a topological study of a rankine cycle turbofan engine for use in a super circulation wing...

Upload: valeriu-dragan

Post on 05-Apr-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 A TOPOLOGICAL STUDY OF A RANKINE CYCLE TURBOFAN ENGINE FOR USE IN A SUPER CIRCULATION WING CONFI

    1/4

    ATOPOLOGICALSTUDYOFARANKINECYCLETURBOFANENGINEFORUSEINASUPERCIRCULATIONWINGCONFIGURATIONFORTRANSPORTAIRCRAFT

    ValeriuDRGAN1

    1Correspondingauthor

    POLITEHNICAUniversityBucharest,FacultyofAerospaceEngineering

    Str.GheorghePolizu,nr.1,sector1,011061,Bucharest,Romania

    [email protected]

    Keywords:Rankinecycle,turbofanengine,supercirculation,CoandeffectAbstract.Thepaperdescribesanefforttointegrateahighpowerhighefficiencypropulsionsystemwithinanaircraftstructure.Rankine cycleshavebeenusedasanalternative toBrayton cycles fora long time in theenergy industrydue to theirhigher

    efficiency and low temperature gradient requirements.Using a Rankine cycle topower an aircraft canprovequiteuseful in

    reducingfuelconsumptionandincreasingtheBreguetrangeofanaircraftwhilealsominimizingthepollutantemissions.

    So far, conventionalaircraft configurations couldnot copewith the largeheatexchangers requiredby the close circuitsofa

    Rankinecycle.However,analternativeconfigurationexists:thesupercirculationwing,whichofferstheperspectiveofintegrating

    alargecoolingcircuitonthesupercirculatedsideofthewing,thusprovidingaviableoverallconfiguration.

    Inasupercirculationconfiguration,airfromthefanoftheengineispassedoveralargeportionofthewing,beingdivertedvia

    theCoandeffectandgeneratingadditionalliftboththroughdecreasingthestaticpressureoversaidportionofthewingandbythemomentumof thediverted fluidmass.Thesupercirculatedareacanbemadeuseofby integrationofanadditionalheat

    exchangerforcoolingtheworkfluidslightlysuperheatedmercuryvapors.

    Acasestudyispresentedwithbothschematicsandpreliminarycalculationsthatjustifythesupercirculationconfigurationforthe

    Rankinecycleturbofanaeroengine

    Introduction. Historically, thenuclearaeronauticalpropulsionattempts reliedon twobasic ideas:open circuitandclosed circuitheatingof thecore flowasan

    alternativetoacombustionchamber,Ref[1],[2], [3].Boththesearchitectureswerebasedonderivativesofconventionalturbojetenginesandreliedonhigh

    powernuclearmaterialswhicharegammaradioactive toheattheairflowingthroughtheengine.Anotherimportantaspectofthistypeofpropulsionunitsis

    that theymustwork by the Brayton cyclewhich, is inmany aspects inferior to the Rankine cycle used by sea going types of nuclear turbine propulsors.

    Fundamentallytheproblemhasalwaysbeenthecapacitytocooltheworkingfluidafterexitingthelastturbinestage.

    Thesupercirculationwing(SCW)aircraftofferstheprospectofinstallingcoolingcircuitsdirectlyinthedownwashofthefanflow.Sincethefanflowis

    unheated,itwillbeabletoactasacoolingagentfortheworkingfluid.Anotheradvantagewouldbethetipicalrelativelowwingloadingsofthisconfiguration.A

    comparisonbetweenanAntonovAn74andanAirbusA320canbeseen intable1.TheSCWhasbeentraditionallyusedforSTOLaircraftRef[4].However,it

    couldbeconvertedtonormaltakeoffandlandingbutwithhigherpayloadcapacity.

    Sincethedesiredapplicationisdestinedtocivilianpassengertransport,theuseofgammaemmitingnuclearmaterialsisunacceptable,thereforewe

    mustseekanalternatehighpowerdensitynuclearmaterialthatdoesnotemitharmfulradiationsandrequirelittleornoshielding.Onesuchmaterialcouldbe

    Polonium210, abetaemitting isotopewhichhas apowerdensityof 140 kW/kgRef[5]. The toxicity levelofPo210 is still veryhighhowever it isgenerally

    associatedtoingestionhazardsortoexposureofopenedwounds,inwhichcasethebetaparticleswouldenterthebloodstreamdirectlly.

    Becauseofthelimitedvolumetriccapacityofferedbyanairliner,theworkingfluidwillhavetobeasdenseaspossible.References[6]and[7]describe

    mercuryvaporturbinepowerunits.Thethermalconductivityofmercuryismuchhigherincomparisontootherworkingfluidsencounteredinthepowerplant

    industry, thereforetheheatexchangerswillhavehigherheattransfer ratiospersquaremeterRef[8]. It isalso importanttonote thatsomestateof theart

    waterammoniapowerplantsmanagesimilarperformancesexceptfortheheattransfer ofthatofthemercuryvaporunits,Ref[9].Thetoxicityofmercuryis

    quitehigh, therefore stepsmustbe taken inorder to insure thatno leaksoccuratany stageof the thermomechanicalprocess.Caremustbe takenwhen

    designing theairframeandheatexchangersdue to the fact thatmercury chemicallycorrodesaluminumalloysbycatalyzing itsoxidation,Ref [10].The low

    temperatureheatexchangerscouldbemadeoftitaniumwhichisoneofthefewmetalsthatdonotformamalgams.

    Table 1

    parameter Airbus A320 Antonov An-74

    Wing loading [kg/m2] 778.96 350

    Thrust to weight 0.55 0.829

    Wingspan [m] 34 31

    MTOW [t] 68 34.5

    Minimum air speed [m/sec] 53 30

    Thecase

    sudy.

    ThecurrentcasestudyislookingintothefeasibilityofdesigningaSCWaircraftwithPo140nuclearpowerbymeansofaclosedcircuitmercuryvapor

    Rankinecycle.

  • 7/31/2019 A TOPOLOGICAL STUDY OF A RANKINE CYCLE TURBOFAN ENGINE FOR USE IN A SUPER CIRCULATION WING CONFI

    2/4

    Forestimation,thestudyisbasedonanAirbusA320withCFM565aturbineengines,withthesoledifferencebeingtheconfigurationofthewingand

    nacelle.

    BasedontheavailabledataRef[11],thetotalpowergeneratedbythetwoturbofanenginesoftheaircraft incruise isestimatedatacombined12

    MW.Becausethispowerisgeneratedtroughathermodynamiccycle,thecycleefficiencywillbetakenintoaccountbyEq.(1).

    Thereforetheminimumtotalmass[kg],ofnuclearmaterialwillbe:

    /, (1)

    m=143 kg

    The available cooling aria of the system per engine, estimated for the preliminary geometry is:

    (2)

    A~40m2

    Considering a heat exchange rate od 200 WK/m2, we obtain the temperature gradient:

    350 K

    OneparticularaspectoftheRankinecycleisthatundercertainconditions,i.e.ifthecycletakesplacebeneaththevaporizationcurve,itbehaveslikea

    Carnotcycle. Inour case, thermodynamicefficiencywillbeconsideredmore important than increasing themechanicalworkandhencewewillconsider theCarnotefficiency:

    1

    ~0.6 (3)

    Inothercases,wherethemechanicalworkismoreimportant,theRankinecycleefficiencywillbecalculatedbythemasicenthalpyoftheworkingfluid.

    Designingandoptimizingofthecyclemustkeepinmindthevaporizationcurveofeachworkingfluid.

    Thetopologyofthestudiedconfiguration:

    Fig.1 The flowchart of the desired work fluid circuit within the propulsion unit

    Reheatingisusedateverystatorguidevaneinordertopreventhighlyerosivedropletformation,thisisusedasaformofmultiplesmallsuperheating

    processesthatmaintainthehighefficiencyofthecyclewhileprovidingmaximummechanicalworkinthegivensituation.

    Table 2: Mass comparison of the two propulsion concepts

    Component Nuclear Rankine Turbofan Fossil Fuel Brayton

    Fuel mass for max Brreguet Range [kg] ~143 19500

    Compressor Condenser + Pump Compressor

    Turbine 5 stages austenitic steel 7 stages l superalloy

    Heater+preheater (combustor) Integrated regenerator + 1 spiraled

    superheater-accounted for in fuel mass

    1double annular burner

    Cooler circuit [kg] Nacelle and FGV + wing passive and active

    integrated~70

    - No intercooler-Working fluid mass [kg] ~130 Working fluid is ambient air [130

    kg/sec]

    total ~350 kg 19500 kg

    Pump condenserFanVane

    cooler

    Nacelle

    cooler

    Passivewing

    cooler

    Activewing

    cooler

    Turbineexit

    collector

    Engine

    Superheater

    LP

    Turbine

    Interstage

    superheater

    HP

    Turbine

    Recuperator

  • 7/31/2019 A TOPOLOGICAL STUDY OF A RANKINE CYCLE TURBOFAN ENGINE FOR USE IN A SUPER CIRCULATION WING CONFI

    3/4

    Table 3: Air safety advantages and challenges of the Rankine nuclear propulsion

    Fig.1 The flow of mercury vapor inside the engine

    1.Mercury Vapor Turbine2.Fan

    3.Fan stator with integrated cooler

    4.Fan Duct with spiral cooler

    5.Regenerator

    6.Primary spiral superheater

    7.Turbine vane integrated

    superheater

    8.Supercirculated Wing

    active cooler

    9.Supercirculated Wing

    passive cooler

    10.Coand flap

    11.collecting chamber

    12.Condenser13. Liquid mercury pump

    Fig.2 Full schematics of the Rankine Nuclear Turbofan integrated

    in a SCW airframe

    Conclusions. 1.Intermsofnuclearpoweredpropulsion it ismuchmore economically and technically feasible to use turbofansinsteadofusingairheatingturbojets.

    2.Rankinecycles

    offer

    great

    perspective

    in

    terms

    of

    thermal efficiency and in lowering the manufacturing andmaintenancetechnologycosts` 3.In terms of working fluids, mercury vapors offergreatercompactnessdue tothehigherheattransfercapabilityand also the higher density which decreases the storagevolume.

    4.Aluminium alloys should be replaced fromstructural components with eyther other metals or withcompositematerials,withspecialattentiongiventotheeffectsofheatemanatedbythepoloniumsource

    5.The alpha nuclear power source is a viablealternative to conventional fuel foruse inairlinersdue to thelow toxicity levels and thehighpoweroutputs, although costandaccessibilityofthematerialarestillveryimportantissues.

    advantages conceirns

    Very high thermodynamic efficiency Polonium 210 is expensive

    Unlimited range / loiter time Nuclear materials need special storage/handling

    Less prone to fire in event of crash Very toxic to the environment if crashed

    Lower minimum air speed Mercury vapors are toxic to humans if inhaled

    Lower Chemical pollution levels

    Lower noise

    Shorter take off runs

    ai

    R

  • 7/31/2019 A TOPOLOGICAL STUDY OF A RANKINE CYCLE TURBOFAN ENGINE FOR USE IN A SUPER CIRCULATION WING CONFI

    4/4

    6.Thehighliftprovidedbythesupercirculationwingconfigurationalsoofferstheperspectiveofmoreamplecoolingcircuitswhich,inturnincreases

    theefficiencyoftheRankinecycleused

    7.Nuclearturbofantechnologiescouldopentheperspectiveof largesupersonicairliners ifsufficientreheatingcouldbeobtainedbybethanuclear

    means.

    Acknoledgements.ToProf.Dr.Ing.VirgilStanciuformentoringandguidance

    TheworkhasbeenfundedbytheSectoralOperationalProgrammeHumanResourcesDevelopment20072013oftheRomanianMinistryofLabour,Familyand

    SocialProtectionthroughtheFinancialAgreementsPOSDRU/88/1.5/S/60203.

    References[1]RaulColonFlyingonNuclear,TheAmericanEfforttoBuiltaNuclearPoweredBomber

    [2]JimWinchesterConceptAircraft:Prototypes,XPlanes,andExperimentalAircraft;(ThunderBayPress2005,ISBN13:9781592234806)

    [3]AircraftNuclearPropulsionProgram;(MetalProgress1959ISBN13:9781154622966)

    [4]DeLaMontanya,J.B.,Marshall,D.D.,CirculationControlandItsApplicationtoExtremeShortTakeOffandLandingVehicles,(AIAA20071404,January2007)

    [5]Polonium(ArgonneNationalLaboratory,EVSHumanHealthFactSheet,August2005)

    [6] LuzlrenceW. Gertsma and DavidW.Medwid DESIGN AND FABRICATION OF A COUNTERFLOW DOUBLECONTAINMENT TANTALUM STAINLESSSTEEL

    MERCURYBOILER(LewisResearchCenterCleveland,OhioNASA TN D5092)

    [7]Jones,LloydMercuryvaporturbine(UnitedStatesPatent1804694T.05/12/1931)

    [8]Hammond,C.R(TheElements,inHandbookofChemistryandPhysics81stedition.CRCpress.ISBN08493048142000)..

    [9]http://www.aqpl43.dsl.pipex.com/MUSEUM/POWER/mercury/mercury.htm

    [10]Vargel,C.;Jacques,M.;Schmidt,M.P.(CorrosionofAluminium.Elsevier.p.158.ISBN20049780080444956.2004).

    [11]www.cfm56.com/