a tight coupling between atmospheric pco and sea-surface ... · supplemental material 1 gsa data...

17
Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO 2 and sea-surface temperature in the Late Triassic Todd K. Knobbe*, Morgan F. Schaller Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 SUPPLEMENTAL MATERIAL DR1. Lagonegro, Lombardian, and Sicani Basin Correlations: Age Constraints and Chronostratigraphy Conodont samples from the Tethys basin used in Trotter et al. (2015), were originally assigned stratigraphic ages based on the identification of stage-defining conodont biozones. However, the conodont ages assigned by Trotter et al. (2015) do not agree with established magnetostratigraphy (Maron et al., 2017; 2015; Muttoni et al., 2010; 2014) and a known U/Pb date (Furin et al., 2006) for the Lagonegro, Lombardian, and Sicani basins. We revised the original age assignments for samples from the Lagonegro, Lombardian, and Sicani basins to agree with the established magneto- and bio- stratigraphy, which are described here (Figure DR1, Table DR1). Stratigraphic sections used in correlations from the Lagonegro basin were Pignola-Abriola, Gianni Grieco, Pignola 2, Lagonegro, and Sasso di Castalda. Brumano and Costa Imagna are from the Lombardian basin. Pizzo Mondello and samples labelled as Portella Gebbia are from the Sicani basin. Original age estimates from Trotter et al. (2015) for conodont samples from Brumano and Gianni Grieco were not revised due to insufficient sample information available in the literature, and are therefore not used in the ESS calculation. Biostratigraphic correlations were made regionally between the Lagonegro, Lombardian, and Sicani basins for sections that lacked absolute dates or magnetostratigraphic data. Pignola-

Upload: others

Post on 30-Apr-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Supplemental Material

1  

GSA Data Repository 2018009

A tight coupling between atmospheric pCO2 and sea-surface temperature in the Late

Triassic

Todd K. Knobbe*, Morgan F. Schaller

Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180

SUPPLEMENTAL MATERIAL

DR1. Lagonegro, Lombardian, and Sicani Basin Correlations: Age Constraints and

Chronostratigraphy

Conodont samples from the Tethys basin used in Trotter et al. (2015), were originally

assigned stratigraphic ages based on the identification of stage-defining conodont biozones.

However, the conodont ages assigned by Trotter et al. (2015) do not agree with established

magnetostratigraphy (Maron et al., 2017; 2015; Muttoni et al., 2010; 2014) and a known U/Pb

date (Furin et al., 2006) for the Lagonegro, Lombardian, and Sicani basins. We revised the

original age assignments for samples from the Lagonegro, Lombardian, and Sicani basins to

agree with the established magneto- and bio- stratigraphy, which are described here (Figure

DR1, Table DR1). Stratigraphic sections used in correlations from the Lagonegro basin were

Pignola-Abriola, Gianni Grieco, Pignola 2, Lagonegro, and Sasso di Castalda. Brumano and

Costa Imagna are from the Lombardian basin. Pizzo Mondello and samples labelled as Portella

Gebbia are from the Sicani basin. Original age estimates from Trotter et al. (2015) for conodont

samples from Brumano and Gianni Grieco were not revised due to insufficient sample

information available in the literature, and are therefore not used in the ESS calculation.

Biostratigraphic correlations were made regionally between the Lagonegro, Lombardian,

and Sicani basins for sections that lacked absolute dates or magnetostratigraphic data. Pignola-

Page 2: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Supplemental Material

2  

Abriola (Lagonegro), Pignola 2 (Lagonegro), and Pizzo Mondello (Sicani) have robust magneto-

and bio- stratigraphy that serve as the foundation for correlations amongst other sections found

within the Lagonegro and Sicani basins. Sections with magnetostratigraphy have been correlated

directly to the Newark Supergroup astronomically-calibrated geomagnetic Polarity Time Scale

(Newark-APTS) (Kent et al., 2017; Olsen et al., 2011) using the correlations of Maron et al.

(2015, 2017) and Muttoni et al. (2010, 2014).

Correlation to the North American Newark Rift Basin

Magnetostratigrahic correlations to the Newark Group in eastern North America provide

the most precise means for correcting conodont ages from the Lagonegro and Sicani basins. The

cyclic lake sediments of the Newark basin provide the basis for a high-resolution,

astronomically-calibrated geomagnetic polarity time scale (Newark-APTS) for the last 30 Myr of

the Triassic into the earliest Jurassic (Kent and Olsen, 1999; Kent et al., 2017; Olsen et al., 2011)

The upper portion of the Newark group strata contains lava flows of the Central Atlantic

Magmatic Province (CAMP), which are interbedded with orbitally-paced lacustrine cycles.

Blackburn et al. (2013) corroborated the 20 ky precision of the Newark-APTS by comparing U-

Pb zircon dates from the CAMP basalts to the astronomically determined time durations for the

interbedded sediments based on the Newark-APTS. Thus, ages can be estimated with a high

degree of confidence by magnetostratigraphic correlation to the Newark stratigraphy. Pizzo

Mondello, Brumano, Pignola-Abriola, and Pignola 2 have been correlated to the Newark through

detailed magnetostratigraphic age model (Maron et al., 2015, 2017; Muttoni et al., 2004, 2010,

2014) (Figure DR2). Regional correlations made between the Lagonegro and Sicani basins

accompanied by the global correlation of the Lagonegro, Lombardian, and Sicani basins to the

Page 3: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Supplemental Material

3  

Newark yield the most precise age estimates for the late Triassic, and form the basis for our

revised stratigraphy.

Brumano and Costa Imagna

Only the upper portion of the Brumano section in the Lombardian basin has

magnetostratigraphy, while the lower portion relies on conodont biostratigraphy (Muttoni et al.,

2010). The magnetostratigraphic correlation between the upper portion of Brumano and the

Newark – APTS results in a corresponding age model for Brumano (Muttoni et al., 2010).

However, conodont samples J279 and J270 from Brumano used by Trotter et al. (2015) occur

below the first magnetostratigraphic data at Brumano, and the stratigraphic location of these two

samples is not indicated on the Brumano stratigraphic column in any of these publications. These

samples are left with their respective ages assigned by Trotter et al. (2015) and not used in the

ESS analysis of this study.

Costa Imagna was correlated to Brumano based on laterally lithostratigraphic marker

beds by Muttoni et al. (2010). Two samples (J 22a and J 18c) from Costa Imagna are used in

Trotter et al. (2015) initial δ18O curve. Sample J 18c is identified as the conodont assemblages M.

hernsteini and Mi. n. sp. A, and sample J 22a has M. posthernsteini (Muttoni et al., 2010). The

stratigraphic location of these two samples is not clearly indicated at the Costa Imagna section.

The conodont Mi. n. sp. A occurs once at Costa Imagna and this sole occurrence can be used to

infer the stratigraphic location of sample J 18c. Three occurrences of M. posthernsteini occur at

Costa Imagna. All three occurrences of M. posthernsteini occur within a short stratigraphic

range. Ages for samples J 18c and J 22a are calculated based on the age model for the lower

portion of Brumano from Muttoni et al. (2010). Ages for all three occurrences of M.

Page 4: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Supplemental Material

4  

posthernsteini at Costa Imagna were determined and averaged to estimate an approximate age

for sample J 22a.

Pignola-Abriola, Sasso di Castalda, and Lagonegro

The magnetostratigraphic record of Pignola-Abriola is correlated to the terrestrial Newark

basin by Maron et al. (2015) to construct an age model, providing precise age control for those

conodont samples based on their stratigraphic position (Figure DR1) (Rigo et al., 2016). Samples

from Sasso di Castalda and the Lagonegro Section were correlated to Pignola-Abriola following

the biostratigraphic correlations of Rigo et al. (2005) and Giordano et al. (2010). The age model

of Maron et al. (2015) was applied to the stratigraphic position of samples that were directly

correlated to Pignola-Abriola from the Sasso di Castalda and Lagonegro Section. Samples that

were not directly correlated to Pignola-Abriola were assigned ages based on interpolation

between established biostratigraphic tie points between these three sections (See Fig. DR1 and

Table DR1). The ages of the Rhaetian 18O samples from the Lagonegro basin revised using this

magnetostratigraphic age model now fall into good agreement with stratigraphically equivalent

samples from the Sicani basin (Fig. 2), resolving an apparent discrepancy between these two

basins that had been previously ascribed to upwelling at Sicani (Rigo et al., 2012b; Trotter et al.,

2015).

Pizzo Mondello and Portella Gebbia

The main section of Pizzo Mondello was correlated magnetostratigraphically to the

Newark basin by Muttoni et al. (2004, 2010) to construct a marine-terrestrial age model (Muttoni

et al., 2014). The stratigraphic positions of conodont samples from the Pizzo Mondello section

Page 5: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Supplemental Material

5  

were obtained from Mazza et al. (2012) and were assigned ages based on this Pizzo Mondello –

Newark Basin age model.

The samples identified as Portella Gebbia in Trotter et al. (2015) come from three

floating sections near the main Pizzo Mondello section. We refer to these sections as Floating

Section 1 (FS1), Floating Section 2 (FS2), and Floating Section 3 (FS3). These three sections

were not sampled for magnetics due to poor exposure (Muttoni et al., 2010) and were originally

correlated to the main section of Pizzo Mondello based loosely on conodont fauna (Balini et al.,

2010).

FS1 and FS2 contain seven conodont 18O values and were estimated to be Sevatian of

age based on the occurrence of the following conodont assemblages: Mockina bidentata,

Mockina zapfei, Parvigondolella andrusovi, and Epigondolella slovakensis, and the occurrence

of Misikella hersteini and Misikella koessenensis in FS2 (Giordano et al., 2010; Kozur and

Mock, 1991; Rigo et al., 2005). However, there are no physical stratigraphic bounds on these

non-continuous sections and Pizzo Mondello, and the specific biostratigraphic correlations

between them and Pizzo Mondello are not readily apparent. Better constraints on FS1 and FS2

were made possible by instead directly correlating them to Pignola-Abriola using conodont

biostratigraphy and adjusting their stratigraphic positions in relation to Pizzo Mondello. For

example, sample NR 52 from FS2 contains Miskella hernsteini and a conodont assemblage

similar to those that characterize sample PR 16 at Pignola-Abriola. Also, NR 52 and PR 16 lack

Mockina zapfei, while this form is present in sample NR 51, further supporting this correlation

and suggesting that the strata represented by samples 51 and 52 lie somewhere in the zapfei-

hersteini transition. Importantly, sample NR 6 from FS1 lacks the mid-Sevatian conodont

Miskella hernsteini, but contains N steinbergensis, placing it below PR 16 and above PIG7 at

Page 6: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Supplemental Material

6  

Pignola-Abriola. This correlation to Pignola-Abriola shifts both FS1 and FS2 down about 30 m

from their original location with respect to Pizzo Mondello (at ~425m) to its new location shown

in Figure DR1 (~395m). Moving FS2 down also fills in a biostratigraphic gap at Pizzo Mondello

between ~395 and ~405 m, and the assemblages that comprise FS1 and FS2 are in much better

agreement with assemblages at Pignola-Abriola. Ages were assigned to samples from FS1 and

FS2 using the Pizzo Mondello age model (Muttoni et al., 2014) and closely agree with the ages

of complimentary samples at Pignola-Abriola. PR 16 at Pignola-Abriola has an age of 210.80 Ma

based on the age model of Maron et al. (2015), and lowering FS2 yields an age of ~210.80 Ma

for sample NR 52 at Pizzo Mondello.

Because we lowered FS1 and FS2 by 30m without stretching or compressing them with

respect to the main Pizzo Mondello column, sample NR 2 now correlates to the MPA3n sub

reversal at Pignola-Abriola, equivalent to the base of PM11n at Pizzo Mondello (Maron et al.,

2015) (Figure DR1). Sample NR 2 best correlates to Pignola-Abriola between samples PIG 7 and

PR 16 due to the mix of conodont assemblages that occur in PIG7 and PR 16, further supporting

a lower position of FS1 and FS2 from their original position. We note that this hypothesis is

explicitly testable by generating magnetic stratigraphy through FS1 and FS2: If NR 52 is indeed

of normal magnetization we suggest that it would fall midway through MPA3n at Pignola-

Abriola. We also hypothesize that the short reversal in PM11n may be found in FS1 and that the

PM11n-r transition should be contained within FS2. If both samples NR 2 and NR 6 from FS1

are of normal magnetization, they should fall in the lower portion of MPA3n below sample PR

16 at Pignola-Abriola. Detailed magnetostratigraphy on these floating sections is needed to

confirm our correlation and the placement of FS1 and FS2 slightly lower in the Pizzo Mondello

section. Alternatively, we suggest that any future geochemical data (e.g., conodont 18O) should

Page 7: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Supplemental Material

7  

be generated on the main Pizzo Mondello suite of samples instead of on short stratigraphically

unconstrained sections.

The third floating section comprising the Portella Gebbia sample set in Trotter et al.

(2015) (referred to as FS3 in our study), was obtained from the Portella Gebbia Limestone

located at the Contrada Torcitore locality in Italy. This section contains conodont samples

exclusively from the overlying Portella Gebbia Limestone and marks the First Appearance

Datum (FAD) of Misikella posthernsteini, which is accepted as the conodont stage boundary for

the base Rhaetian. No additional magnetic or biostratigraphic data are available to constrain the

ages of the Portella Gebbia Limestone conodont samples. Misikella posthernsteini was the basis

of the age assignments used by Trotter et al. (2015) and are not revisited here. However, the

revised sample ages for 18O values from Lagonegro and Lombardian basins now agree closely

with the 18O of these Portella Gebbia samples.

Pignola 2

Pignola 2 from the Lagonegro basin contains the Aglianico ash-bed which was dated to

be 230.91 ± 0.33 Ma (Furin et al., 2006) and recent magnetostratigraphy (Maron et al., 2017).

However, the age obtained for this ash-bed and the ages assigned for the conodont samples from

Pignola 2 by Trotter et al. (2015) were in disagreement. For example, samples P14 and P24 from

Pignola 2 were originally assigned age of 232.31 Ma and 231.05 Ma, respectively. However,

samples P14 and P24 both occur stratigraphically above the Aglianico ash-bed, therefore, both

samples P14 and P24 must be younger than 230.91 Ma. Recently published magnetostratigraphy

for Pignola 2 correlates this section to the Newark APTS (Maron et al., 2017) using the date

from the Aglianico ash-bed as a tie-in point. An age model was constructed based on the

Page 8: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Supplemental Material

8  

magnetostratigraphic correlation between Pignola 2 and the Newark APTS. Stratigraphic

location of samples were obtained from Rigo et al. (2012a). Sample P14 is the only sample used

that is confined by the magnetostratigraphic correlation between Pignola 2 and the Newark –

APTS. The age mode was applied to the stratigraphic depth of P14 to obtain a revised age of

230.44 Ma. This revised age resolves the conflict with the date of the Aglianico ash-bed.

Samples P1, P3c, P8, P24, P35, and P37 were not contained within the magnetostratigraphic

correlation of Pignola 2 to the Newark – APTS. Revised dates for these samples were

extrapolated based on the Pignola 2 age model.

S.2. Atmospheric pCO2 and Sea-Surface Temperature Regressions

Simple linear regressions were applied to both the rise and fall in atmospheric pCO2 and

the sea-surface temperature anomalies (Figure DR3, Table DR2) between ~212 and 201 Ma. A

period of pCO2 doubling and halving is identified using linear regression analysis through the

paleosol-based atmospheric pCO2 estimates of Schaller et al. (2015). The time intervals for the

observed doubling and halving are applied to the sea-surface temperature anomaly to identify the

magnitude of temperature change that occurs during these intervals (Figure DR3). Samples from

the inflection points in both sea-surface temperature and pCO2 trends (ca. 209 Ma) were included

in the regressions for the observed increase and decrease in each record. Conodont samples from

Brumano (J279, J270) were excluded from the regression analysis due to their unknown

stratigraphic position.

FIGURE CAPTIONS

Figure DR1. Bio- and magneto- stratigraphic correlations between the Sicani and Lagonegro

basins and the Newark-APTS. Pizzo Mondello magneto-, bio- and litho- stratigraphy modified

Page 9: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Supplemental Material

9  

from Mazza et al. (2012). Note that sections labeled FS1 and FS2 at Pizzo Mondello have been

shifted down uniformly by 30m from their original placement in Balini et al. (2010). Pignola-

Abriola magneto-, bio-, and litho- stratigraphy is compiled from Maron et al. (2015) and Rigo et

al. (2016). Sasso di Castalda bio- and litho- stratigraphy is based on Giordano et al. (2010) and

Rigo et al. (2005). Lagonegro section bio- and litho- stratigraphy is modified from Rigo et al.

(2005). Ages are derived from the age model of Maron et al. (2015) for Pignola-Abriola and are

translated to correlative sections in the Lagonegro basin. Red lines represent biostratigraphic

correlations from this study. Red dashed line indicates our suggested correlation of sample NR 6

to Pignola-Abriola. Blue lines represent biostratigraphic correlations from Rigo et al. (2005).

Dashed blue line is a lithostratigraphic correlation for the Lagonegro basin made by Rigo et al.

(2005). Note difference in scale thickness between sections from the Lagonegro and Sicani

basins. Gray dashed lines indicate magnetostratigraphic correlations between the Newark

Supergroup, Pizzo Mondello, and Pignola-Abriola (Maron et al., 2015). Correlations regarding

Pignola 2, Costa Imagna, and Brumano are not shown.

Figure DR2. Magnetostratigraphic correlations between Pizzo Mondello and Pignola Abriola to

the Newark astrochronological polarity time scale (Maron et al., 2015). Adapted from Maron et

al. (2015).

Figure DR3. Atmospheric pCO2 and sea-surface temperature anomalies for the Late Triassic. A)

Atmospheric pCO2 calculated using the lower bounds of the formal error window. B) Best

estimates of atmospheric pCO2. C) Atmospheric pCO2 calculated using the upper bounds of the

formal error window. Atmospheric pCO2 data is from Schaller et al. (2015). D) Sea-surface

temperatures calculated from the δ18O of conodont bioapatite from Trotter et al. (2015). SSTs are

plotted as temperature anomaly with respect to the mean Late Triassic sea-surface temperature.

Page 10: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Supplemental Material

10  

Blue and red lines represent linear regressions. Gray points were excluded from the regression

analysis because correct stratigraphic placement could not be verified or properly assessed. Solid

black lines indicate intervals of atmospheric pCO2 doubling and halving with respect to the best

estimates of pCO2.

TABLE CAPTIONS

Table DR1. Sea-surface temperature anomaly for the Late Triassic calculated from the δ18O of

conodont bioapatite from Trotter et al. (2015). Revised ages were calculated based off magneto-

and biostratigraphic correlations. See text for more detail. Please note that samples KE3 and KE6

were used in regression analysis for both the rise and fall in sea-surface temperatures.

Table DR2. ESS estimates using a range of pCO2 estimates from Schaller et al. (2015). ti = time

initial; tf = time final; Ti = temperature initial; Tf = temperature final.

REFERENCES

Balini, M., Bertinelli, A., Di Stefano, P., Guaiumi, C., Levera, M., Mazza, M., Muttoni, G., Nicora, A., Preto, N., and Rigo, M., 2010, The Late Carnian-Rhaetian succession at Pizzo Mondello (Sicani Mountains): Albertiana, v. 39, p. 36-58.

Blackburn, T. J., Olsen, P. E., Bowring, S. A., McLean, N. M., Kent, D. V., Puffer, J., McHone, G., Rasbury, E. T., and Et-Touhami, M., 2013, Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province: Science, v. 340, p. 941-945.

Furin, S., Preto, N., Rigo, M., Roghi, G., Gianolla, P., Crowley, J. L., and Bowring, S. A., 2006, High-precision U-Pb zircon age from the Triassic of Italy: Implications for the Triassic time scale and the Carnian origin of calcareous nannoplankton and dinosaurs: Geology, v. 34, no. 12, p. 1009.

Giordano, N., Rigo, M., Ciarapica, G., and Bertinelli, A., 2010, New biostratigraphical constraints for the Norian/Rhaetian boundary: data from Lagonegro Basin, Southern Apennines, Italy: Lethaia, v. 43, no. 4, p. 573-586.

Kent, D. V., and Olsen, P. E., 1999, Astronomically tuned geomagnetic polarity timescale for the Late Triassic: Journal of Geophysical Research:, v. 104, p. 12,831-812,841.

Kent, D. V., Olsen, P. E., and Muttoni, G., 2017, Astrochronostratigraphic polarity time scale (APTS) for the Late Triassic and Early Jurassic from continental sediments and correlation with standard marine stages: Earth-Science Reviews, v. 166, p. 153-180.

Page 11: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Supplemental Material

11  

Kozur, H. W., and Mock, R., 1991, New Middle Carnian and Rhaetian Conodonts from Hungary and the Alps. Stratigraphic Importance and Tectonic Implications fro the Buda Mountains and Adjacent Areas: Jb. Geol. B.-A., v. 35, p. 69-98.

Maron, M., Muttoni, G., Dekkers, M., Mazza, M., Roghi, G., Breda, A., Krijgsman, W., and Rigo, M., 2017, Contribution to the magnetostratigraphy of the Carnian: new magneto-biostratigraphic constraints from Pignola-2 and Dibona marine sections, Italy: Newsletters on Stratigraphy, v. 50, no. 2, p. 187-203.

Maron, M., Rigo, M., Bertinelli, A., Katz, M. E., Godfrey, L., Zaffani, M., and Muttoni, G., 2015, Magnetostratigraphy, biostratigraphy, and chemostratigraphy of the Pignola-Abriola section: New constraints for the Norian-Rhaetian boundary: Geological Society of America Bulletin, p. B31106.31101.

Mazza, M., Rigo, M., and Gullo, M., 2012, Taxonomy and biostratigraphy record of the upper Triassic conodonts of the Pizzo Mondello section (western Sicily, Italy), GSSP candidate for the base of the Norian: 2012, v. 118, no. 1.

Muttoni, G., Kent, D. V., Jadoul, F., Olsen, P. E., Rigo, M., Galli, M. T., and Nicora, A., 2010, Rhaetian magneto-biostratigraphy from the Southern Alps (Italy): Constraints on Triassic chronology: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 285, no. 1-2, p. 1-16.

Muttoni, G., Kent, D. V., Olsen, P. E., Di Stefano, P., Lowrie, W., Bernasconi, S. M., and Hernández, F. M., 2004, Tethyan magnetostratigraphy from Pizzo Mondello (Sicily) and correlation to the Late Triassic Newark astrochronological polarity time scale: Geological Society of America Bulletin, v. 116, no. 9, p. 1043.

Muttoni, G., Mazza, M., Mosher, D., Katz, M. E., Kent, D. V., and Balini, M., 2014, A Middle–Late Triassic (Ladinian–Rhaetian) carbon and oxygen isotope record from the Tethyan Ocean: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 399, p. 246-259.

Olsen, P. E., Kent, D. V., and Whiteside, J. H., 2011, Implications of the Newark Supergroup-based astrochronology and geomagnetic polarity time scale (Newark-APTS) for the tempo and mode of the early diversification of the Dinosauria: Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v. 101, no. 3-4, p. 201-229.

Rigo, M., Bertinelli, A., Concheri, G., Gattolin, G., Godfrey, L., Katz, M. E., Maron, M., Mietto, P., Muttoni, G., Sprovieri, M., Stellin, F., and Zaffani, M., 2016, The Pignola-Abriola section (southern Apennines, Italy): a new GSSP candidate for the base of the Rhaetian Stage: Lethaia, v. 49, p. 287-306.

Rigo, M., De Zanche, V., Gianolla, P., Mietto, P., Preto, N., and Roghi, G., 2005, Correlation of Upper Triassic sections throughout the Lagonegro Basin: Italian Journal of Geoscience, v. 124, no. 1, p. 293-300.

Rigo, M., Preto, N., Franceschi, M., and Guaiumi, C., 2012a, Stratigraphy of the Carnian - Norian Calcari Con Selce Formation in the Lagonegro Basin, Southern Apennines: Rivista Italiana di Paleontologia e stratigrafia, v. 118, no. 1, p. 143-154.

Rigo, M., Trotter, J. A., Preto, N., and Williams, I. S., 2012b, Oxygen isotopic evidence for Late Triassic monsoonal upwelling in the northwestern Tethys: Geology, v. 40, no. 6, p. 515-518.

Schaller, M. F., Wright, J. D., and Kent, D. V., 2015, A 30 Myr record of Late Triassic atmosphericpCO2variation reflects a fundamental control of the carbon cycle by changes in continental weathering: Geological Society of America Bulletin, v. 127, no. 5-6, p. 661-671.

Page 12: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Supplemental Material

12  

Trotter, J. A., Williams, I. S., Nicora, A., Mazza, M., and Rigo, M., 2015, Long-term cycles of Triassic climate change: a new δ18O record from conodont apatite: Earth and Planetary Science Letters, v. 415, p. 165-174.

 

Page 13: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

M. p

osth

erns

tein

iM

. her

nste

ini/p

osth

erns

tein

itra

nsiti

onal

form

sM

. her

nste

ini

P. a

ndru

sovi

N. S

tein

berg

ensi

sP.

vrie

lync

kiE.

slo

vake

nsis

M. b

iden

tata

kz 3

ke 7ke 6ke 5ke 4ku 3

ke 3

Ku 6

Ku 7

0

40

50

20

10

30

Moc

kina

bid

enta

ta

Moc

kina

zap

fei

Parv

igon

dole

lla s

p.M

ocki

na s

lova

kens

is

Mis

ikel

la h

erns

tein

i

Parv

igon

dole

lla a

ndru

sovi

Nor

igon

dole

lla s

tein

berg

ensi

s Parv

igon

dole

lla la

taPa

rvig

. vrie

lync

kiM

isik

ella

bus

eri

Mis

ikel

la p

osth

erns

tein

i

Mis

ikel

la k

ovac

siZi

egle

ricon

us s

p.M

isik

ella

ulti

ma

Mis

ikel

la k

oess

enen

sis

Mis

ikel

la h

erns

tein

i/pos

ther

nste

ini

Betra

cciu

mde

wev

eri

Calc

ari c

on S

elce

Fm

PIG 0

PIG 7

PR 16

PIG 16 = PR 12PR 11

PIG 15 = PR 13

PR15

PAR 3

PAR 2

PAR 1

PR 10, PIG 18

PIG 19

PR 6

PIG 38

PIG 24

PIG 37, GNC 102

PR 4

PR 3 = PIG 40 PIG 41A PIG 41

GNC 101GNC100

GNC 22GNC 21 GNC 20

GNC 17

GNC 16 PA 142GNC 15 = GNM 49GNC 14GNC 13

GNC 10GNC 9

GNC 7GNC 6

GNC 5

GNC 1

GNC 3

PR 2

PR14

PI 5

PA 25

GNM 50

Ram

iform

s

Mis

ikel

la s

p.

60 PR 1

Scisti Silicei Fm

GNM 52

MPA1n

MPA5r

MPA5n

MPA4r

MPA4n

MPA3r

MPA2r

MPA2n

MPA1r

Prop

arvi

cing

ula

mon

ilifor

mis

Maron et al. (2015)Age (Ma)

Sasso di Castalda Pignola-Abriola

“Tra

nsiti

onal

Inte

rval

LGP 15

LGP 16

LGP 14

LGP 13

LGP 12

LGP 8

LGP 6

LGP 4

LGP 3

LGP 2

LGP 1

P. a

ndru

sovi

E. b

iden

tata

Lagonegro

208.63

208.00

216.20

217.55

207.60

205.70

207.29

205.05

204.45

213.52

215.66

212.22

Lagonegro BasinSicani BasinPizzo Mondello

Calc

ari c

on S

elce

Fm

Scis

ti Si

licei

Fm

0

40

50

20

10

30

60

0

20

10

30

sa 99cBU 120

sa 89, 5sc 33csc 33c

k 206kz 1

ku 5ku 4

ke 2

ku 1

kz 2

ku 2

ke 1

Nev

era

mbr

209.03

CalcareniteShale\Marl

Limestone

Marly Limestone

Dolostone

Marly DolostoneChert (layered)Chert (nodular)

LEGENDRudites

Black, gray, red shales

Red shalesBlack radiolarian cherts

Radiolarian cherts

Covered

Knobbe-SM-Figure-DR1-https://doi.org/10.1130/G39405.1

430

400

350

300

NO

RIA

N

naitaveSnainualA

RH

AETI

AN

(Mut

toni

/Ken

t/Tai

t 199

8)- c

onod

ont s

ampl

es

Porte

lla G

ebbi

a lm

s.Sc

illato

Fm

78

81101

79 A

79 B80

?

75

111

115

122

105

?

0

11

- con

odon

t sam

ples

0

23

- con

odon

t sam

ples

(Nic

ora,

Maz

za 2

009)

0

16

(Nic

ora,

Rig

o, M

azza

200

7)NR1

NR7NR6NR5NR4NR3NR2

NR53NR52NR51NR50NR49

NR54NR55NR56 NR57

NR58NR59

PG34

PG39PG38PG37PG36PG35

PG40 PG41PG42 PG43PG44 PG45PG46

PG47PG48PG49

PG51PG50

PM 9n

PM 9r

PM 10n

PM 10r

PM 11n

PM 11r

PM 12n

PM 12r

Moc

kina

bid

enta

taM

ocki

na s

lova

kens

is

Mis

ikel

la h

erns

tein

i

Parv

igon

dole

lla a

ndru

sovi

Nor

igon

dole

lla s

tein

berg

ensi

s

Mis

ikel

la p

osth

erns

tein

i

Mis

ikel

la k

ovac

si

Zieg

leric

onus

sp.

Mis

ikel

la u

ltim

aM

isik

ella

koe

ssen

ensi

s

Moc

kina

zap

fei

Moc

kina

aff.

toze

ri

210.80 MPA3n

- FS1

- FS2

- FS3

Newark APTS

230

225

220

215

210

205

200Ma

201.52±0.034E24

E23

E22

E21

E20

E19

E18

E17

E16

E15

E14

E13

E12

E11

E10

E9

E8

E7

E6E5E4E3E2E1

(Blackburn et al., 2013)

Car

nian

Nor

ian

Rha

etia

nH

etta

ngia

n

Page 14: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Nor

ian

Rha

etia

n

Newark APTS

215

210

205

201.52±0.034

Pignola-Abriola(Southern Italy)

0 m

40

50

20

10

30

MPA1n

MPA5r

MPA5n

MPA4rMPA4n

MPA3r

MPA3n

MPA2r

MPA2n

MPA1r

PM12nPM11rPM11n

PM10rPM10n

PM9r

PM9n

PM8r

PM8n

Pizzo Mondello(Italy)

450

350

400

300

250

E24

E23

E22

E21

E20

E19

E18

E17

E16

E15

E14

E13

E12

(Blackburn et al., 2013)

Knobbe-SM-Figure DR2-https://doi.org/10.1130/G39405.1

Page 15: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

pCO

2(ppm

)

1000

2000

3000

4000

5000

6000

7000

200202204206208210212214Time (Ma)

0

A) B)

C) D)

pCO2 RisepCO2 Fall

pCO

2(ppm

)

1000

2000

3000

4000

5000

6000

7000

200202204206208210212214Time (Ma)

0

pCO

2(ppm

)

1000

2000

3000

4000

5000

6000

7000

200202204206208210212214Time (Ma)

0

Sea-

Surfa

ce T

empe

ratu

re (°

C)

Time (Ma)200202204206208210212214

pCO2 RisepCO2 Fall

pCO2 RisepCO2 Fall

Knobbe-SM-Figure DR3-https://doi.org/10.1130/G39405.1

SST RiseSST Fall

-8

8

6

-6

4

-4

2

-2

-0

Page 16: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Sample Conodont Species Mean δ18OphosN 95% CI Temperature  Temperature Anomaly  Section Locality Trotter et al. (2015) Age  Knobbe and Schaller (2017) Age Model Reference Sample Reference 

(‰) (°C)† (°C)† (Ma)

PG47 Mi. posthernsteini 20.39 0.57 21.15 ‐2.70 Portella Gebia Sicani 202.04 202.04 Mazza et al. (2012)

PG46 Mi. posthernsteini 19.99 0.33 22.95 ‐0.90 Portella Gebia Sicani 202.75 202.75 Mazza et al. (2012)

PG43 Mi. posthernsteini 19.99 0.28 22.95 ‐0.90 Portella Gebia Sicani 204.17 204.17 Mazza et al. (2012)

PR1 Mi. posthernsteini 19.86 0.35 23.53 ‐0.31 Pignola‐Abriola Lagonegro 203.46 204.45 Maron et al. (2015) Rigo et al. (2016)

PG42 Mi. posthernsteini 20.19 0.49 22.05 ‐1.80 Portella Gebia Sicani 204.88 204.88 Mazza et al. (2012)

PIG38 Mi. posthernsteini 20.02 0.35 22.81 ‐1.03 Pignola‐Abriola Lagonegro 205.59 205.05 Maron et al. (2015) Rigo et al. (2016)

PG40 Mi. posthernsteini 19.99 0.35 22.95 ‐0.90 Portella Gebia Sicani 205.59 205.59 Mazza et al. (2012)

PIG24 Mi. hernsteini/posthernsteini 20.01 0.16 22.86 ‐0.99 Pignola‐Abriola Lagonegro 209.46 205.70 Maron et al. (2015) Rigo et al. (2016)

PG39 Mi. posthernsteini 19.74 0.33 24.07 0.23 Portella Gebia Sicani 206.30 206.30 Mazza et al. (2012)

PG37 Mi. posthernsteini 19.68 0.32 24.34 0.50 Portella Gebia Sicani 207.01 207.01 Mazza et al. (2012)

KU6 Mi. hersteini 19.26 0.31 26.23 2.39 Sasso di Castalda Lagonegro 209.94 207.60 Maron et al. (2015) Rigo et al. (2012); Giordano et al. (2010)

J18c Mi. n. sp. A 19.77 0.55 23.94 0.09 Costa Imagna Lombardian 207.72 207.02 Muttoni et al. (2010) Muttoni et al. (2010)

LGP14 No. steinbergensis 19.83 0.21 23.67 ‐0.18 Lagonegro section Lagonegro 213.05 208.00 Rigo et al., (2005)

KE6 Pv. Andrusovi 19.06 0.47 27.13 3.29 Sasso di Castalda Lagonegro 210.66 208.08 Rigo et al. (2012); Giordano et al. (2010)

KE3 M. bidentata 19.11 0.22 26.91 3.06 Sasso di Castalda Lagonegro 212.09 209.03 Maron et al. (2015) Rigo et al. (2012); Giordano et al. (2010)

J22a Mi. posthernsteini 19.96 0.37 23.08 ‐0.76 Costa Imagna Lombardian 209.46 207.08 Muttoni et al. (2010) Muttoni et al. (2010)

J270 Mi. hernsteini 20.76 0.44 19.48 ‐4.36 Brumano Lombardian 209.70 209.70 Muttoni et al. (2010)

KE1 Pv. Andrusovi 19.00 0.54 27.40 3.56 Sasso di Castalda Lagonegro 212.57 210.15 Rigo et al. (2012); Giordano et al. (2010)

J279 Mi. hernsteini 20.23 0.45 21.87 ‐1.98 Brumano Lombardian 210.18 210.18 Muttoni et al. (2010)

NR59 Mi. hernsteini 19.83 0.3 23.67 ‐0.18 Portella Gebia Sicani 210.42 210.36 Muttoni et al. (2014) Mazza et al. (2012)

NR58 Mi. hernsteini 19.87 0.35 23.49 ‐0.36 Portella Gebia Sicani 210.89 210.44 Muttoni et al. (2014) Mazza et al. (2012)

NR52 Mi. hernsteini, Pv. andrusovi 20.05 0.35 22.68 ‐1.17 Portella Gebia Sicani 211.13 210.89 Muttoni et al. (2014) Mazza et al. (2012)

NR50 Mi. hernsteini 20.46 0.27 20.83 ‐3.01 Portella Gebia Sicani 211.37 211.07 Muttoni et al. (2014) Mazza et al. (2012)

NR6 Mi. bidentata, Pv. andrusovi 19.89 0.31 23.40 ‐0.45 Portella Gebia Sicani 211.85 211.68 Muttoni et al. (2014) Mazza et al. (2012)

NR4 Mi. bidentata 20.42 0.51 21.01 ‐2.83 Portella Gebia Sicani 212.33 211.79 Muttoni et al. (2014) Mazza et al. (2012)

NR2 Mi. bidentata, Pv. andrusovi 20.55 0.62 20.43 ‐3.42 Portella Gebia Sicani 212.81 212.05 Muttoni et al. (2014) Mazza et al. (2012)

PIG7 M. bidentata, M. slovakensis 19.24 0.21 26.32 2.48 Pignola‐Abriola Lagonegro 211.61 212.23 Maron et al. (2015) Rigo et al. (2016)

LGP6 M. bidentata 18.29 0.24 30.60 6.75 Lagonegro section Lagonegro 213.52 213.52 Rigo et al. (2005)

K201 M. bidentata 18.56 0.38 29.38 5.54 Sasso di Castalda Lagonegro 213.28 213.76 Rigo et al. (2012)

K64 M. bidentata 19.25 0.22 26.28 2.43 Sasso di Castalda Lagonegro 214.00 216.20 Maron et al. (2015) Rigo et al. (2012)

K68 E. serrulata 20.14 0.25 22.27 ‐1.57 Sasso di Castalda Lagonegro 216.19 217.19 Rigo et al. (2012)

PIG0 M. slovakensis 19.00 0.27 27.40 3.56 Pignola‐Abriola Lagonegro 214.96 217.56 Maron et al. (2015) Rigo et al. (2016)

KZ6 E. spiculata 19.99 0.25 22.95 ‐0.90 Sasso di Castalda Lagonegro 217.42 217.82 Rigo et al. (2012)

NA59 E. rigoi 20.66 0.43 19.93 ‐3.91 Pizzo Mondello Sicani 221.87 223.62 Muttoni et al. (2014) Mazza et al. (2012)

GG13 Me. Parvus 20.56 0.2 20.38 ‐3.46 Gianni Grieco Lagonegro 226.00 226.00

GG11 Me. Parvus 19.81 0.24 23.76 ‐0.09 Gianni Grieco Lagonegro 227.00 227.00

P37 Me. Praecommunisti 19.05 0.18 27.18 3.33 Pignola 2 Lagonegro 228.71 228.10 Rigo et al. (2012)

NA27 C. pseudodiebeli 20.69 0.19 19.80 ‐4.05 Pizzo Mondello Sicani 228.53 228.18 Muttoni et al. (2014) Mazza et al. (2012)

P35 Me. Praecommunisti 19.31 0.19 26.01 2.16 Pignola 2 Lagonegro 229.07 228.45 Rigo et al. (2012)

P24 P. noah 18.95 0.14 27.63 3.78 Pignola 2 Lagonegro 231.05 229.71 Rigo et al. (2012)

P14 P. noah 19.16 0.2 26.68 2.84 Pignola 2 Lagonegro 232.31 230.44 Maron et al. (2017) Rigo et al. (2012)

P8 P. tadpole 20.11 0.18 22.41 ‐1.44 Pignola 2 Lagonegro 233.57 231.87 Rigo et al. (2012)

P3C P. praelindae 20.06 0.38 22.63 ‐1.21 Pignola 2 Lagonegro 234.29 232.71 Rigo et al. (2012)

P1 P. polgnathiformis 20.06 0.25 22.63 ‐1.21 Pignola 2 Lagonegro 235.01 233.55 Rigo et al. (2012)

*Samples and data are from Trotter et al. (2015)

†This study

TABLE DR1. LATE TRIASSIC SEA‐SURFACE TEMPERATURE CHANGE*

Page 17: A tight coupling between atmospheric pCO and sea-surface ... · Supplemental Material 1 GSA Data Repository 2018009 A tight coupling between atmospheric pCO2 and sea-surface temperature

Triassic stage t(i) t(f) Δt pCO2(i) pCO2(f) ΔpCO2  T(i) T(f) ΔT  ESS

(Ma) (Ma) (Ma)  (ppm)  (ppm)  (ppm) (°C) (°C) (°C) (°C)

Rhaetian Low 208.04 202.59 5.45 2404 1241 1163 1.49 ‐2.39 3.88 4.07

Norian Low 212.26 210.13 2.13 1328 2419 1091 ‐3.21 0.61 3.82 4.41

Rhaetian Mean 208.04 202.59 5.45 4000 2000 2000 1.49 ‐2.39 3.88 3.88

Norian Mean 212.26 210.13 2.13 2000 4000 2000 ‐3.21 0.61 3.82 3.82

Rhaetian High 208.04 202.59 5.45 5598 2761 2837 1.49 ‐2.39 3.88 3.81

Norian High 212.26 210.13 2.13 2681 5590 2909 ‐3.21 0.61 3.82 3.60

TABLE DR2. LATE TRIASSIC EARTH SYSTEM SENSITIVITY