a simple population model -...

30
A simple population model Harald Rybka, Jason Wong, Jorge Rivas RISE (Research Internship of Science and Engineering) Intern Johannes Gutenberg University, Mainz and University of Maryland AOSC, 2 September 2010

Upload: others

Post on 14-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

A simple population model

Harald  Rybka,  Jason  Wong,  Jorge  Rivas  RISE  (Research  Internship  of  Science  and  Engineering)  Intern  

Johannes  Gutenberg  University,  Mainz  and  University  of  Maryland  AOSC,  2  September  2010  

Page 2: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

1.  Introduction to VENSIM 2.  Limits to Growth – World3 model

3.  Basic New Model / Structure 4.  Improved Basic Model

  results – global

5.  Improvements and Problems

OUTLINE  

9/2/2010   2  

Page 3: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

−  VENSIM – simulation software −  used for analyzing and simulating dynamic

feedback modeling −  identifying leverage points and causal loops −  similar to “STELLA”

Results: −  use “SyntheSim” mode −  different effects can be simulated with

sensitivity simulations

INTRODUCTION  TO  VENSIM  

9/2/2010   3  

Page 4: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

INTRODUCTION  TO  VENSIM  ─  AN  EXAMPLE  

9/2/2010   4  

source   sink  

stock  flow   flow  

constant  /  auxiliary  variable  “SyntheSim”  

sensi[vity  run  average  life[me:  5  –  25  years  average  life[me:  20  years  

average  life[me:  6  years  

Page 5: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

─  created by Donella Meadows, Jørgen Randers, Dennis Meadows (authors of the book: Limits to Growth, 1972, 2004)

─  computer simulation of interactions between: ─  the population system ─  the industrial system ─  the food system (agriculture and food production) ─  the non-renewable resources system and ─  the pollution system

─  ten different scenarios present results from 1900 till 2100

─  results varies from stabilization to collapse in the future ─  depending on several variables (e.g. nonrenewable resources)

LIMITS  TO  GROWTH  –  WORLD3  MODEL  

9/2/2010   5  

Page 6: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

WORLD3  MODEL  –  STANDARD  RUN:  agrees  with  obs.  1970-­‐2000  (Turner,  09)  

9/2/2010   6  

popula[on  food  industrial  output  persistent  pollu[on  nonrenewable    resources    

business-as-usual

population collapses because of - decrease of food and health services - increase costs of nonrenewable resources

Page 7: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

WORLD3  MODEL  –  SCENARIO  2  

9/2/2010   7  

doubled initial nonrenewable resources

popula[on  food  industrial  output  persistent  pollu[on  nonrenewable    resources    

nevertheless: population collapses about 20 years later

Page 8: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

WORLD3  MODEL  –  OPTIMISTIC  (STABILIZED)  SCENARIO  

9/2/2010   8  

popula[on  food  industrial  output  persistent  pollu[on  nonrenewable    resources    

Compared to Standard Run: ─  doubled nonrenewable resources ─ increase of land yield ─  improved pollution control ─ reduced land erosion

stabilized population with the right policies

Page 9: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

WORLD3  –  TYPES  OF  POSSIBLE  SOLUTIONS  

9/2/2010   9  

STABLE – no overshoot

UNSTABLE - overshoot

carrying capacity

population

continuous growth sigmoid approach to equilibrium

overshoot & oscillation overshoot & collapse

Page 10: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

BASIC  NEW  MODEL  

9/2/2010   10  

simulate World population via fertility and life expectancy

assumption: carrying capacity of the world is unlimited!!!

Page 11: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

BASIC  NEW  MODEL  -­‐  RESULT  

9/2/2010   11  

year 2010 ~ population of 7 billion

next we will add a capacity limit

World Population

United Nations demographic data Basic New Model

Page 12: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

Now food production is limited!

BASIC  NEW  MODEL  WITH  LIMITS  

9/2/2010   12  

limiting factors

Page 13: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

9/2/2010   13  

BASIC  NEW  MODEL  WITH  LIMITS  -­‐  RESULTS  

population approaches 8.9 billion people

Setup: food production = food consumption

for a population of 8 billion

consumption per capita is a constant

population

notes:

overproduction has no positive effect on life expectancy

life expectancy collapses after year 2030 because of malnutrition

life expectancy in years

Page 14: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

before agriculture was proportional to the population

now we add instead of agriculture a new variable: pollution

BASIC    NEW  MODEL  –  NEW  VARIABLE:  POLLUTION  

9/2/2010   14  

Basic  Model  popula[on  system  

Page 15: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

collapse or oscillation depends on pollution impact on life expectancy

COLLAPSE  OR  OSCILLATION?  

9/2/2010   15  

POPULATION

Page 16: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

Improvements: ─  demographic system divided in age-cohorts

→  more details about demographic characteristics

─  more complex agriculture system →  based on FAO (Food and Agriculture Organization) data

─  many variables show a sigmoid trend →  production of meat and cereals, increasing arable land, land yield

─  calculation of life expectancy restricted to food consumption →  cutting-off connection between life expectancy and population

─  different scenarios can be simulated

BASIC  MODEL  WITH  AGE-­‐COHORTS  AND  FAO  AGRICULTURE  DATA  

9/2/2010   16  

Page 17: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

BASIC  MODEL  –  DEMOGRAPHIC  SYSTEM  

9/2/2010   17  

no direct connection between life expectancy and population anymore!

Page 18: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

BASIC  MODEL  –  AGRICULTURE  SYSTEM  

9/2/2010   18  

→ independent parameters

Page 19: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

assumptions:

- total food production increases ~ constantly

- max. life expectancy 90 years

- fertility rate does not increase in the future

nevertheless: → population decreases WHY?

BASIC  MODEL  –  OPTIMISTIC  SCENARIO  

9/2/2010   19  

population

total food production

Page 20: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

9/2/2010   20  

BASIC  MODEL  –  OPTIMISTIC  SCENARIO  

reason for decreasing population:

→ age distribution change

higher mortality rate for older people

→ increasing overall mortality rate

age  0  to  14  age  15  to  44  age  45  to  64  age  65  plus  

fer[lity  rate  mortality  rate  

Page 21: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

DEPENDENCY  RATIO  -­‐  dependent/working  popula[on  

9/2/2010   21  

popula[on  dependency  ra[o  

dependency ratio = (population 0 to 14 + population 65 plus) / population 15 to 64

small variation of dependency ratio (0.65 – 0.75)

Page 22: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

BASIC  MODEL  –  PESSIMISTIC  SCENARIO  

9/2/2010   22  

population

cereals yield

total food production

cropland

“Erosion, Urbanization” “Green

Revolution”

“Running out of oil”

Page 23: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

Required changes to simulate regions:

-  change variables into arrays → no need to make several models

-  most regions are not self-sufficient → need to include imports and exports

-  add migration rate → dividing migrants in age-cohorts

FUTURE  IMPROVEMENTS  –  INTRODUCE  REGIONAL  POPULATION  MODELS  

9/2/2010   23  

Page 24: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

SCHEMATIC  OF  THE  REGIONAL  MODELS  

9/2/2010   24  

Page 25: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

9/2/2010   25  

SCHEMATIC  OF  THE  REGIONAL  MODELS  

fraction of migrants

Page 26: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

─  migration should be related to economic and demographic status

(not much data for age-distribution of migrants)

─  imports and exports should be related to economics and food requirement

→  Most important: we have not yet included an economic subsystem

ISSUES  WE  HAVE  TO  DEAL  WITH  

9/2/2010   26  

Page 27: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

WE  NEED  TO  ADD  FEEDBACKS  SUCH  AS  

9/2/2010   27  

Popula[on  

Urbaniza[on  

Land  Use  Cropland  

Food  Produc[on  

Popula[on  

Food  Requirement  

Intensifica[on  of  Agricultural  Produc[on  

Soil  Deple[on  

Land  Degrada[on  

Food  Produc[on  

Page 28: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

─  display real data for comparisons ─  add new systems like economy, emissions, nonrenewable

resources, etc.

9/2/2010   28  

OTHER  FUTURE  DEVELOPMENTS  

Popula[on  System  

Agriculture  System  

Economic  System  

Nonrenewable  Resources  

Emissions  

Page 29: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

─  add interactions between regions (A) and (B) such as

─  add indicators for population Quality of Life

─  Human Development Index ─  Ecological Footprint

OTHER  FUTURE  DEVELOPMENTS  

9/2/2010   29  

emissions  region  (A)  

total  emissions  

cereal’s    yield  region  

(B)  

food  produc[on  region  (B)  

Page 30: A simple population model - UMDaosc.umd.edu/~seminar/data/y10fall/umd_aosc_100902_kalnay_rybka_part2.pdf · population approaches 8.9 billion people Setup: food production = food

…”We still see our research as an effort to identify different possible futures. We are not trying to predict the future. We are sketching alternative scenarios for humanity as we move toward 2100.”…

Donnella Meadows, Limits to Growth – The 30-year Update

9/2/2010   30  

…IN  THE  END