a theoretical and experimental study of a small-scale steam jet refrigerator

Upload: vahidnodet

Post on 24-Feb-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 A Theoretical and Experimental Study of a Small-scale Steam Jet Refrigerator

    1/9

    UTTE RWQRTH

    I N E M N N

    h z t J R ~ f r i g Vo] . 18 , No . 6 , pp . 378 386 , 1995

    E l s e v i er S c ie n c e L t d a n d l l R

    P r i n t e d i n G r e a t B r i t a i n . A l l r i g h t s r e s e r v e d

    0 1 4 0 - 7 0 0 7 / 9 5 / 1 0 . 0 0 + 0 . 0 0

    A t h e o r e t ic a l a n d e x p e r i m e n t a l s t u d y o f a s m a l l- s c a le s t e a m j e t

    re fr igerator

    I . W . E a m e s , S . A p h o r n r a t a n a a n d H . H a i d e r

    D e p a r t m e n t o f M e c h a n i c a l a n d P r o c e s s E n g i n e e r i n g , U n i v e r s i t y o f S h ef fi el d, M a p p i n

    S t r e e t , S h e f f i e ld S 1 3 J D , U K

    R e c e i v e d 2 6 M a y 1 9 9 4 ; r e vi s e d 1 2 A p r i l 1 9 9 5

    The pap er provides the results o f a theoretical and experimental study of a steam jet refrigerator. A small-

    capacity steam jet refrigerator has been tested with boiler temp eratures in the range 120-140C. The

    experimental data were fou nd to be within 85 of the theoretical values. The experiments showed that

    choking o f the secondary flow in the mixing chamb er of the ejector plays an im porta nt role in the system

    performance. M axim um CO P was ob tained when the ejector was operated a t i ts critical flow condition. Off-

    design perform ance characteristics of the system are provided.

    K e y w o r d s : r e f r i g e r a t io n ; e j e c t o r ; j e t p u m p ; c y c l e ; e x p e r i m e n t a l ; t h e o r e t i c a l ; s tu d y )

    E t u d e t h 6 o r i q u e e t e x p 6 r i m e n t a l e d u n r 6 fr ig 6 r a te u r d e p e t it e

    ta i l le 5. j e t de va pe ur

    On prOsente les rdsul tats d un e Otude th~orique et ex p~rim entale d un rdfr ig~rateur de pet i te s dime nsions h je t de

    vapeur . On a essayd eelui-ci dans une gam me de temp dratures de gOndrateur al lant de 120 h 140C. Le s donnOes

    expOrimentales ont correspon du aux valeurs th~oriques . L es expd rienees ont montr~ que l ~ tranglem ent de

    l ~coulement s econdaire dans la cais son de mdlange de l ~ j ec teur oue un r6 le imp or tant dans la per forma nce du

    sys t kme. On a obtenu l e C OP l e p lus d l evd lor squ on a fa i t f on ct ionne r l Oject eur dans d es condit ions

    d ~couleme nt cr it ique. On indique de s caractdris tiques de per fo rma nce n on prOvues dans son projet .

    (M ot cl6s: froid; 6jecteur; pom pe ~ jet; cycle; 6tude exp6rimentale; 6tude th6orique)

    A s t e a m j e t r e f r i g e r a t o r w a s f i rs t d e v e l o p e d b y L e B l a n c

    a nd Pa r son a s e a r ly a s 19011 . I t s f i rs t w a ve o f popu la r i t y

    c a m e i n t h e e a r l y 1 9 3 0s f o r a i r c o n d i t i o n i n g o f l a r ge

    b u i l d i n g s 2 . H o w e v e r , s t e a m j e t r e f r i g e r a to r s h a v e b e e n

    s u p p l a n t e d g e n e r a l l y b y s y s t e m s u s i n g m e c h a n i c a l

    c o m p r e s s o r s . T h e l a t t e r t y p e w e r e s u p e r i o r i n t h e i r

    c o e f fi c ie n t o f p e r f o r m a n c e ( C O P ) , f l ex i b i li t y a n d c o m -

    p a c t ne s s i n m a n u f a c t u r e a n d o p e r a t i o n . T o d a y , h o w e v e r ,

    w i t h e v e r - i n c r e a s i n g a w a r e n e s s a n d p r e s s u r e s f o r p r o -

    t e c t i n g t h e e n v i r o n m e n t , r e f r i g e r a n t s u s e d i n c o n v e n -

    t i o n a l v a p o u r c o m p r e s s i o n s y s t e m s h a v e c o m e u n d e r

    a t t a c k , a n d m a n y a l t e r n a t i v e s h a v e b e e n a n d a r e s t i l l

    b e i n g d e v e l o p e d . L e a v i n g t h e u s u a l p e r f o r m a n c e m e a -

    s u r e s a si d e f o r t h e m o m e n t , i t is w o r t h n o t i n g t h a t s t e a m

    w o u l d f a l l o n t h e o t h e r e x t r e m e r e g a r d i n g t h e e n v i r o n -

    m e n t a l c r i t e r i a : i t i s t h e m o s t e c o n o m i c a l a n d e n v i r o n -

    m e n t - f r i e n d l y fl u i d m e d i u m f o r r e f r i g e r a ti o n .

    S t e a m j e t r e f r i g e ra t o r s , l i k e a b s o r p t i o n - b a s e d s y s t e m s ,

    a r e p o w e r e d b y h e a t , w h i c h i s a v e r y l o w - g r a d e e n e r g y

    a nd he nc e i s s ign i f i c a n t ly c he a p e r t h a n e l e c t r i c i t y o r

    m e c h a n i c a l ( w o r k ) r e l a t e d p o w e r . A n o t h e r o f t e n u n d e r -

    s t a t e d a d v a n t a g e o f h e a t - p o w e r e d r e f r i g e r a t i o n s y s te m s

    i s th e i r u n i q u e p h a s a l r e l a t i o n s h i p w i t h t h e a v a i l a b i l i t y o f

    * T o w h o m a ll c o r r e s p o n d e n c e s h o u l d b e a d d r e s s e d

    t h e p o w e r s o u r c e t o d r i v e t h e m . T h i s i s v e r y o b v i o u s

    w h e n s u c h s y s t e m s h a r n e s s s o l a r e n e r g y , f o r e x a m p l e .

    W h e n m o r e r e f r i g e r a t i o n i s r e q u i r e d ( e . g . w h e n t h e

    a m b i e n t w e a t h e r i s h o t ) t h e r e i n h e r e n t l y is m o r e a n d

    h o t t e r s u n s h i n e t o d r i v e t h e r e f r i g e r a t o r o r a i r - c o n d i -

    t i o n e r . P e r h a p s l e s s o b v i o u s b u t e q u a l l y i m p o r t a n t i s

    t h e i r p o t e n t i a l i n c o m b i n e d h e a t a n d p o w e r s y s t e m s

    r u n n i n g o n g a s o r f o s s i l f u e l . S u c h s y s t e m s r u n o n

    m i n i m a l c a p a c i t y i n t h e s u m m e r ( o r h o t s e a s o n ) t o

    p r o v i d e d i r e c t h o t w a t e r a n d / o r s i m p l y k e e p t h e p i p e

    n e t w o r k s c l e a n a n d c i r c u la t i n g . R u n n i n g s t e a m j e t

    r e f r i g e r a t o r b a s e d s y s t e m s c a n e x p l o i t t h i s u n u t i l i z e d

    c a pa c i ty a t e xa c t ly t he t ime w he n i t i s su rp lu s .

    T h e a b o v e a d v a n t a g e s w a r r a n t a s e r i o us r e - vi s it t o t h e

    t e c h n o l o g y , e s p e c i a l l y t o r e - e v a l u a t e t h e p o t e n t i a l a n d

    f e a s ib i l it y o f d e v e l o p i n g p r a c t i c a l s m a l l - c a p a c i t y s t e a m

    j e t r e f r i g e r a t o r s y s t e m s . A f t e r a v e r y b r i e f d e s c r i p ti o n o f

    t h e p r i n c ip l e o f o p e r a t i o n , t h e p a p e r w i ll e la b o r a t e o n

    t h e p r o c e s se s i n v o l v e d i n t h e t e c h n o l o g y , f r o m b o t h t h e

    the o re t i c a l a nd p ra c t i c a l pe r spe c t ive s .

    F i g u r e 1 s h o w s a s c h e m a t i c d i a g r a m o f a je t r e f r i g e ra -

    t i on c yc l e . A s he a t i s a dde d to t he bo i l e r , t he h igh -

    p r e s s u r e a n d t e m p e r a t u r e r e f r i g e r a n t v a p o u r , k n o w n a s

    p r i m a r y o r m o t i v e f l u i d , i s e v o l v e d . T h i s e n t e r s t h e

    p r i m a r y n o z z l e o f t h e e je c t o r, w h e r e i t e x p a n d s t o

    7 8

    Downloaded from http://www.elearnica.ir

  • 7/25/2019 A Theoretical and Experimental Study of a Small-scale Steam Jet Refrigerator

    2/9

    A s m a l l s c a l e s t e a m j e t re f r i g e r a t o r 79

    omenclature

    A A re a (m 2 )

    C O P C o e f fi e nt o f p e r f o r m a n c e

    h Spe c i fi c e n th a lpy (k J kg J )

    I E le c t r ic c u r re n t (A )

    k Spe c i fi c he a t r a t i o

    m M a ss f l ow (kg s I )

    M M a c h n u m b e r

    N X P N oz z le e x i t pos i t i on ( se e Figure 7

    P Pre ssu re (ba r )

    R rn E n t r a i n m e n t r a t i o

    T T e m p e r a t u r e ( K , C )

    V V o l t a ge

    Greek l e t t e r s

    'qd Diffus er e ff ic iency

    % Pr im a ry noz z l e e f f i c ie nc y

    qm M i x i n g c h a m b e r e f fi c ie n c y

    t ) D e ns i ty

    1- f / f p

    S u b scr ip t s

    1 Pr im a ry noz z l e e x i t p l a ne ( see

    Figure 2

    2 U p s t r e a m o f t h e m i x i n g c h a m b e r t h r o a t ( se e

    Figure 2

    3 U p s t r e a m o f t h e n o r m a l s h o c k w a v e ( se e

    Figure 2

    4 D o w n s t r e a m o f t h e n o r m a l s h o c k w a v e ( se e

    ~ u r e 2 )

    boi le r Boi le r

    c o n C o n d e n s e r

    e Exi t

    e v a p E v a p o r a t o r

    f Sa tu ra t e d l i qu id

    i In le t

    o S t a g n a t i o n s t a t e

    p P r im a ry f lu id

    s S e c o n d a r y f l u id

    t P r i m a r y n o z z l e t h r o a t

    v S a t u r a t e d v a p o u r

    S u p erscr ip t s

    ' P r im a ry f lu id

    S e c o n d a r y f l u id

    F i g u r e I

    F i g u r e 1

    o i l e ~

    condenser

    t r

    ~ e v a p o ra to r [

    S c h e m a t i c r e p r e s e n t a t i o n o f a j e t r e f r i g e r a t o r c y c le

    Diagramm e sch& natique d'un cycle JHgorifique ~ et de vape ur

    c o n s t a n t a r e a

    m i x i n g s e c t i o n

    p r i m a r y P lZ - ~ ~ c o m b i n e d f l o w

    f l o w t ~ _ _j J ~

    C O l l s t a n l p i P s s u r t

    secondary flow mi xin~ sectio n

    subson ic d i f fu se r

    F i g u r e

    F i g u r e 2

    r=

    7.

    P

    I ) I S I ~ \ I : ~ I ,O N ; X X I S

    S c h e m a t i c r e p r e s e n t a t io n o f a n e j e c t o r

    Sch& na d 'un ~ jecteur ,~upervoniquc lvpique

    p r o d u c e a s u p e r s o n i c f l o w w i t h i n a l o w - p r e s s u r e r e g i o n.

    T h e p a r t i a l v a c u u m c r e a t e d b y t h e s u p e r s o n i c p r i m a r y

    f l o w is f e d b y a s e c o n d a r y f l o w c o n s is t i n g o f e n t r a i n e d

    r e f r i g e r a n t v a p o u r c o m i n g f r o m t h e e v a p o r a t o r . T h e

    p r i m a r y a n d s e c o n d a r y f l u i d s c o m b i n e i n t h e m i x i n g

    c h a m b e r o f th e e j e c to r a n d d i s c h a r g e t h r o u g h a d i f f u s e r

    t o t h e c o n d e n s e r , w h e r e t h e r e f r i g e r a n t v a p o u r c a n b e

    l i q u ef i ed a t a m b i e n t t e m p e r a t u r e . T h e l i q u id r e f r i g e r a n t

    i s r e tu rne d to t he bo i l e r v i a a f e e d -pump w h i l e t he

    r e m a i n d e r i s e x p a n d e d t h r o u g h t h e t h r o t t l i n g o r e x p a n -

    s i o n v a l v e to t h e e v a p o r a t o r t o c o m p l e t e t h e c y c l e.

    S m a l l - c a p a c i t y j e t r e f r i g e ra t o r s u s i n g R 1 1 , R I 2 a n d

    R 13 a s t he w ork i ng f lu id s ha ve be e n re po r t e d 3 5

    H o w e v e r , t h e a u t h o r s a r e n o t a w a r e o f a n y sm a l l -

    c a p a c i t y s y s t e m s o p e r a t e d w i t h l o w - p r e s s u r e s t e a m .

    N o r m a l l y , s t e a m e j e c t o r s a r e o p e r a t e d u s i n g s t e a m

    supp l i e d f rom indus t r i a l - sc a l e bo i l e r s w i th sa tu ra t ion

    p re ssu re s i n the r a nge 5 20 ba r .

    In t he se c t ions b e low , t he spe c if i c a im i s t o p ro v ide the

    b a s ic b a c k g r o u n d i n th e o r y a n d o p e r a t i o n o f a s te a m je t

    r e f r i g e r a t o r . T h e t h e o r e t i c a l a n d e x p e r i m e n t a l s t u d y

  • 7/25/2019 A Theoretical and Experimental Study of a Small-scale Steam Jet Refrigerator

    3/9

    3 8 0 I W E a m e s e t a l

    f o c u s e d o n a s t e a m je t r e f r i g e r a t o r w i t h a f ix e d g e o m e t r y

    e j e c t o r , d e s ig n e d t o o p e r a t e w i t h r e l a t iv e l y lo w b o i l e r

    t e m p e r a t u r e s ( 1 2 0 - 1 4 0 C ) o r 2 - 3 . 6 b a r p r e s s u re s .

    jector theory

    T h e e j e c t o r is a c ri t ic a l c o m p o n e n t o f th e j e t r e f r ig e r a t i o n

    c y c l e. T h e c o n c e p t o f a n e j e c t o r is n o t n e w . S t e a m - d r i v e n

    e j e c t o r s h a v e b e e n u s e d e x t e n s i v e l y i n p o w e r g e n e r a t i o n ,

    c h e m i c a l p r o c e s s i n g a n d t h e n u c l e a r i n d u s t r y f o r m a n y

    y e a r s . T h e m o s t n o t a b l e u s e s h a v e b e e n t o p r o d u c e o r

    m a i n t a i n a p r a c t i c a l v a c u u m i n g a s - f il l e d v e s s e ls 6 . Th e

    m a i n a d v a n t a g e o f e je c t o rs o v e r c o n v e n t i o n a l c o m p r e s -

    s o r s o r p u m p s is th a t t h e y h a v e n o m o v i n g p a r t s a n d t h u s

    r e q u i r e l i t tl e m a i n t e n a n c e .

    A t y p i c a l s u p e r s o n i c e j e c t o r is s h o w n s c h e m a t i c a l l y in

    Figure 2.

    H i g h - p r e s s u r e p r i m a r y f l u i d ( P ) e n t e r s t h e

    p r i m a r y ( s u p e rs o n i c ) n o zz l e , th r o u g h w h i c h i t e x p a n d s t o

    p r o d u c e a l o w p r e s s u r e a t t h e e x i t p l a n e ( 1 ) . T h e h i g h -

    v e l o c it y p r i m a r y s t r e a m d r a w s a n d e n t r a in s t h e s e c o n d -

    a r y f l u i d ( S ) i n t o t h e m i x i n g c h a m b e r . T h e c o m b i n e d

    s t r e a m s a r e a s s u m e d t o b e c o m p l e t e l y m i x e d a t t h e e n d o f

    t h e m i x i n g c h a m b e r ( 3 ) a n d t h e f l o w s p e e d i s s u p e r s o n i c .

    A n o r m a l s h o c k w a v e i s t h e n p r o d u c e d w i t h i n t h e

    c o n s t a n t - a r e a s e c t i o n , c r e a t i n g a c o m p r e s s i o n e f f e c t, a n d

    t h e f l o w s p e e d i s r e d u c e d t o s u b s o n i c v a l u e . F u r t h e r

    c o m p r e s s i o n o f t h e fl u id is a c h i e v e d a s th e c o m b i n e d

    s t r e a m s f l o w t h r o u g h t h e s u b s o n i c d i f f u s e r s e c t i o n .

    T h e p e r f o r m a n c e o f a n e j e c t o r c a n b e d e f i n e d in t e r m s

    o f t h e

    entrainment ratio

    o r

    mass .flow ratio,

    wh i c h i s t h e

    r a t i o b e t w e e n t h e s e c o n d a r y a n d t h e p r i m a r y f l u i d m a s s

    f l o wr a t e s :

    Rm = --m~ ( 1

    m p

    T h e p e r f o r m a n c e o f e je c t o rs c a n b e p r e d i c t e d u s in g o n e -

    d i m e n s i o n a l c o m p r e s s i b l e f l o w t h e o r y . T h e f i r s t m o d e l s

    w e r e p r e s e n t e d b y K e e n a n a n d N e u m a n n 7 t o a n a l y s e ai r

    e j e c t o rs . T h e i r f ir s t w a s a o n e - d i m e n s i o n a l m o d e l b a s e d

    o n i d e a l g a s d y n a m i c s i n c o n j u n c t i o n w i t h t h e p r i n c i p l e s

    o f c o n s e r v a t i o n o f m a s s , m o m e n t u m a n d e n e r g y . H e a t

    a n d f r i c t i o n l o s s e s w e r e i g n o r e d . T h e i r a p p r o a c h

    p r o v i d e d s o l u t i o n s f o r e j e c t o r s w i t h c o n s t a n t - a r e a

    m i x i n g c h a m b e r s , a n d e x c l u d e d t h e d i f f u s e r s e c t i o n .

    L a t e r t h e y e x t e n d e d t h e t h e o r y t o i n c l u d e a c o n s t a n t -

    p r e s s u r e m i x i n g c h a m b e r a n d a d i f f u s e r 8 . H o w e v e r , t h i s

    l a t e r m o d e l s t i l l d i d n o t i n c l u d e f r i c t i o n o r h e a t l o s s . I n

    t h i s c u r r e n t p a p e r , t h e a u t h o r s h a v e m o d i f i e d K e e n a n ' s

    m o d e l t o i n c l u d e i r r e v e r s i b i l i t i e s a s s o c i a t e d w i t h t h e

    p r i m a r y n o z z l e , m i x i n g c h a m b e r a n d d i f f u s e r . T h e

    a n a l y s i s i s b a s e d o n t h e w e l l - k n o w n s t e a d y - s t a t e a n d

    s t e ad y - f lo w e q u a t i o n s o f en e r g y , m o m e n t u m , a n d c o n -

    t i n u i t y a s f o l l o ws :

    E n e r g y e q u a t i o n f o r a n a d i a b a t i c p r o c e s s :

    Z m i ( h i +

    I/ 2/2) = Z me(he + V ~/2)

    M o m e n t u m e q u a t i o n :

    Pi Ai Z mi Vi = Pe Ae Z me Ve

    C o n t i n u i t y e q u a t i o n :

    Z p i V iA i = Z p e V eA e

    2 )

    3 )

    (4)

    A l o n g w i t h t h e s e g o v e r n i n g e q u a t i o n s , t h e f o l l o w i n g

    s i m p l i f y i n g a s s u m p t i o n s w e r e m a d e :

    1 . F r i c t i o n l o ss e s w e r e i n t r o d u c e d b y a p p l y i n g i se n -

    t r o p i c e f f ic i e n c i es t o t h e p r i m a r y n o z z l e , d i f f u s e r a n d

    m i x i n g c h a m b e r .

    2 . T h e p r i m a r y a n d s e c o n d a r y f lu i d s w e r e s u p p l i e d a t

    z e r o v e l o c i t y a t P a n d S re s p e c t i v e l y .

    3 . A t t h e p r i m a r y n o z z l e p l a n e ( 1 ) w h e r e t h e t w o

    s t r e a m s f i r st m e e t , t h e s t a ti c p r e s s u r e w a s a s s u m e d t o b e

    u n i f o r m .

    4 . M i x i n g o f t h e t w o s t r e a m s w a s c o m p l e t e b e f o r e a

    n o r m a l s h o c k w a v e o c c u r r e d a t t h e e n d o f t h e m i x in g

    c h a m b e r ( 3 ) .

    Ma ch number of the pr imary f luid at the nozz le exi t plane

    H i g h - p r e s s u r e p r i m a r y f l u i d a t P e x p a n d s t h r o u g h a

    c o n v e r g i n g - d i v e r g i n g n o z z l e a n d l e a v e s t h e n o z z l e a t 1 '

    w i t h s u p e r s o n i c s p e e d . A p p l y i n g t h e e n e r g y e q u a t i o n

    b e t we e n P a n d 1 ' , i t c a n b e s i m p l i f i e d t o :

    V~, = 2% (hp - h, ,) (5)

    w h e r e % i s a n i s e n t r o p i c e f fi c ie n c y o f t h e p r i m a r y n o z z l e .

    T h e r e l a t i o n b e t w e e n t h e p r e s s u r e r a t i o a c r o s s t h e

    n o z z l e a n d M a c h n u m b e r a t t h e e x it o f t h e n o z z l e is g i v e n

    a s

    [ 2 p i I

    Mach number of the secondary f luid at the nozz le exi t

    plane

    A s t h e l o w p r e s s u r e i s f o r m e d a t t h e p r i m a r y e x i t p l a n e ,

    t h e s e c o n d a r y f l u i d a t S e x p a n d s t o 1 . S i m i l a r l y t o t h e

    p r i m a r y n o z z le , t h e M a c h n u m b e r o f th e s e c o n d a r y f l u id

    a t t h e n o z z l e e x i t p l a n e i s g i v e n a s

    = - 1 7 )

    The mixing process

    A p p l y i n g t h e m o m e n t u m e q u a t i o n w i t h i d e a l l o s s l e s s

    m i x i n g b e t w e e n 1 a n d 3 :

    P I Al + m p V 1, -4- m s Vv, = P3 A3 + (mp + ms) V3

    T h e m i x i n g p r o c e s s b e t w e e n p r i m a r y a n d s e c o n d a r y

    f l ui d s is a s s u m e d a l l t o o c c u r b e t w e e n 1 a n d 3 a t c o n s t a n t

    s t a t i c p r e s s u r e ( P I = P 3 ) a n d w h e r e t h e c r o s s - s e c t i o n a l

    a r e a s a t t h e i n l e t a n d e x i t o f th e m i x i n g c h a m b e r a r e

    ass um ed to be e qu a l (A i ---- A3) .

    T h e r e f o r e

    m p V + m s VI , , = ( m p - { - m s ) V3

    Th i s r e l a t i o n d e s c r i b e s f u l l y i d e a l i z e d m i x i n g ; i t c a n b e

    m a d e m o r e r e a l i s ti c b y i n c l u d i n g T/m a s a n e f f i c ie n c y f o r

    t h e w h o l e m i x i n g c h a m b e r :

    ~ ]m ( mp V I + m s V I, ,) = ( m p + m s ) V 3 ( 8 )

  • 7/25/2019 A Theoretical and Experimental Study of a Small-scale Steam Jet Refrigerator

    4/9

    A s m a l l s c a l e s t e a m e t r e f r i g e r a t o r

    3 8 1

    T h u s t h e v e l o c i t y o f t h e m i x e d f lu i d a t 3 c a n b e e x p l i c it l y

    e x p r e s s e d a s

    V 3 = r / m [ m p V I + m s V ,,,] 9 )

    - mp

    n s

    Equ a t ion 9 ) c an be wr i t t en in t e rm s o f t h e M a c h

    n u m b e r :

    , v t = +

    m

    1 0 )

    x/ 1 + R~) 1 + R m T ~ / T p )

    w h e r e t h e r e la t i o n b e t w e e n M a n d M * i s g i v e n a s

    / k + 1 )M 2/2

    M *

    1 + k - 1 )M 2/2 11)

    P r e s s u r e r a t i o a c r o s s a n o r m a l s h o c k w a v e

    A t s o m e s e c t i o n w i t h i n th e c o n s t a n t - a r e a m i x i n g

    c h a m b e r , a n o r m a l s h o c k w a v e o c c u r s if t h e v e lo c i t y o f

    t h e m i x e d f l u i d e n t e r i n g t h e c o n s t a n t - a r e a s e c t i o n i s

    s u p e r s o n i c . A s h o c k w a v e i s a p r o c es s w h e r e a s u d d e n

    c h a n g e i n f l u i d v e l o c i t y a n d p r e s s u r e t a k e s p l a c e i n

    s u p e r s o n i c f l o w a n d w o u l d h a v e i n f i n i t e s i m a l t h i c k n e s s .

    T h e o n e o c c u r r i n g b e t w e e n 3 a n d 4 w o u l d t h e r e f o r e b e a n

    i r re v e rs ib l e c o m p r e s s i o n p r o c e s s i n w h i c h t h e M a c h

    n u m b e r s u d d e n l y f a l l s t o l e s s t h a n u n i t y . T h e M a c h

    n u m b e r o f t h e m i x e d f lu i d a ft e r th e s h o c k w a v e i s

    o b t a i n e d f r o m

    1 )

    = 1

    1 2 )

    T h e p r e s s u r e l i f t r a t i o a c r o s s t h e s h o c k w a v e i s o b t a i n e d

    as f o l l o w s :

    P4 1 + k M 4

    P3 1

    +

    k

    ]l,I~ 13)

    t h e f l o w s p e e d i s r e d u c e d t o z e r o a t t h e e n d o f t h e d i f f u s er

    b ) . T h e p r e s s u r e l i f t r a t i o a c r o s s t h e d i f f u s e r c a n b e

    o b t a i n e d f r o m

    Pbp4 r/ d k

    _

    1) v 11 ~

    ~ . M,~ + 14)

    w h e r e q d i s t he i sen t rop i c e f f i c i e n c y o f t h e d i f f u s e r .

    S o h t t i o n q E q u a t i o n s 5 ) - 1 4 )

    I t i s a s s u m e d t h a t th e t em p e r a t u r e , p r e s s u r e a n d m a s s

    f l owra t e o f t h e p r i m a r y a n d s e c o n d a r y f l u i d s are all

    2.8

    2.4

    2.0

    1.6

    1.2

    0.8

    11.4

    II.|l

    IN

    b ~ f i h l I ~ l l t p t l : i t L l r t I ~ * (I o (

    ( ( ) P

    . . . . : ~ 1 c : l i ; l l i o

    1 2 . 5 = I , z , ,~ t p ( o ( )

    22 26

    : q l

    .14 3~

    I , . , m / o

    F i g u r e 4 T h e o r e t i c a l C O P o f j e t r e f r i g e r a t o r s v e r s u s c o n d e n s e r

    s a t u r a t i o n t e m p e r a t u r e

    F i g u r e 4

    R~su ltats d u c alcul de la per/ orm ance de.~ r~ /?ig~;rateurs

    jimctionnant h d(ff~;rentes temp~;ratures

    P r e s s u r e r i f t r a t i o a c r o s s t h e s u b s o n i c d i f f u s e r

    F u r t h e r c o m p r e s s i o n o f t h e m i x e d f lu i d is a c h i e v e d a s i t

    p a s s e s t h r o u g h t h e s u b s o n i c d i ff u s e r . I t i s a s s u m e d t h a t

    2.11

    i . 5

    R m 1 . 0

    0 . 5

    0 . 0

    I p / P b

    = 60

    ( ) L , \ l ) , . , r i n l , ., i H a l d : l [ l l ( b c ~ l * , : l l u e ~ )

    L , M ~ L . , r im e l v t a l d a t a ( I ) p i e 4 1 ~ ; l l u u ~

    i h c o t c l i c : l l , . ; i h i t s

    ~

    4 8 12

    16

    Pb/Ps

    F i g u re 3 C o m p a r n s o n b e t w e e n e x p e r i m e n t a l a n d t h e o r e ti c a l e n tr a i n -

    m e n t r a t i o ( p r i m a r y p r e s s u r e r a t i o = 6 0 )

    F i g u r e 3

    CorrOlation avec donn~es expOrimentales four nies par

    / ' E n g in e e r in g S c i e n c es Da ta U n i t ( E D S U)

    1.4

    1.2

    1 . 1 1

    v

    I ) . 1 ~

    I J . 4

    O.2

    O.ql

    I ~ : q , ~ , l : l t , , I I c I I I p L r : t l u t ~ ~ o (

    ( ( ) 1

    2 ( 1 0 ~

    ,

    [ h . i h r

    ] ~ 0 o (

    IN 22 2~ , ~0 t4 38

    I c , H ~ I ( )

    F i g u r e 5 T h e o r e t i c a l C O P o f j e t r e f r i g e r a t o r s v e r s u s

    c o n d e n s e r

    s a t u r a t i o n t e m p e r a t u r e

    F i g u r e 5

    R~sul ta ts du ca lcu l de la perfbrma nce des r( fHg~;rateurs

    fonct ionnant h d (~ren tes temp~;ra tures

  • 7/25/2019 A Theoretical and Experimental Study of a Small-scale Steam Jet Refrigerator

    5/9

    3 8 2 I W E a m e s e t a l

    F i g u r e 6

    F i g u r e 6

    s u p e r h e : H e r

    ~ ~ : :il e . l e c t r I ~ ' o I ' : H o r

    s t e a m d r u m [~ ~ i , U , n l , . ~ - ]

    b o i l e r ~ ,~-. [ i ;

    S c h e m a t i c d i a g r a m o f t h e e x p e r i m e n t a l s t e a m j e t r e fr i g e r a to r

    Sehdma de l appareil d essai

    t ( , d u a i r : - - - J

    4

    ]

    - - - c o o l i n g w a t e r

    k n o w n . T h e f o l l o w i n g p r o c e d u r e c a n b e u se d i n o r d e r t o

    o b t a i n t h e e j e c t o r e x h a u s t p r e s s u r e .

    1 . A s t h e p r e s s u r e a t t h e n o z z l e e x i t p l a n e is n o t k n o w n ,

    i t c a n b e d e t e r m i n e d b y a n i t e r a t i o n p r o c e s s . F i r s t , t h e

    v a l u e o f P I / P s i s a s s u m e d .

    2 . C a l c u l a te t h e M a c h n u m b e r s o f t h e p r i m a r y a n d

    s e c o n d a r y f l u i d s a t t h e n o z z l e e x i t p l a n e , M ~ a n d

    M~ ,

    f r o m E q u a t i o n s 6 ) a n d 7 ) .

    3 . C a l c u l a t e t h e M a c h n u m b e r o f t h e m i x e d f l ui d , M 3 ,

    f r o m E q u a t i o n 1 0 ), a n d

    4 . C a l c u l a te t h e M a c h n u m b e r o f th e m i x e d fl u id a ft e r

    t h e s h o c k w a v e , M 4 , f r o m E q u a t i o n 1 2 ).

    5 . C a l c u l a t e a p r e s s u r e li ft r a t i o a c r o s s t h e s h o c k w a v e ,

    P4/P3,

    f r o m E q u a t i o n 1 3 ).

    6 . Ca l c u l a t e a p r e s s u r e l i ft r a t i o a c r o s s t h e d if f u s e r ,

    P b / P 4 , f r o m E q u a t i o n 1 4 ) .

    7 . N o w , t h e e j e c t o r e x h a u s t p r e s s u r e P b c a n b e

    c a l c u l a t e d , s i n c e

    P4/P3, Pb/P4

    a n d P I / P s a r e a ll k n o w n .

    8 . R e p e a t st e p 1 ) w i t h a n e w v a l u e o f

    Pl/Ps

    u n t i l t h e

    m a x i m u m P b i s o b t a i n e d .

    T h e p r i m a r y n o z z l e , d i f f u s e r , a n d m i x i n g c h a m b e r

    e f f ic i e n c i e s o f 0 . 8 5 , 0 . 8 5 , a n d 0 . 9 5 r e s p e c t i v e l y we r e

    f o u n d t o p r o v i d e a n a c c e p t a b l e c o r r e l a t i o n w i t h t h e

    I b c d

    e f i

    ~ I l i

    V J I

    0

    n o z z l e e x i t l ) o s i l i o n

    t ) r i m a r y I~ oz zle t h r o a t d i a m e t e r : 2 r a m

    p r i m a r y n o z z l e e x it d i a m e t e r : 8 m m

    a : = 4 0 m m d : 2 1 0 m m

    b := 1 0 0 m m e = 2 -1 m m d i a m e t e r

    c = 4 0 n u n f = 1 8 m m d i a m e t e r

    g - - 4 0 m m d i a m e t e r

    F i g u r e 7 D i m e n s i o n s o f t h e e x p e r i m e n t a l e j e c to r ( n o t t o s c a l e)

    F i g u r e 7 Dimensions de base de l ~jecteur utilis~ pour les essais

  • 7/25/2019 A Theoretical and Experimental Study of a Small-scale Steam Jet Refrigerator

    6/9

    A s m a l l s c a l e s t e a m j e t r e f r i g e r a t o r

    8

    e xpe r ime n ta l da t a p l rov ide d by the Eng ine e r ing Sc i e nc e s

    D a t a U n i t E S D U ) 6 , a s s h o w n b y

    Figure 3.

    I t m u s t b e

    r e m e m b e r e d , h o w e v e r , t h a t t h i s m e t h o d c a n b e u s e d o n l y

    w h e n a n e j e c t o r is o p e r a t e d a t i t s d e s i g n e d c o n d i t i o n .

    T h e o r e t i c a l p e r f o r m a n c e o f a s t e a m j e t r e f r i g e r a t o r

    T h e t h e r m o d y n a m i c p e r f o r m a n c e o f a j e t r e f r i g e r a t i o n

    c yc le i s u sua l ly e va lua t e d th rough i t s

    coef f i c iem of

    perJormance

    C O P ) , w h i c h i s t h e r a t i o b e t w e e n t h e

    e v a p o r a t o r h e a t l o a d a n d t h e e n e r g y i n p u t t o t h e b o i le r .

    B e c a u s e t h e p o w e r i n p u t t o t h e f e e d p u m p w a s n e g l i g ib l e ,

    i t w a s o m i t t e d f r o m t h e p e r f o r m a n c e c a l c u l a t i o n . I f t h e

    e n t r a i n m e n t r a t i o i s k n o w n , t h e C O P c a n b e c a l c u l a t e d

    f r o m

    C O P -- Rm [ hv.ev~p - hr.co~]

    1 5 )

    Lhv,boiler -- hf.con/

    Figures 4

    a n d 5 s h o w t h e r e s u l ts o f t h e c a l c u l a t e d

    p e r f o r m a n c e o f s t e a m j e t r e f r i g e ra t o r s o v e r a r a n g e o f

    o p e r a t i n g t e m p e r a t u r e s . T h e e j e c t o r p e r f o r m a n c e

    ( O I

    0.5

    0.4

    0.3

    0.2

    ILl

    0.0

    I

    c n

    (()()

    25 28 31 34

    37

    nozz le x i l m si tion 26.15 i l l e~ap ora lorenlpe ra lure lL0 (

    Tboiler= 120.((sa()

    ' ' ~ Thoi le r 125oCsat)

    ~ ~ , i ~i ( ' { ' ( ' ( 1 . . . . . . . . .

    - - - - m T l m i k . r = 3 ~ ( ( M I I )

    - - l h o i l ( r = 1 4 0 , ) ( ( s a t )

    |

    3il 40 50 60

    ])~,)n f i l l ) i l l ' )

    F i g u r e

    8 V a r i a t i on i n meas u red CO P w i t h bo i l e r t empe ra tu re and

    c ondens e r p res s u re

    F i gu re 8 C o u rb e s d u C OP mesur h di ~rentes temp ratures de

    g ndrateur

    o b t a i n e d f r o m E q u a t i o n s 5 ) - 1 4 ) w a s th e b es t v a l u e

    f o r t h e g iv e n c o n d i t i o n s . T h u s t h e p e r f o r m a n c e s h o w n b y

    the so l id - l i ne c u rve s doe s no t r e p re se n t t he va lue o f one

    s ing le op t imiz e d sys t e m, s inc e a ny po in t on the so l id l i ne

    re qu i re s a pa r t i c u l a r e j e c to r ope ra t e d a t it s de s ign

    c o n d i t i o n ) . T h e p e r f o r m a n c e o f ej e c to r s w i t h s i m i l a r a r e a

    ra t io

    A4/At )

    w a s c a l c u l a t e d by sc a l ing ba se d on

    c o n t i n u i t y , t h e i d e a l g a s la w a n d a n i s e n t ro p i c c o m p r e s -

    s i o n p r o c e s s w i t h c o n d i t i o n s a t a n y s e c t i o n n o r m a l i z e d

    by re fe re nc e to t he p r im a ry noz z l e t h roa t . S uc h sc a l ing i s

    w e l l de sc r ibe d in s t a nd a rd f lu id me c ha n ic s t e x t s l a nd

    p r o d u c e d r e s u l t s s h o w n b y t h e d o t t e d l i n e s i n

    Figures 4

    a nd 5 .

    F r o m t h e pl o ts o f Figures 4 a n d 5, t he fo l low ing w e re

    obse rve d :

    1 . A c yc l e de s igne d to ope ra t e a t h igh bo i l e r a nd

    e v a p o r a t o r t e m p e r a t u re s a n d l o w c o n d e n s e r t e m p e r a tu r e

    w o u l d h a v e h i g h e r C O P v a l u e s a n d r e q u i r e a n e j e c t o r

    w i th l a rge r a re a r a t i o

    A4/At )

    t h a n a n o t h e r c y c le .

    2 . Fo r one pa r t i c u l a r e j e c to r o r e j e c to r s w i th s imi l a r

    a r e a r a t i o

    A4/At),

    w i t h t h e g i v e n e v a p o r a t o r t e m p e r a -

    t u r e , a n y r i s e in t h e b o i l e r t e m p e r a t u r e w o u l d c a u s e t h e

    C O P t o f a ll . H o w e v e r , t h e c y c l e c o u l d t h e n b e o p e r a t e d

    a t a h i g h e r c o n d e n s e r t e m p e r a t u r e .

    3 . Fo r one pa r t i c u l a r e j e c to r o r e j e c to r s w i th s imi l a r

    a r e a r a t i o

    A4/At),

    w i t h a g i v e n b o i l e r t e m p e r a t u r e , a n

    i n c r e a s e i n t h e e v a p o r a t o r t e m p e r a t u r e w o u l d c a u s e t h e

    C O P to r i se . H e re a l so , t he c yc le c ou ld be op e ra t e d a t a

    h i g h e r c o n d e n s e r t e m p e r a t u r e .

    E x p e r i m e n t a l t e s t s o n a s t e a m j e t r e f r i g e r a t o r

    Experimental set-up

    The t e s t se t -up is show n sc he m a t i c a l ly i n

    Figure 6.

    T h e

    b o i l e r d e s i g n w a s b a s e d o n t h e t h e r m o - s y p h o n p r i n c ip l e .

    H e a t e n e r g y w a s d i r e c t l y tr a n s f e r r e d t o t h e w a t e r b y t w o

    3 .5 k W e l ec t ri c h e at e r s . T h e e v a p o r a t o r d e s i g n w a s b a s e d

    on sp r a y a nd fa l l i ng f i lm c o lum n . A s ing le 3.25 kW he a te r

    w a s u s e d t o s i m u l a t e t h e e v a p o r a t o r c o o l i n g l o a d . A l l t h e

    e l e c t r i c he a t e r s w e re c on t ro l l e d u s ing va r i a b l e t r a ns fo r -

    me rs . A she l l a nd c o i l c onde nse r w a s u se d , c oo le d by

    w a te r .

    0.5

    I

  • 7/25/2019 A Theoretical and Experimental Study of a Small-scale Steam Jet Refrigerator

    7/9

    3 8 4 I W E a m e s e t a l

    T a b l e 1 P e r f o r m a n c e a t o f f - d es i g n o p e r a t i o n , a s s h o w n i n Figures 10 a n d l l

    T a b l e a u 1 Per /brma nce lo r s du Jonc t ionn emen t ~t des cond i t i ons non pr~vues dans l e p ro j e t comm e on peu t vo it dans l es F igures 10 e t 11

    C o o l i ng T e m p e r a t u r e ( C )

    O p e r a t i n g p o i n t c a p a c i t y

    o n t h e f i gu r e s C O P ( W ) E v a p o r a t o r B o i l er

    P r e s s u re ( m b a r )

    c o n d e n s e r

    a 0.207 710 7.5 130.0 45.7

    b 0.207 7 l0 7 .5 130.0 42.5

    d 0.221 710 7 .0 127.2 42.5

    e 0.239 752 7.5 126.9 42.5

    f 0 .278 936 10.0 130.0 47.6

    g 0.197 690 7.5 131.7 47.6

    Note: T h e d a t a p r o v i d e d i n t h i s t a b le a r e o b t a i n e d g r a p h i c a ll y f r o m t h e f i g ur e s

    l c .n l uC)

    22 26 3tl 34 38

    1400

    T l , , ,i l c r = 1 2 0 , , C 1 2 5 " ( "

    ~ I O O O 1 3 o . (

    .] 135~

    = t ~ I I 1 " (

    =

    600 =5 (

    z

    i i " l ' e , . . . .

    2 0 0 , i , I ,

    25 35 4'~ 55 65

    Pcon (m ba r)

    F i g u r e 11 M e a s u r e d c o o l i n g c a p a c i t y c h a r a c t e r i s t i c s o f t h e e x p e r i -

    m e n t a l r e f r i g e r a t o r

    Figu re 11 Courbes de per fo rmance ca l cu lOes h par t i r des donnOes

    observOes l o r s du fone t ion nem en t h l a p res s ion cr i t ique du condenseur

    F i g u r e 7

    i s a s k e t c h s h o w i n g t h e e s s e n ti a l d i m e n s i o n s o f

    t h e e j e c t o r u s e d i n t h e t e s ts . T h e c r o s s - s e c t i o n a l a r e a w a s

    o b t a i n e d f r o m t h e s c a l i n g c o n s i d e r a t i o n s d e s c r i b e d

    e a r l i e r . O t h e r g e o m e t r i c a l d e s i g n p a r a m e t e r s w e r e

    b a s e d o n t h e s t a n d a r d r e c o m m e n d a t i o n b y E S D U 6.

    P e r f o r m a n c e c h a r a c t e r is t i cs o f a s t e a m j e t r e f r ig e r a t i o n

    u n i t

    T e s t s o n t h e s t e a m j e t r e f r i g e r a t o r w e r e c a r r i e d o u t o v e r a

    r a n g e o f b o i le r , c o n d e n s e r a n d e v a p o r a t o r c o n d i t i o n s . I n

    e a c h s i t u a t i o n , t h e s y s t e m w a s s e t a n d l e f t t o r e a c h

    e q u i l i b r i u m w i t h r e s p e c t t o a l l t e m p e r a t u r e s , a n d t h e r e -

    f o r e a l l h e a t / e n e r g y i n p u t s a n d o u t p u t s w e r e s t e a d y . T h e

    e l e c tr i c p o w e r i n p u t s t o t h e b o i l e r a n d t o t h e e v a p o r a t o r

    w e r e m e a s u r e d i n r e a l t i m e w i t h a c o m p u t e r d a t a -

    a c q u i s i t i o n s y s te m . S a m p l i n g o f t h e v o l ta g e V ) a c r o s s ,

    t h e e l e c tr i c c u r r e n t I ) t h r o u g h e a c h h e a t e r , a n d l o g g i n g

    t h e i r r e a l - ti m e p r o d u c t V x I ) g a v e a n i n d i c a t i o n o f t h e

    i n s t a n t a n e o u s h e a t p o w e r a d d e d i n e a c h c as e . T h e s e d a t a

    l o gs p r o v i d e d v e r y a c c u r a t e m e a s u r e m e n t s o f t h e a c tu a l

    h e a t i n p u t t o t h e b o i l e r a n d t h e e l e c tr i c a ll y i m p o s e d l o a d

    o n t h e e v a p o r a t o r .

    T h e C O P o f t h e w h o l e s y s t e m in t h is e q u i l i b r i u m s t a t e

    c o u l d b e e s t i m a t e d a c c o r d i n g t o t h e f o l l o w i n g :

    C O P e l e c _ ( V x I ) e v a p ( 1 6 )

    ( V X / ) b o i l e r

    B a s e d o n t h e e l e c tr i c p o w e r i n p u t t o t h e b o i le r , a n d l o a d

    o n t h e e v a p o r a t o r , t h is C O P e s t im a t e w a s t h e r e f o r e th e

    o v e r a l l w o r s t - c a s e p e r f o r m a n c e , a s i t i n c l u d e d a l l t h e

    u n w a n t e d h e a t l o s se s a n d g a i n s t o t h e s y s te m d u e t o

    i m p e r f e c t i o n s i n t h e i n s u l a t io n .

    F i g u r e s 8

    a n d 9 s h o w p l o ts o f th e C O P m e a s u r e d a t

    d i f f e r e n t b o i l e r t e m p e r a t u r e s , f r o m w h i c h i t w a s p o s s i b le

    t o o b s e r v e t h e f o l l o w i n g :

    1. T h e C O P w a s in d e p e n d e n t o f t h e c o n d e n s e r p re s s u re

    u n t i l a n u p p e r l i m i t o f t h e l a t t e r w a s r e a c h e d , w h e r e t h e

    C O P f e ll r a p i d l y t o z e r o . T h e c o n d e n s e r p r e s s u r e a t

    w h i c h t h e C O P s t a r t e d d r o p p i n g i s t e r m e d t h e c r i t i c a l

    c o n d e n s e r p r e s s u r e 5

    2 . F o r a g i v en c o n s t a n t e v a p o r a t o r t e m p e r a t u r e l o a d

    s e t p o i n t ) , i n c r e a s in g t h e b o i l e r p r e s s u r e a n d t e m p e r a -

    t u r e ) r e s u l te d i n w o r s e C O P , b u t t h e c y c l e c o u l d b e

    o p e r a t e d a t h i g h e r c r i ti c a l c o n d e n s e r p r e s s u r e a n d w o u l d

    t h e r e f o r e b e le s s s u s c e p t ib l e to c h a n g i n g c o n d e n s e r o r

    a m b i e n t ) c o n d i t i o n s i n r e a l a p p l i c a t i o n s .

    3 . W i t h a c o n s t a n t b o i l e r p r e s s u r e a n d t e m p e r a t u r e ) , a

    h i g h e r C O P w a s a c h i e v a b le i f t h e e v a p o r a t o r t e m p e r a -

    t u r e s s e t - p o i n t s ) we r e a l l o w e d t o r i se , a n d t h i s f u r t h e r

    a l l o w e d t h e c y c l e t o b e o p e r a t e d a t h i g h e r c r i t i c a l

    c o n d e n s e r p r e s s u r e s .

    W h e n t h e c y cl e w a s o p e r a t e d a t a c o n d e n s e r p r e s s u r e

    b e l o w t h e c r i t i c a l v a l u e , t h e C O P w a s c o n s t a n t a s t h e

    e j e c t o r e n t r a i n e d t h e s a m e a m o u n t o f s e c o n d a r y f l ui d .

    A c c o r d i ng t o H u a n g e t a l 5 a n d M u n d a y a n d B a g s t e r 9 ,

    t h is p h e n o m e n o n m a y h a v e b e e n c a u s e d b y c h o k i n g o f

    t h e s e c o n d a r y f lo w w i t h in t h e m i x i n g c h a m b e r . T h e y

    e x p l a in e d t h a t , a f t e r e x p a n d i n g t h r o u g h t h e p r i m a r y

    n o z z l e , t h e p r i m a r y f l u i d f a n s o u t w i t h o u t m i x i n g w i t h

    t h e s e c o n d a r y f u i d . T h i s r e s u l t s i n a n e f f e c t i v e l y

    c o n v e r g i n g d u c t f o r t h e s e c o n d a r y f l u i d , t h r o u g h w h i c h

    i t i s e n t r a i n e d a n d a c c e l e r a t e d t o s o n i c v e l o c i t y a t s o m e

    c r o s s - s e c t io n d e f i n e d a s

    a n e f f e c t i v e a r e a

    M i x i n g o f t h e

    t w o s t r e a m s is t h o u g h t t o b e g i n a f t e r th e s e c o n d a r y f l o w

    c h o k e s 9 . W h e n t h e e j e c t o r is o p e r a t e d w i t h s e c o n d a r y

    c h o k i n g o r c o n d e n s e r p r e s s u r e b e l o w t h e c r i ti c a l v a l u e , a

    t r a n s v e r s e s h o c k t h a t c r e a t e s t h e m a j o r c o m p r e s s i o n

    e f f e c t w i ll a p p e a r i n t h e c o n s t a n t - a r e a m i x i n g s e c t i o n .

    W h e n t h e c o n d e n s e r p r e s s u r e i s h i g h e r t h a n c r i t i c a l , t h e

    t r a n s v e r s e s h o c k t e n d s t o m o v e b a c k o p p o s i t e to th e

    d i r e c t i o n o f fl o w ) , a n d t h e s e c o n d a r y f l ui d f lo w r a t e s t a r t s

    t o f a l l r a p i d l y t o z e r o .

    I f t h e e j e c to r w a s o p e r a t e d w i t h z e r o e n t r a i n m e n t r a t i o

    i .e . n o s e c o n d a r y f lu i d w a s e n t r a i n e d ) a n d t h e c o n d e n s e r

    p r e s s u r e w a s f u r t h e r i n c r e a s e d , t h i s w o u l d c a u s e a l l t h e

    p r i m a r y f l u i d t o r e v e r s e b a c k i n t o t h e e v a p o r a t o r . T h i s

    w o u l d b e m a n i f e s t e d e x p e r i m e n t a l l y b y a s u d d e n i n c r e a s e

  • 7/25/2019 A Theoretical and Experimental Study of a Small-scale Steam Jet Refrigerator

    8/9

    A s m a l l - s c a l e s t e a m j e t r e f ri g e r a t o r 8 5

    Tab l e 2 Experimental and theoretical performance of a steam jet refrigerator at critical condenser pressure operation

    Tableau 2 P e r f o r m a n c e s e . x p & i m e n t a l e s e t t h ~ o r i q u e s d ' l m r t { l H g & a t e . t ) ,j e t d e r a p e l o I o r s d u , l b n c t i o m l e m e n t t 't l a p r es .~ i on c r i t i q u e d u c o n d e n s e u r

    Temp (C) Pressure (mbar)

    . . . . Calculated a

    Eva p Boiler Con dense r Con dense r CO P~.k,. COP,,,~,~ C()Pth,.. area rati o

    5.0 120 26.5 34 0.2386 0.4044 0.5081 1(/2

    125 27.8 37 0.1971 0.3442 0.4660 I l l

    130 30.8 44 0.1566 0.2756 0.3645 109

    135 33.4 51 0.1270 0.2513 0.3161 111

    140 34.4 54 0.1019 0.1779 0.2765 122

    7.5 120 27.3 36 0.3063 0.5004 0.5966 98

    125 29.5 41 0.2504 0.4189 0.5052 99

    130 31.5 46 0.2070 0.3553 0.4356 103

    135 33.4 51 0.1733 0.2965 0.3786 t08

    140 35.3 57 0.1383 0.2334 0.3284 114

    10.0 120 28.3 38 0.3693 0.5862 0.6849 94

    125 30.0 42 0.3276 (I.5374 0.6074 98

    130 31.9 47 0.2884 0.4734 0.5299 101

    135 34.0 53 0.2365 0.3892 0.4544 104

    140 36.3 60 0.1884 0.3093 0.3822 106

    a The experimental ejector has an area ratio o f 90. The calculated area ratio is obtained using the theoretical data

    I,.,m (,,()

    22 26 31) 34 38

    0 . 8

    0 . 6

    ( O l

    I , 4

    (1.2

    0.0

    n o z z l e e x i t p o s it i o n = 2 6 . 1 5 m m

    ~

    t ~ experimental COPmass)

    . ; - 4 . . ~ . I . . . . . t h e o r e t i c a l C O P m a s s )

    7 + . . . . . .:

    o 4 / . ~ . . . . . /

    1 2 0 o . . . 4 . l e , a p

    /....,.,,,, , / ~

    1 3 0 o ~ 7 . 5 0 C

    1 3 5 ~ ~ 5 o C

    1 4 0 o C

    25 35 45 55 65

    l ) O l l n | | ) [ I F )

    igure 12 Compa riso n between theoretical COP predictions and

    experimental results

    Figure 12 C o m p a r a i s o n s e n t r e l e s p r & i s i o n s d u m o d b t e e t l e s r & u l t a t s

    d e I ' e s s a i

    in temperature due to the hot stream flowing into the

    evaporator.

    Operation of the sys tem

    The tests showed that, at constant evaporator and

    condenser pressures, the maximum performance was

    achieved when the cycle was operated with such a boiler

    temperature that forced the ejector to run at its critical

    pressure condition. The performance contour plots

    shown in Figures 10 and 11 were protected from the

    data at critical condenser pressure operation. An

    example of how these plots, together with

    Table 1

    may

    be used for design and optimization applications is as

    follows.

    The cycle may normally be designed to operate at

    point a' with a critical condenser pressure of, say,

    45.7mbar. If the condenser pressure fell to 42.5 mbar

    owing to a reduction of cooling water temperature while

    the boiler and evaporator temperatures stayed the same,

    the cycle operating point would move to 'b' with the

    COP and the cooling capacity essentially remaining

    constant*. This is due to the choking phenomenon o f the

    secondary fluid in the mixing chamber when the ejector

    discharge pressure is lower than the critical value, as

    explained earlier. In order to improve the cycle

    performance with such reduction in condenser pressure

    (from 45.7 to 42.5mbar), the ejector must be made to

    operate at a new critical condition by one of the

    following methods.

    Constan t cooling capacity lower evaporator temp erature

    higher COP. If a boiler temperature reduction from 130

    to 127.2C was to accompany the condenser pressure

    drop from 45.7 to 42.5 mbar, the cycle operating point

    would move to point 'd' (with the critical condition).

    This would produce a constant cooling capacity at the

    lower evaporator temperature (approximately 7.0 C).

    The COP would also be higher, owing to the reduction

    in boiler heat input.

    Con stant evaporator temperature higher cooling capacity

    higher COP.

    If the cycle was already operating at point

    d', and the boiler temperature was further reduced

    from 127.2 to 126.9C, the evaporator temperature

    would return to 7.5 C. The cycle operating point would

    move to point 'e' (with the critical condition). The COP

    and the cooling capacity would rise.

    If the condenser pressure rose higher than the design

    point (e.g. on a hot day), the ejector would operate in an

    unstable condition (with fixed boiler temperature and

    cooling load). The ejector would temporarily fail its

    function and the evaporator temperature would rise

    rapidly, forcing the ejector to establish a new critical

    operating condition at the higher condenser pressure.

    However, since the cooling load is fixed, the evaporator

    temperature would have now dropped, and again the

    * If the boiler and evapo rator temperatures were fixed, for any

    condenser pressure lower than 45.7mbar, the COP and the cooling

    capacity would remain constant as shown by the horizontal lines a-c

    on F i g u r e s 1 0 and//. However, the ejector would no longer be at the

    critical condition

  • 7/25/2019 A Theoretical and Experimental Study of a Small-scale Steam Jet Refrigerator

    9/9

    3 8 6 I W E a m e s e t a l

    e j e c t o r w o u l d t e m p o r a r i l y l o s e it s f u n c t i o n . P o i n t s ' f ' a n d

    ' g ' s h o w t w o s u c h p o s s i b le o p e r a t i n g c o n d i t i o n s w h e n t h e

    c o n d e n s e r p r e s s u r e i s i n c r e a s e d t o 4 . 6 m b a r . B e i n g h i g h e r

    t h a n t h e c r i t i c a l v a l u e , n e w c r i t i c a l o p e r a t i o n c o u l d o n l y

    b e e s t a b l i s h e d w i t h h i g h e r b o i l e r o r / a n d e v a p o r a t o r

    t e m p e r a t u r e s .

    C o m p a r i s o n s b e t w e e n e x p e r i m e n t a l a n d t h e o r e t i ca l r es u l ts

    T o m a k e a c o m p a r i s o n b e t w e e n t h e o r e t i c a l p e r f o r m a n c e

    p r e d i c t i o n s a n d t h e e x p e r i m e n t a l t e s t s , t h e w a t e r

    e v a p o r a t i o n r a t e s f r o m t h e b o i l e r a n d t h e e v a p o r a t o r

    w e r e m e a s u r e d w i t h t h e c y c l e o p e r a t i n g i n th e s t e a d y

    s ta t e. T h e e r r o r s p r o d u c e d b y u n w a n t e d h e a t g a i n s ( a t

    t h e e v a p o r a t o r ) a n d l o s s e s ( a t t h e b o i l e r ) i n t h e s y s t e m

    w e r e t h u s a v o i d e d . T h e e v a p o r a t i o n r a t e s w e r e o b t a i n e d

    b y m e a s u r i n g t h e d r o p o f li q u id v o l u m e i n t h e b o i l e r

    a n d e v a p o r a t o r o v e r a f i n it e t i m e i n t e rv a l . T h e c o e f f i c i e n t

    o f p e r f o r m a n c e o f t h e e x p e r i m e n t a l c y c le w a s t h e n

    c a l c u l a t e d f r o m E q u a t i o n ( 1 5) . T h e r e s u l ts o f t h e t es t s

    i n d i c a t e d t h a t t h e a v e r a g e b o i l e r h e a t lo s s w a s a p p r o x i -

    m a t e l y 2 5 % a t a l l t e m p e r a t u r e s , a n d t h e a v e r a g e

    e v a p o r a t o r h e a t g a i n s w e r e f o u n d t o b e a p p r o x i m a t e l y

    2 2 % , 2 0 % a n d 1 8 % a t e v a p o r a t o r t e m p e r a t u r e s o f 5 , 7 .5

    a n d 1 0 C r e s p e c t iv e l y . T h u s t h e C O P b a s e d o n e l e c t r ic

    p o w e r i n p u t w a s f o u n d t o b e a p p r o x i m a t e l y 6 0 % o f

    t h e C O P b a s e d o n e v a p o r a t i o n r a t e s . T h e l a t t e r w a s

    o b v i o u s l y u s e d f o r c o m p a r i s o n i n j u d g i n g t h e t h e o r y .

    T h e p r e s s u r e l o s s i n t h e s u c t i o n l in e w a s d e t e r m i n e d b y

    m e a s u r i n g t h e p r e s s u r e a t t h e i n l e t o f t h e m i x i n g

    c h a m b e r . T h e d i f f e r e n c e b e t w e e n t h i s a n d t h e s a t u r a t e d

    p r e s s u re i n th e e v a p o r a t o r w a s f o u n d t o b e b e t w e e n 1

    a n d 1 .5 m b a r , w h i c h i s e q u i v a l e n t t o a n a v e r a g e p r e s s u r e

    l o ss o f 1 2 % . T h e p r e s s u r e l o s s o f t h e p r i m a r y s t e a m w a s

    n o t m e a s u r e d d i r e c t l y , b u t i t w a s e s t i m a t e d t h e o r e t i c a l l y

    a s a f r i c t io n a l l o s s in a p i p e a s d e s c r i b e d i n a n y s t a n d a r d

    l0

    f l u id m e c h a n i c s t e x t . S u c h e s t im a t e s i n a v e r a g e p r e s s u r e

    l os s o f t h e p r i m a r y s t e a m a m o u n t e d t o a p p r o x i m a t e l y

    5 % . T h e s e p r e s s u re l o s s fa c t o r s w e r e t h e n i n c o r p o r a t e d

    i n t h e t h e o r e t i c a l c o m p u t e r m o d e l t o e s t i m a t e t h e c y c l e

    p e r f o r m a n c e a t c r i ti c al c o n d e n s e r p r e s su r e o p e r a t i o n .

    T a b l e 2 a n d F i g u r e 1 2 s h o w c o m p a r i s o n s b e t w e e n t h e

    m o d e l p r e d i c t i o n s a n d t h e t e s t r e s u l t s , T h e m e a s u r e d

    C O P w e r e f o u n d t o li e b e t w e e n 7 0 a n d 9 0 % ( a v e ra g e

    8 3 % ) o f th e t h e o r e t i c a l v a l u e s . T h e o v e r a l l d i s c r e p a n -

    c ie s w e r e t h u s n e v e r a b o v e 3 0 % , w h i c h p r o v e d t h a t t h e

    o d e l l i n g te c h n i q u e u s e d p r o v i d e d a u s e f u l d e s ig n t o o l f o r

    s u c h s y s t e m s . I t i s i m p o r t a n t t o n o t e t h a t t h e m e a s u r e d

    d a t a w e r e a lw a y s l o w e r t h a n w h a t t h e t h e o re t i c a l m o d e l

    p r e d i c t e d . T h i s p o i n t s c l e a r l y t o t h e p o s s i b i l i t y t h a t

    a r e a s s t i l l e x i s t i n t h e m o d e l l i n g w h e r e t o o m u c h

    i d e a l i z a t i o n h a s b e e n a s s u m e d . F u r t h e r t u n i n g o f t h e

    m o d e l i s t h u s i n v i t e d , a n d s h o u l d p r o v e a n i n t e r e s t i n g

    t a s k f o r a f u t u r e i n v e s t i g a t i o n .

    C o n c l u s i o n

    B o t h t h e t h e o r e t i c a l a n d e x p e r i m e n t a l s t u d i e s o n t h e

    s t e a m j e t r e f r ig e r a t o r , c a r ri e d o u t w i t h b o i l e r t e m p e r a t u r e s

    b e t w e en 1 2 0 a n d 1 4 0 C , a n d e v a p o r a t o r t em p e r a t u r es

    b e t we e n 5 a n d 1 0 C , p r o d u c e d r e s u l ts in wh i c h t h e e f f e ct s

    o f v a r io u s p a r a m e t e r s o n t h e o v e r a l l o p e r a t i o n w e r e

    c o h e r e n t l y i l l u s t r a te d . Th e o v e r a l l c o e ff i c ie n t o f p e r f o r -

    m a n c e o f t h e c y cl e m e a s u r e d e x p e r i m e n t a l l y w as , o n

    a v e r a g e , w i t h i n 1 7 % o f t h e t h e o r e t i c a l p r e d i c t i o n s . Su c h

    d i s c r e p a n c y w a s n e v e r w o r s e t h a n 3 0 % , e v e n n e a r t h e

    o u t e r b o u n d s o f t h e o p e r a t in g r a n g e .

    F o r a f i x e d - g e o m e t r y e j e c t o r, t h e c o o l i n g c a p a c i t y w a s

    f o u n d t o b e l i m i t e d b y t h e c o n d e n s e r p r e s s u r e , w h i c h

    w o u l d i t s e l f b e g o v e r n e d b y t h e a m b i e n t c o n d i t i o n s i n a n

    a p p l i c a t i o n . G i v e n s u c h a c o n s t r a i n t , a n d t h e a v a i la b i l i ty

    o f a f i x ed b o i l e r p r e s s u r e i n a n a p p l i c a t i o n , t h e c o o l i n g

    c a p a c i t y c o u l d b e i m p r o v e d w i t h a h i g h e r s e t e v a p o r a t o r

    t e m p e r a t u r e . O n t h e o t h e r h a n d , w i t h lo w e r c o n d e n s e r

    p r e s s u r e s , l a r g e r c o o l i n g c a p a c i t y c o u l d b e a c h i e v e d w i t h

    e v e n l o w e r b o i l e r p r e s s u r e s .

    T h e r e f o r e s m a l l - c a p a c i t y s t e a m j e t r e f r i g e r a t o r s y s -

    t e m s m a y b e p r a c t ic a l l y u s ef u l. T h e y c a n b e o p e r a t e d

    w i t h l o w - g r a d e h e a t e n e r g y w i t h t h e m o d e s t t e m p e r a t u r e

    r a n g e s ( 1 2 0 - 1 4 0 ~ 'C). Th e s y s t e m s a r e s i m p l e t o o p e r a t e

    a n d r e l i a b l e , w i t h t w o m e c h a n i c a l p u m p s b e i n g t h e o n l y

    m o v i n g p a r t s . H o w e v e r , t h e s y s t e m f l e x i b il i ty a t o f f -

    d e s i g n o p e r a t i o n i s l i m i t e d b y t h e p e r f o r m a n c e c h a r -

    a c t e r is t i cs o f a n e j e c to r . I f a n e j e c t o r w a s d e s i g n e d w i t h

    v a r i a b l e g e o m e t r y ( e . g . c r o s s - s e c t i o n a r e a s a n d n o z z l e

    p o s i t i o n ) , t h e c o o l i n g c a p a c i t y c o u l d b e m a d e i n d e p e n d -

    e n t o f t h e o p e r a t i n g t e m p e r a t u r e s i n a g i v e n r a n g e .

    F i n a l l y , t h e t e s t r e s u l t s b e i n g a l w a y s l o w e r t h a n t h e

    t h e o r y p o i n t e d t o t h e n e e d f o r f u r t h e r n o n - i d e a l

    p r o c e s s e s t o b e i d e n t i f i e d a n d c a t e r e d f o r i n t h e

    m o d e l l i n g . S u c h r e f i n e m e n t s p r o m i s e m o r e a c c u r a t e

    a n d p r e c i s e p r e d i c t i o n s , r e s u l t i n g u l t i m a t e l y i n a v e r y

    r o b u s t d e s i g n t o o l , w h i c h w o u l d s e r ve t h e i n d u s t r y w e l l.

    R e f e r e n c e s

    1 A S H R A ESteam-jet refrigeration equ ipment

    A S H R A E G u i d e

    a n d D a t a B o o k ASH RA E, USA (1969) Ch. 13

    2 Stoeeker ,W. F. Refrigeration and Air Conditioning McGraw-

    Hill, New Y ork (1959)

    3 Ha m m e r ,R. M. An investigation of an ejector-compression

    refrigeration cycle and its applications to heating, cooling and

    energy conservation Ph D thesis The University of Alabama,

    Birmingham, USA (1978)

    4 Z er en , . Freon-12 vapour compression et pump solar cooling

    systems Ph D thesis Texas A&M University, USA (1982)

    5 Hu a n g ,B. J., Jiang, C. B., Hu, F. L. E jector performancechar-

    acteristics and d esign analysis of a jet refrigeration system

    A SM E J Eng G as T urb ines Power (1985) 107 (July ) 792 802

    6 E S D U jectors and jet pum ps Data item 86030, ESD U Interna-

    tional Ltd, London, UK (1985)

    7 Ke ena n, . H., Neumann, E. P. A simpleair ejectorA S M E J A p p l

    M e c h (1942) (June) A75 A81

    8 Ke ena n . H. Neumann E. P. Lustwerk F. An investigation of

    ejector design by analysis and experimentA S M E J A p p l M e ch

    (1950) (Sept) 299 309

    9 M un da y, . T., Bagster, D. F. A new ejector theory applied to

    steam jet refrigeration nd Eng Chem Proe Des Dev (1977 ) 164

    442-449

    10 Massey,B. S.

    Mechanics o f Fluids

    6th edn,Van Nostrand Rein-

    hold (Internation al) (1989)