of motion for these flows can be

summarized in a single eQuo::tion fur the stream-function.

Page 16: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

~ • F".. - -Ali

;:;:r~ .. -. \t.J~~. !~~~!t:'::Z;·'::*'~1i~::t:tm~t~,;·~~m~~~:ffl':\i!fjte,t·5·~£~~~rg ... f 4~~JJ

..

I . 'I .1 -, d i J

~( ;1

1 :1

~f ..i

~ tl l

l

We now consider a perturbation of 0 qu;;sicylindrical flow

"/(>:,1')= 1'c>:,r) + c f(x,r) eYx (10)

where £.« 1 and ~ ~« 3 ~. This perturbation introduced in (9) and neglecting

higher order terms in e yields an equation for F. The critical state F corresponds . c

to 'f = ° and in this case

fct"r- ~fer + [-~(~).tr)r+ riM.%. (r1 w1)r]Fc ==0 ('11)

If the solution with initial data F = ° and F = 1 at r=O vanishes away from the c cr axis the flow is subcriticalj when this solution vanishes at both the axis and outer

radius R it is said to be critical and otherwise supercritical •

In comparison to eq.(ll) the equation for the radial velocity (8)

(r'lT")rr - i (rv-)r + [-.:;. (~.ur)r+ r3~:' (r2. w2.)r] (r1Y) = 0 ('12)

shows an identical form with the boundary conditons

tT d. .u. cO 0 a:C r 1&0' 'R.. V'~ 0 a.-C Y'-= 0 a.\'\ 0" tTr + r 1- c:l x = where the outer radius R has a finite value with R» 1.

The general solution of eq.(l2) reads

(r1T) = C H (r) where the boundary condition (rv)(r=O) = ° is already used.

With the constant C the solution function H(r) can be adapted to the boundary

condition· at r=R. Excluding the trivial solution v; 0, i.e. v(r=R)'*O, the demand

r-7'R.: H~ 0

leads to a critical case, since necessarily the constant C has to go to infinity and

consequent! y

0< r < "'R.: (rv) ~ 00

This charact~.ristical behaviour of ~he radial velocity is present in the slender

vortex approxi~ation in the vicinity of the breakdovm region. A comparison of this

critical case with the previously described critical flow state according to the

theory of Benjamin [121 leads to a complete agreement: eq.(ll) and (12) are

equivalent to e:Jch other just as the boundary and the criticality conditions since

the condition F = 1 excludes only the trivial solution. cr

Page 17: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

\ I I !

I I t

, . Now :.ve can see that the breakdown condition for the slender vortex approximation

corresponds to the condition from Benjamin [12] and breakdown can be seen as a

transition from supercritical to subcritical flows as remarked by Ludwieg [5] . Hall [6] reached also the sarne conclusion. He explained the equivalence using

the existence of two solutions for the slender vortex a small distance apart from

each other which do not coincide as the distance tends to zero. He then shows that

"the condition for the appearence of arbitrarily large axial gradients turn out to be

identical to the condition for the critical" [6] .

3. Solution and results

We used both the primitive variables and the vorticity-stream function formulation

for the numerical solution of the slender vortex Clpprcximation. In a first approach

we used primitive variables with centered discretization. The radial velocity is

evaluated only at the midpoints of axial intervals (see fig. 1). The discretization

only use two "time" levels making it convenient for variable axial spacing. The·

function value distribution is shown in fig. 1.

Here foo denotes the numerical solution at the (i,i> node corre:;ponding to IJ

(x,r) = (i6x,jDr), where 6x and 6r are the axial and radial spacing. The equations

are solved marching along the axial direction as the type of the system indicates it.

At each new axial station a s)'stem of nonlinear equations must be solved. This is

done using Ne~ton's approach and a linear band sol ver for the Jacobian invei'sion.

In order to decrease the band width, the symmetry condition for the axial velocity

is applied as

/

Page 18: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

. .

~g'!fi:":·:t@·~·t¢~15i:;:W;t:¥J;.s"g;] ~'4.,;"~.l~mtftaOM#pnk~;':::iwk'Z· 'i ·:;Uh,":·,,·;;;:::= t : ::T1- .. ;Zlb' 'i$, '?':fr'TJ~'

instead of three point extrapolation formula. (This boundary condition also holds in

the inviscid case). The discretization is second order accurate in botl1 radial end

axial direction and unconditionally stable with respect to the size of Ax.

Nevertheless during the calculation the size of t::.. x is decreased when the Courant­v. ~

Friedrichs-lewy number CFl = max . ...!.. A2 exceeds a predetermined constant I u. u r .

CFl. • t::.. x is also decreased when the Newton's procedure fails to reduce the max

residual below the tolerance limit TOl after NEW iterations. max

Normally we use CFl =2, NEW =3 and TOl=10-4, being the solution not max max sensitive to these values.

The second numerical approach was applied to the vorticity stream-function

formulation (6). We use again centered discretization with function values

determined at node points except the radial velocity which is evaluated £It inter­

mediate axial points 0+ !,i> (Crank-Nicolson formulation). The resulting discreti­

zation is unconditionally stable and second order accurate. At each new axial

station a tridiagonal system must be solved for the stream,;.function, vorticity and

circulation. For a free vortex the equations are not coupled through the boundary

conditions and.therefore can be solved iteratively as follows. We initialize

(0)

M..iot.{.j = )J..<',j (0)

U--\+"I~,j::: tJi-"l1tl (1{,)

and using these values compute r (1) and then.Q.(l).

Next the stream-function "p (1) is computed and a new iteration can be started~ The

procedure is repeated until

where iterative procedure has a low storage

requirement, .?nly two axial stations has to be kept. It has the drawback to be only

convergent for,supercritical profiles. This is not the case for the Newton's-i,eration

approach that allows subcritical initial profiles. On the other hand initially

subcritical profi les are of little physical inte rest since these f lows can be regarded

as already broken down according to the theories of Squire [ 11] and Benjamin

[12] •

I

. .~

i

Page 19: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

i I

The converger~ce problem translates 'into increasing number of' iterations as the

flow reaches criticality conditions. In these situations the axial step is decreased in

order to keep the amount of work low; this also gives a better axial location for the

breakdown point. Each line the axial step is decreased, the' iteration is restarted

with the last converged values.

Since few grid points are required outside the vortex core we use a transformation

in the radial direction

r: (OJrMCl)()~ (5': (O'()mo,. ... )

r _ taft (.~ (5) (18)

rt?tQ.,)( - -cak (~6",,1I.)() The uniform spacing in the r; -direction gives almost a uniform distribution in the

radial direction when ~ «1 and an accumulation of grid points near the axis max when G' ~ 1. The pressure is obtained integrating the radial momentum max equation

where

The initial value is the pressure at r:5 • 9 is an even function of C5 • In order to max decrease the truncation error the pressure is integrated analytically outside the

vorticity core where the circulation is constant.

The initial values are taken as

M.. ::: -1 + oc f (r) with o

Wo: f.>~(r) wi~'" ~cr)::-{~C2,-r2.) Jr~11 ,r I r":? If

, (20)

These polynon:ial distributions are alroady used by Mager (27) , Grabowski and

Berger [18] 'and Shi [20] and " ••• \.vere chosen to approximate the experimen­

tally-measured velocity in vortex cores such as those of trailing vortices ••• " [10] .

The parameter 0<. controls the shape of the axial profile, uni form flow for OC = 0,

jetlike for 0<. >' 0 and wakelike for c:« O. The circulation corresponds to solid body

rotation for r« 1 and to potential flow outside the core of vorticity. The

polynomials fulfill symmetry conditions and providr; a smooth transition form the

, ... !!O.s:"MB

......

/ J

Page 20: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

:;:;. g =

solidly rotating core into the outer flowfield. The parameter r.:, speci ties the rate

of the circumferential velocity at the.edge of the vortex core to the axial velocity

at infinty in the initial station.

We now return to the boundary conditions for free vortices. We assume constant

pressure gradient

~"Poo clx

==7: Then the slender vortex equations can be scaled using

.., X=X,'t

" and therefore the pressure gradient for the transformed sy.>tem is equal to one. The

flow is relevant for values x < ~ since the outer continuitly desacceleration of the

outer flow makes the outer axial velocity vanish at ';(' = i. When no pressure gradient is present in the outer flow the scaling

';::f. X X== ~ J

(23)

makes the equations and the initial conditions Reynolds number independent.

Notice that the axial coordinate is stretched but the radial coordinate is left

unchanged in contraJt to boundary layer type of scaling (e.g. Hall [25J). The

result is an increasin~ breakdown length for increasing Reynolds number in contrast

to experimental observations [30J for which the location reaches a limit. Due to

this behaviour at high Reynolds number we do not expect this to be the physical

mechanism behind breakdown which we believe to be pressure induced.

For tube flows the numerical procedure for the stream-function formulation w?s

slightly changed due to coupling of the vorticity and stream-function through

boundary conditions. The stream-function was computed from the fourth order

differential equation obtained when (6c) is introduced in (6a) and using a five point

centered di:;crctization. For the primitive variable formulation these new boundary

conditions int~oduced no new complications.

\

In order to resolve the boundary layer on the tube wall, the following stretching

function was used

with R(x) being ti,e tube radius ::md G'm = 0.0.

,/

Page 21: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

., j

,/

,/

Faler and Leibovich [0] measured several velocity distributions which were used

as initial condition for the flow calculations.

We study our breakdown criterion described in chapter 2 by applying it to free

flows driven by a pressure gradient which reach critical state already in the initial

section. We used simplified profiles that allow us to do analytical work:

. {-1+~) ,«.-: o 1 )

. {2.~r ) Wo = ~

r

) r~ r'ff r ~~Yi'

These profiles are an approximation to the profiles used in the numerical examples.

The axial velocity distribution is discontinous and the circumferential velocity can

be described by solid body rotation inside the core and potential flow outside of it.

Introducing these distributions in (12) we obtain

and (2b)

where

Since the axial velocity is discontinous jump conditions have to be prescribed

[31J : 'tJ"~

[:u:-J= 0 * where [r] denotes the jump in the values of ~ across r.

The solution of eq.(l6) reads

v- == C" ;.1 Cl) cl

tr::: cz'r + r for r ~ ill (.or r > ~ yz

(2~)

(1.8)

where J1

is t~~ Bessel function of the first kind of first order. The cor';tant c2 is

determined by the pre~sure gradient at infinity. Since the condition v = 0 at r = 0 is

already used, the constants c1

and c3

are determined by the jump conditi,)ns (27).

It follows

(lQ.o.)

"

.'

Page 22: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

"

,;

:i ,i

',i

I n "

,I 'I , . !

I : I

;. ,

I

y. . I

..

.... ':J

l C:t

at

Criticality is already reached when

that is

OCG. = J 0,0 with.

[ J..A%.(r...r J'*' - -) =0 r .v.. r

(31)

(j is the first non trivial zero of the zeroth Bessel function J ). This critical 0,0 0

curve is drawn in figure 2 as a dotted line. The curve marked by triangles shows the

numerical profiles which are initially critical. Due to the undershoot in the axial

velocit)· for c« 0 of the discontinuous analytical distribution when compared to the

numerically used profiles, the limiting curve lies too high producing a destabilizing

effect (oc> 0 produces the inverse effect). The overshoot of the analytically used

profiles for the circulation shifts the cu~ve C>C G(~) upw:::rds. The numerical results

can be summarized as follows: Or the right side of the limiting curve in fig. :2 no

solution of the slender vortex approximation can be found (subcritical region). At

the left there exists a region where vortic~s have a limited breakdown length. In

the following region at the left no vortex breakdown appears at all. The vortices

are stable and dissipate themselves away •

3.1. Isolated vortex for inviscid and viscous flow

Figs. 3-6 shoW results for the free vortex with e;: = 0, {:> = .8 and ~ = O. This

vortex breaks down at ~e = 0.015. In fig. 3 we show the relative str'tncgth of the

forces present in the axial momentum balance. Here F p is the pressure force, FI

the inertia and F V the viscous force. Initially pressure and inertia forces are almost

equal while viscous forces are much smaller. Near breakdown both pressure and

inertia forces show a dramatic inc· ease in their strength. This increase is not

Page 23: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

.r~ v .rt"\ f-I 'f-I .

j u,w,p,.. v u,w,p

"\ v ,.."\ .... .-1 " ''''

j -1 I t"\ _v. 11"\ 'f-I '" 'I-"

i -1 . 1 1+-

2

1.5

ex

1.0

:7) 0.5

stable unstable

o

-0.5

-1. 0 ~~--,-----.-----,.-----,..--...,......., o O.l. 0.8 1.2 1.6 _ 2.0

- .----------.

Page 24: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

" . I' , . , ; ..

..

1

70

t 50

40

30

20

10

0

a=O , B=.8

( RXe )8.0.= 1.3 x 10-2

-----

0 .2 .4 .6 .8

/

I I I I I . /

-Fp / . / --

-FI

Fv ---I

1.0 1.2 x10-2

x ... -Re

Page 25: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

. • l·· t ~.

..

.~~ , 1 .• J

present in the viscous forces. Near brp.akdown the flow is essentially inviscid,

viscosity plays a secondary role. This is in agreement with the corresponding

theories. of Squire [111 and Benjamin [12J and· the critical condition which calls

for a non trivial solution to the homogeneous version of equation 0).

Fig. 4 shows the radial dependence of the three components of the velocit y vector

at different axial stations. The circumferential velocity decreases in magnitude and

the axial velocity develops a wakelike profile as the flow reaches breakdown

conditions. The radial velocity shows a dramatic increase just before breakdown,

similar to that of the pressure and inertia forces. Fig. S presents the radial distribu­

tion of the pressure. The behaviour of the pressure is quite similar to that of the

axial and circumferential velocity component. Fig. 6 shows the axial distribution of

the pressure and of the radial velocity at di fferent .ldial distances from the sym­

metry axis. Notice an almost linear change in the pressure until shortly before

breakdown. In fig. 7 and 8 the velocity components and the pressure are shown at

different axial stations for inviscid flow. Fig. 9 demonstrates the in:ial dependence

of the pressure for inviscid flow. The good agreement of the breakdown process

compared to the viscous case indicates that breakdown is an inviscid phenomenon.

Fig. 10 shows the dependence of the breakdown length on the initial profiles for

free vortices without adverse pressure gradient. Here only supercritical profiles are.

considered. We also show the corresponding results obtained by Shi [20] by

solving the time dependent Navier-S~okes equations. The shnder vortex approxima­

tion is in good agreement with his numerical results.

For a given f.>, there exists a lower bound for ~ leading to initially supercritical

profiles. It is possible nevertheless to numerically solve system (2) starting with

subcritical profiles when using primitive variables in conjunction with a direct

solver. We found that all such flows exhibit breakdown ilt some axial distance from

the initial profile.

The increase of the jet type profile provides a stabilizing effect on the flow. For OC

large enough ~nd passed a critical v;111Je the vortex does not break down at all and

viscosity only flattens the profile·s (~his is usually referred as aging of the vortex)

(see. fig. 11). The effects of ~ on the flow are still important near its critical

value. For ~ passed this value the axial velocity at the axis decreases initially but

after reaching 0 minimum value increases again with no breakdown of the flew.

There is no unbounded growth in either the pressure gradient or the radial velocity

any longer •

\ \ \ \

. \ ~.

: \ ---+_. 1

i

I

.1 L. i

\ I. : .

. ·.i

Page 26: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

0 . ~

?: . CO t to

x N 0 I

0 0 .-- .---...j'

X

C"'1 . ~

II N 0 CO -

xl&! 0 - N 0 ~ Q) . X 0::: .-- N

II X ~ > 0 CO

t " X 8 0 0.. X 0 co co .-- ~

en en .--.-- t'-... .--

CO 0 1/

. ~

~ 0 ~

. ' .. 0 .-- '-\+ " ,

I :J

0

t II CO tS 1/

Xl& x to

0 0 .--

~ . 0 N co ~ 0 L- __ . . . . -.... ,

.:

Page 27: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

I ' I

! I I , . I

ex = 0,0 = .8 - \

-2.0

r

t 1.6

1.2

.8

.4

100 x ~e = 1.3 O~~--~~~--~--~I----~I -~~

-.1 0 .2 .4 .. 6 .. 8 1.0 --a- p

1='t~. _ s .

Page 28: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

'-I ~ .

(~) = 1.3 x 10-2 Re B.D.

u

r = .84 1.0 ~~;::=-_~..:...:..:::.=-_____ __ f·8

.6

.6 r = .84

P

t·4

"~1

.2

.. a .:-.1 ~---""-------'-__ ""' __ -"-__ --'--__ "'--I _

o .2 .4 .6 .8 1.0 1.2x10-2 X --t~ __

Re 'f(~. 6 ..

~ __ 0_- ____ ~_

----.. - ---~- .. -- -_._----- --- (

Page 29: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

~ ~ ---------y-~ . - -

: , .

2.0

r

1.5

1.0

. 0.5 x·1"=0.0373

0.036 o . L-~~L-__ ~ __ L-~ __ ~

o 0'.6 0.7 0.8 0.9 u 1.0

r

~~ ..•

2.0

1.5

0.5

o

o

0.024

0.036

Page 30: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

~ .---.----.. --~ " ... f . I, ", ~ :'~'.' .. ::-., "

-.-.--~ ~~- ......... -...,.)/-, .... ~. ~ .... ~-" ",., . -.... -~ ., ... ;.;. ... ~ ...

'2.0

r .

1.5

1.0

O.S

a o 0.2 0.4 0.6 0.8 1.0

w

2.0

r

1.5 ~

.. )

. 1.0 Tt~.8 ..

. ,

0.5

Page 31: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

o

-0.2 P

-0.4

-0.6

- 0.8 L-----:--.

-1.0

o 1 2 ,~ ...

I :,' ! I

, ;'

/

3 x·"(

i " I " I -: !

• I' ~ " ,

Page 32: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

I

/ '.: . .-'

.1

" N If)

~O N

......t I

M 00 0 ...- "

~ --- N , ...-1/ (j) X

~ I 0 l-O 0(1)

I (1)...- Net: .-> II ...- "-

I 0 QJ 0 CO

Zo:: -- COX a

I .

a ~I 8 ~t I

..c - 3= :J (f) :J

I r---o II II . to <J tS ~ ...-~

I I .....:t ...-

I I

If) (J) N . 0

...- "

I ...-

I 0 0 ...-...-

I I

CO

) I I

0 ~

. I ~ ....

I ......t H-

I I

N M tD

I' 0 0

0

0 to N CO ......t 0 ....s . . N ...- ...-

Page 33: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

If)

m 0 ~ 0 II II

C 8 0. X co co

co ~

~

J ~

~.

II ~,

-. Ln 0 Ln . N N ~

0

:J II L

0 ~

. ,)

(-;'

Lf)

0 0

co ~

N I

0 ~

x

Xl~ .....:t ~

N co-

0 ~

co

to

. "-

....:t

N

0

,~' l'

--.

'.

!:

~ ~

~ . ... ~

i I

, " ~L ' . . ;.:

,\;: "-

Page 34: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

11 ~i .. ~ r

G ~J . '. . , t \ rl 'j

;~

~, \ 'J " ., ;, , I '..f

II I I

.! .J I": ,.1

~i "

:--i '; 'i

'"j -1 ;1 ~ 'j

1 J "

:1

I (:'j I' ......

¥

.---

Pig. 12 shows results for vortices with constant external pressure gradient * = 7: and fig. 120 an increase in the breakdown length for increasing

Rly'n~lds number with its value attaining a limit for Re .... CXI. This is the expected

behaviour for vortices that exhibit breakdown without external pressure gradient.

Vortices that are stable in absence of pressure gradient (here c( = 1.1) can break

down for Re''t' large enough {in this case Re" it 0.1) but are stable' otherwise. as

once more expected.

Pig. 12b shows the dependence of the breakdown length for small pressure gradient.

Por 'l: small we can see xSO/Re reading the expected values obtained from the

vortex without pressure gradient shown in fig. 10. Por increasing Reynolds numbers

the ratio xSO/Re tends to zero since xsotends to the limit ,shown in the left

picture. Pig. 13a and Db show similar results obtained from different swirls. We

can see again the disappearence of breakdown for stable vortices for small enough

pressure gradients.

In order to stress the influence of the pressure gradient on the flow we sketch in

fig. 14 the results from figs. 10. 12 and 13 combined for Re·'t' = 10. The flow is

shown to be extremely sensitive to small pressure fluctuations at large Reynolds

numbers. A change in 1% in the pressure. normalized with the dynamic head. over . one vortex core length translates into a 100% change in the breakdown length for a

Reynolds number of 1000.

The behaviour of the flow' shown in figs. 12 and 13 can also be found in

experimental investigations. Werl~ [29] found that the breakdown length of a

leading edge vortex formed on a delta wing does not change for high Reynolds 4 numbers (Re

L> 10 ) for an angle of attack of 20 degrees. If w~ assume that the

adverse pressure gradient of the vortex lies approximately in the range of 0.5 to 2%

of the dynamic head over the vortex core radius, then the value of Rr·7: lies

between 50 and 200.

Par these va',ues the breakdown length has approximately reached its ultimate

value acccpteq for Re·T-t CO (Pig. 12a and 12b). The extreme sensitivity against

adverse pressure gradients shown in fig. 14 can be observed also in fig. 15 (from

[30J ). Although the obstacle is positioned far downstream of the brc'lkdown

point, there is a signi ficant change in the breakdown length.

, ..... ./

.. ,!

"

"

,-

I

" " E

,'~

1:; ,'1 "

" f~~ I

f:~ f:

" " ./ ,,'

: .- " ., .-'-~: ....

, .,

Page 35: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

~·a""...L-~' .. '~>5~El·"""7,,:-:r·-:-··~:':_~~~~~, .:.. .•. _~,:·". __ ~M._".~_..:....~_· ' .... ''', ... "", . - :.. ___ ~_: _0 ;,:,;::,:;. __ -,:,-:,~_. -~ .. _.~. ____ ~~"."..i11

.24

3DXl

t ,20

.16

.12

~08

~04

o

-. .".

"

~ = 1.095

U = u'(o',O) -1

0= Wk Uco

.-.-'

((=1.1

.5

10-2 10-1 10° 101 102 103 10t.·

--Ja- Re Xl

fl~. 'fl(a.).

.. ' .

6 ((=1.1 \

x 10-2 . B = 1.095

5 u=UIO,O)-l x B.D. . ~ = Wk Re 4 Uro

t 3

.8 \\ :.J......

2

1

o 1 1.5~9 10-2 10-' 10° 10' 102 103 lOt.

-- Re x l

F~d' 12, (b).

\ , " \. " • "t ,

\ \

, , , , : ..... , , , ; "

.. -"

J

'.

./

\.

.ia;,'

Page 36: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

, ,

J ., I

J

,

&i~?eoJ.jt":.""" ".i'j(::!,_:!~!,:::":t,·:::".=t.,:::,,i. 1 )P ... ...:-: '" :V",.,, .. _~,~, nL-YU',~_ ...

.24

'~

• ;:~,:-, tsJ

). X 1" n =.8

\\,

.20 . - 1 a ~ ,u (o.O)

.16 Wk o = U

co

.12 a. =.2

.08 .08

.04 ~ a 0

-.1

o y y --I I I

10-2 10-1 10° 10' 102 103 10' ~ Rex,1"

, '

'.

Fi~. tf3(lA).

-,

.. '. , .

:24 ,

xs.o. x 1" ~ = .8944

-1 t .20 ex = U(O,O)

ex =.5 Wk n = Uco .16

/ . 4 -0

9 p-12 ~

. 3 I ,...

.08

.04 . 1

o 10-2 10-1 10° 10' 102 103 10t.

-~ Rex1'

f(~. 13 (b)~

" -",:

" . ".::.,

." \ . , , .•

Page 37: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

• J i ,.

/ /' / h

I , '

i I ; ,.

"-

.~

.~:-;-~

"

1.2

-to

t . 6

.4

.2

o

-.2

0

\ \ ,

!

I \

--0- Re x1"= 0

--o--ReX1"=10 ~ /

........ c:r'

........ ........

/ /

........ ~ ................ B = 1095

/ ",-

/

/: /' /, .

...-,.c ...-

!.8 __ -_____ ~L~----~

...

.2 .4 .6 .8 1.0 1.2 1.4 1.6 , ,

x10-2 ( X

'!

B.D. .. Re

fl~ . -1tr.

--.

I i • . . ,

-.j.' . r

, .

Page 38: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

.~' ~::\ .. g~::t: '\> "~iJ ,::> ::<t " .. \:" ,1" .1\\,\. y!: t.~t .;.~ , '" .',r-4:"'~'. '-, ,

'.

')

\ r'"

'J

OF POOR QUALiTY

/ l

/

/

Page 39: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

> ,

'.

j'

3.2. Comrmrison to experimental results

Faler and Leibo\'ich [0] performed several experiments on vortices in divergent

tubes. The swirl component was generated by swirl \' ",nes and afterwards the flow

was led through the tube. Profiles for the axial and circumferential velocities were

measured 1/} diameter upstream of the divergent part of the tube. The opening

angle for the tube was 1.4}0 and various mass fluxes and swirl vane angles of

attack investigated. They found six di fferent breakdown types for the flow, the

corresponding breakdown lengths and their dependence on the Reynolds number and

swirl parameter are shown in fig. 16. The Reynolds number is based here on the

averaged axial velocity rmd the diameter of the tube.

Since the slender vortex approximation only deals with axisymmetri~ flows, only

bubble-type brenkdown is considered in this comparison (types "0" and "1"ar.cording

to tne terminology used in [ 8J). Stable bubble structures are only present for

certain ranges of circulation GJ and Reynolds number Re.

One more inconvenience causes from the lack of detniled information on the

boundary layer structure for high Reynolds number!'. Fig. 16 shows the numerical

and computational results combined. The initial distributions are constant along

each solution curve a'nd coincide' with' the experimental value,s only at nodes marked

(*). For lc) = 1.07 we can see a good agreement, the trend of decreasing breakdown

length for increasing Reynolds numbe~s is present and the n~merical values are'

similar. For Re around 2500 and below no breakdown occur in the numerical

experi ments.

For W = 1.54 the . _merical prediction of the ,breadown length decreases for

increasing Reynolds number Inrger than 3000. This behaviour reverses itself for

1000 .!: Re f 3000. For Re ~ 1000 ther~ is no breakdown present in the numerical

experiments. The prediction of the breakdown length is now far off from its

experimental counterpart. The phys:cnl reason behind this phenomenon is the

sensitive behaviour of the flow on prc:;:;urc variations. The pressure prediction

obtained from the slender vortex approximation does not take into 'account the

influence of the bubble presence on th;: pressure field acting on the vortex core. We

propose that a good prediction of the breakdown location can be obtained from an

inviscid calculation for the vortex core with an e.xternal pressuie gradient obtained

from the numerical solution of the full Navier-Stokes equations without the

.... _-------

.... ,

'. , '

,

I

I I

! i

,"

/ j/

I I •

/"

"

r. ,

, "

"

.,-r

Page 40: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

~."'" ~'

~ 6

-..-........ --~,---~-~-~-~~,""-'~~-~-

. ,

,W =:=J.51.· ~

-0-\-1--0'0 -1-

, :'1 -s

w =1.07 W :: 1. 28 '?i' '2-

O'..l -~-1- ''t!\ ~2" ~1) b:~ 1 -2,

, . 'n

! iex10-3 '0 -1-'\l0 1-- -'O~l-

~1- , 1l.:n-2'o,. " '2 ',1 ~ 2--0.1-" 'n ......

..... -2- "", -2--O~l "2- 1 ~ ~2-I . i 0'" 1 -" 1'~ .~

.. ··0.1 -2~ ,~, ¥-2-. " 1 -2 .Q _ 2

" ", -) -107 · 2- ~ -<'1W-, . \ --:---. -?- ./ '8 ..... 'q,

-187 -~1-W - , - ~5 _ __ 2 ' " ".

-'0- _ ~O ~1- -3~2-~ - -Ol~~?,~_ ~';;:O- -O':l~ ~2:-4

---"3- /6 .t:f

3"1.6 .. 6- .. ' \ -'6CL -6- .' \ 6/ p .. ' 6

o,~'ii- '" · ~3-w:: 2,30 -0 "-_.Q._ -'2''''', ~ .... - '~'\ -5-2 ~ -o~o_ -2"-2,,--_~ -5/f 8

L. L. -==--S-/ W = 1. 2

o -3 o

Fi~. 16

.0

a~·i:J· = 1.54

, 'u_-~:----o ,-- n,'l

3 6 9 x/r tube 12

•. '~.""'~"-'-.A.'.A·t·"'''-'' ..... ~ ... ~ ..... -; •. -!'''-. ,. . I" "'

-~--

"

'.

/ ... /

--

Page 41: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

'.

':i

':) '.

slenderness ap;>.oximation. This is an explanation for the fact that the numerical

prediction strongly deviates from the experimental results. Moreover, the assump­

tion of sel fsimilar inflow profi les is not fulfi lied in this case (Re'= 6000). To

compare with experimental data we had to assume selfsimilarity to transfer to

other Reynolds numbers because only a few inflow profiles are given in [8].

The lack of upsteam influence in the approximation leads to predictions for the

breakdown length which are longer than the observed values. Nevertheless, for all

. calculations of Wand Re the inflow profiles are supercritical and upproach critical

state near breakdown.

Faler and Leibovich make the following remark:

"All flows that exhibit vortex breakdown of the "axisymmetric" form (which we

classify 8S types 0 and 1 disturbance forms) or "spiral" form (our type 2) arc

supercritical upstream, in the ~ense of Benjamin" [8] '.

4. Conclusions

The slender vortex approximation was studied in particular for high Reynolds

numbers. For free vortices without external pressure influences the breakdown

length is proportional to the Reynolds number. For free vortices v:ith adverse

pressure gr.adients, the breakdown length is inversely proportional to the .. alue of

its gradient. Flows with small pressure gradients take a long distance t~ breakdown.

For low Reynolds number the prediction of the simplified system agree quite well

with the. ones obtained from solutions of the full Navier-Stokes equations. It was

fOlJnd that the flow becomes quite sensitive on pressure fluctuations for high

Reynolds numbers and that the failing of the slender vortex equations corresponds

to the critical condition from Benjamin [12J for inviscid flows. The last comment

holds since viscous forces arc negligible near breakdown compared to inertia and

pressure forces. The viscous forces do playa role for low pressure gradients by

controlling the aging process. The predictions from the approximating system were

compared to experimental results and for low swirl a good agreement · .... as obtained.

For higher swirl upstream effects on the pressure produced by the breakdown

bubble deteriorates their agreement. This can not be incorperated into the slender

vortex approximation.

':'~"-'" '~'.

Page 42: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

I· i

t i , I

~ w; f ;

~ I

~~ I ;·~I .. rt .. \ ,- I /.' ,

T, ,-o ,7;:-

'.

I.cknowledgemcnt

This research was carried out in the frame of thc. special rcsearch progrom

"Vortical Flows in Aerodynamics (SFB25)." The authors are indebted to Professu.

E. Krause, Ph. D., who suggested a part of this investigation. They olso thank Dr.

D. Hanel for many helpful discussions.

Page 43: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

~ .. :.}l ',-1 .'.::t:i;!.._-

'1(. ~ . . ,

. '

. .

\ \.

-, ,

VI l

v ------.---- ------ -'~-----.::-:-.:~::~:~ ..... ' _. -._- ----- . - ... .' -.. _-

Referenc~

1. D. H. Peckham Ilnd S. A... Atkinson, Preliminary results of low.speed wind

tunnel tests on a Gothic wing of aspect ratio 1.0. Acro. Res. Counc. CP 508

(1957).

2. H. Chevalier, Flight test studies of the formation and dissipation of trailing

vortices. J. Aircraft 10,14-18 (1973).

J. A. J. Bilanin nnd S. E. Widnall. Aircraft wake dissipation by sinusoid;:)1 in­

stability and vortex brenk down. AIAA paper 73-107 (1973).

4. J. Swithenbank and N. Chigier, Vortex mixing for supersonic combustion. Proc.

12th Symp. Combust. Inst ... 1153-1162, Pittsburgh: Combust. Inst. (1969).

5. H. Ludwieg, Vor.tex breakdow.1. Dtsch. Luft Raumf:lhrt Rep. 70-40 (1970).

6. M. G. Hall, Vortex breokdown. Ann. Rev. Fluid Mech., Vol. 4, 195-218 (1972).

7. S. Leibovich, The structure of vortex breakdown. Ann. Rev. Fluid Moch., Vol.

10, 221-.246 (1978) •

8. J. H. Faler and S. Lcibovich, Disrupted states· of vortex flow :md vortex

breakdown. Phys. Fluids, Vol. 20, 1385-1400 (1977).

9. S. Leibovich and H. Y. Ma, Soliton propagation on vortex cores and the

Hasimoto soliton. Phys. Fluids, Vol. 26, 3173-3179 (1983).

10. H. Ludwieg, Zur Erklarung der Instabilit&t der liber angestellten Delta-fWgeln

auftretenden freien Wirbelkerne. Z. F1ugwiss. 13, 437-442 (1965) •

11. H. B. SqUire, Analysis of the vortex breakdown phenomenon. P<lrt 1.' Aero.

Dept., Imperial Coli., London, Rep. 102 (1960). Also in Miszdlnnecn der

.A..ngewar:dten Mechanik, Berlin, Akademie Verlag, 306':H2 (1960).

\

12. T. B. Benjamin, Theory of the vortex breakdown phenomenon. J. fluid Mech.

14, 593-629 (1962).

D. T. B. Benjamin, Some devclopmer.:s in the th(!or}, of \'ortex breaKdown. J. Fluid

Mc:ch. 20,65-04 (1967).

, ..

--" .'

Page 44: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

14.

· .... ..:. , " .. ~.,.. -~- .

H. H. nor-sci, Inviscid "nd viscous rnodels or the vortex hrenkc.lown phenornt:/lon.

Rep. AS-67-14, Ph. D. thesis, Univ. Cnl:I., Berkeley (1967).

15. H. H. Boss~I, Vortex breoktJown fiowfield. Phys. Fluids, Vol. 12,490-508 (1969).

16. Z. Lovan, H. Nielsen and A. A. Fejer, Seperotion and flow reserval in swirling

flows in circulnr ducts. Ph·)·s. Fluids, Vol. 12, 1747-1757 (1969).

17. R. M. Kopecky and K. E. Torrance, Initiation and structure of llxisymmetric

eddies in a • otnting stream. Comput. Fluids I, 289-300 (1 ?73).

18. W. J. Grabowski and S. A. Berger, Solutions of the Navier-Stokes equations for

vortex breakdown. J. Fluid Mech. 75, 525-544 (1976).

19. J. H. Fnler nnd S. Leibovich, An experimental map of the internal structure of

a vortex breakdown. J. Fluid Mech. 86, 313-335 (1978).

20. X. G. Shi, Numerische Simulation des Aufplatzens von Wirbeln, Ph. D. thesis,

RWTH Anchen, Aachen (1983).

21. I. S. Gartshore, Recent wo;-k in swirling incompressible flow. NRC Can. Aero.

Rep. LR-343 (1962).

22. I. S. Gartshore, Some numerical solutions for the viscous core of on irrota­

tional vortex. NRC Can. Aero. Rep. LR-378 (1963).

23. M. G. Hall, A numerical method for solving the equations for a vortex core.

Aero. Res. Counc. R. &. M. 3467 (1965).

24. M. G. Hall, The structure of concentrated vortex cores. Prog. Aeronaut. Sci.,

Vol. 7, 53-110 (1966).

. 25. M. G. Hall, A new approach to V:lrtex breakdown. Proc. 1967 Heat Transfer

Fluid Me,ch. Inst., Stanford Univ. Press, 319-340 (1967) •.

26. H. H. Bossel, Vortex computatior. by the method of weighted residuals using

exponentials. AIAA J. 9, 2027-2034 (1971).

27. A. Mager, Dissipation and breakdown .of a wing-tip vortex. J. Fluid Mech. 55,

609-628 (1972).

28. Y. Nakamura and S. Uchida, Calculations of axisymmetric swirling flows by

!

~I

Page 45: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

r ,.>-,., F·· ..

L I

I [ ! I i

I \.

I . j

I r

. .

. -~. ---_ .. _--:-.--_. "'.-: .,', h •• '

I...;..·.' ~ .' • . ~--.- -: . _, • ___ • __ .... '_ .__ .4.,

I

29. E. I<rau:.c, L. RC}'na and S. Menne, Druckiinderung bei ;txialsymmetrischem

Wirbelaufplatzen. Abh. Acrodyn. Inst. RWTH Aachen 27,1-.10 (1985).

)0. H. Wcrl~, Sur I'eclntcmcnt des tourbillons d'apex d'une aile delta nux faiblcs

vitesscs. Ln Rcch. A~rosp. No. 74, 23-30 (960).

:no S. Menne, Approximation fur schlanke Wirbel mit diskontinuierlichen Anfangs­

verteilungcn, pnpur submitted for presentation at the GAMM- Tagung, Dort­

mund 1986 •

I ,

I

I ,. I

,­l

/

.......

,. f

;' .I

.-

Page 46: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

~w ..

F"ig. 1:

Fig. 2:

-{;;:J:-

-0-

Fig. 3:

Fig. 4:

Fig. 5:

Fig. 6:

"

"".'><' ,

Coordinotc systern and rJrid derinition

Stability diDgram for \'l,rtex breakdown

I · / I • .. , I

Transition from super- to subcritical flow according to Benjamin [12J

Breakdown at inflow section for slender vortex approximation, initiol

condition (20)

Region of temporary stable vortices

Breakdown at inflow section for slender vortex approximation, initial

condition (25)

Axial variation of the inertia, pressure, and viscous forces per unit

volume as computed with the viscous slender-vortex approximation

Radial profiles. of the axial, radial, and circumferential velocit},

components computed with viscous slender-vort,ex approximation

Radial profiles of the static pressure as computed with viscous slender­

vortex approximation

Axial variDtion of the axial velocity component and of the static pressure

as computed with the viscous slender-vortex approximation

Fig. 7a: Axial velocity profiles computed 'with slender vortex approximation for

i'r)viscid flow

Fig. 7b: Radial velocity profiles computed with slender vortex approximation for

inviscid flow

Fig.7c: Circumferential velocity profiles cOl,nputed with slender vortex approxi-

, i

-.-.... -. ~ .. -­

-' ."

I

Page 47: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

'0

, .

; , ' J

j: \

Fig. 0:

Fig. 9:

, ,.

I· .,.1.,_

.i

Pressure profiles cornrlJtcd with slender vortex approximation for

inviscid flow

, Axial pressure variation computed with slender vortex approximation for

inviscid f'''w

Fig. 10: Shape parameter" as a function of the breakdown length. Computed for

several swirl rates

Fig. 11: Axial variation of the axial velocity component computed with viscous

slender vortex approximation

Fig, 12a: Breakdown length as a function of the Reynolds number for constant

externally imposed pressure gradient 1:" _ Computed with viscous slender­

vortex approxiamtion

Fig, 12b: Br~akdown length as a fu~ction of .imposed external pressure gradient -r: for constant Reynolds number. Computed with viscous slender vortex

approximation

-Fig. 13a: Same as Fig- 12a. The ~wirl parameter ~ = 0.8

Fig, Db: Same as Fig. 12a. The .~;wirl parameter ~ = 0.8944

Fig. 14: Influence of an externally imposed axial pressure gradient 7: on the

breakdown length as computed with the viscous slender-vortex approxi­

mation

./

._'

, ','

Page 48: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

I !- /

,.

/ , , !

.' . ~: .. , '.1 00.'

..•• ~ •. : ... .......:""'"~ ....... ~ •. _ .:! .... ~.' .... :~·\,il ....... ,.~-.,

_ ... .... ~ .·_·1·-':/-­

-,-;;;./.~>/ -;-

iSiILWiPi=~ .'$ "n' >'>" .'L-...... ~ ....... ...,., _____________ _

I I I , I [

i

4

t)

Fig. 15: Influence of an extcrnnlly impor.l!d axial pressure gradient on the

breakdown length. (From [~O])

Fig. 16: Comparison of experimzntal data (from [8 J ) and numerical results wit"h

slender vortex approximation. The type of disturbance (0-6) and its mean

axial location vs. Reynolds number.

" -'

:

l i

/' .­-, . . /

--,.

..-

, ;

. -t ,-i I

~ j

- !

,/ I

/

! !

'.-

.'

. "

. , ,

Page 49: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

I::-,.':·~;·:,;·.·,:·-;~:;·-:· :;. ..-1

/

',' ',"

I " ./ /'

./ ,..

.. .// .' [ .. ",

I " .. ~ /:,1. .' . i' I

" . .' ... -, .. ~".~ ..

-( ','

/ .

~, :

I ;; I . .--/ .:. / ;. '/ . "

, '", ..

,;

..

t ,t \ .

/' ; ...

..... -"

.' , , ,I

. ~ -

. : :, ."

! .,i

j

/

: !"

i \ i

r ~ ,

,I ,. t ,/

,

. , .

i

/ . /-

, ./

7

i:

Page 50: A Reproduced Copy - NASA · 2013-08-30 · NASA-CR-176853 19860022058 A Reproduced Copy OF Reproduced for NASA by the NASA Scientific and Technical Information Facility FFNo 672

End of Document