a two higgs doublet model with minimal flavor violation at

56
· A Two Higgs Doublet Model with Minimal Flavor Violation at the LHC Wolfgang Altmannshofer GGI Workshop Understanding the TeV Scale Through LHC Data, Dark Matter, and Other Experiments November 8, 2012 Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 1 / 40

Upload: others

Post on 19-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

·

A Two Higgs Doublet Modelwith Minimal Flavor Violation at the LHC

Wolfgang Altmannshofer

GGI Workshop

Understanding the TeV Scale Through LHC Data,Dark Matter, and Other Experiments

November 8, 2012

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 1 / 40

A SM-like Higgs at the LHC ...

ATLASPhys. Lett. B 716, 1 (2012)

CMSPhys. Lett. B 716, 30 (2012)

)µSignal strength (

-1 0 1

Combined

4l→ (*) ZZ→H

γγ →H

νlν l→ (*) WW→H

ττ →H

bb→W,Z H

-1Ldt = 4.6 - 4.8 fb∫ = 7 TeV: s-1Ldt = 5.8 - 5.9 fb∫ = 8 TeV: s

-1Ldt = 4.8 fb∫ = 7 TeV: s-1Ldt = 5.8 fb∫ = 8 TeV: s

-1Ldt = 4.8 fb∫ = 7 TeV: s-1Ldt = 5.9 fb∫ = 8 TeV: s

-1Ldt = 4.7 fb∫ = 7 TeV: s-1Ldt = 5.8 fb∫ = 8 TeV: s

-1Ldt = 4.7 fb∫ = 7 TeV: s

-1Ldt = 4.6-4.7 fb∫ = 7 TeV: s

= 126.0 GeVHm

0.3± = 1.4 µ

ATLAS 2011 - 2012

SMσ/σBest fit -1 0 1 2 3

bb→H

ττ →H

WW→H

ZZ→H

γγ →H

CMS -1 = 8 TeV, L = 5.3 fbs -1 = 7 TeV, L = 5.1 fbs

= 125.5 GeVH m

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 2 / 40

... and the Tevatron?

CDF + D0arXiv:1207.0449 [hep-ex]

SMσ/σBest Fit 0 1 2 3 4 5 6 7

b b→H

γγ →H

-W+ W→H

2 = 125 GeV/cHm

Combined (68%)

Single Channel

Tevatron Run II Preliminary-1 10.0 fb≤L

June 2012

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 3 / 40

Outline

WA, Stefania Gori, Graham KribsarXiv:1210.2465 [hep-ph]

——————————————————————————–

1 A Two Higgs Doublet Model with Minimal Flavor Violation

2 The Light Higgs Boson at the LHC

3 The Heavy Higgs at the LHC

4 Impact of the Charged Higgs Boson

5 Summary

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 4 / 40

·

A Two Higgs Doublet Modelwith Minimal Flavor Violation

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 5 / 40

A Simple Extension of the SM Higgs Sector

◮ two Higgs doublets H1 and H2 with hypercharges -1/2 and +1/2

H2 =

(

H+

21√2(vsβ + h2 + ia2)

)

, H1 =

( 1√2(vcβ + h1 + ia1)

H−1

)

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 6 / 40

A Simple Extension of the SM Higgs Sector

◮ two Higgs doublets H1 and H2 with hypercharges -1/2 and +1/2

H2 =

(

H+

21√2(vsβ + h2 + ia2)

)

, H1 =

( 1√2(vcβ + h1 + ia1)

H−1

)

◮ 5 physical degrees of freedom: h and H, A, and H±

assuming CP conservation:

(

)

=

(

sβ −cβcβ sβ

)(

H±2

H±1

)

(

hH

)

=

(

cα −sαsα cα

)(

h2

h1

)

,

(

GA

)

=

(

sβ −cβcβ sβ

)(

a2

a1

)

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 6 / 40

Generic Couplings to Fermions

L ⊃ (yu)ik H2QiUk + (yu)ik H†1QiUk

+(yd)ik H1QiDk + (yd )ik H†2QiDk

+(yℓ)ik H1LiEk + (yℓ)ik H†2 LiEk + h.c.

◮ for generic couplings y and y ,quark masses and Higgs couplings are not aligned, e.g.

(md )ik =v√2

(

cβ(yd )ik+sβ(yd )ik

)

, (gAd )ik =

1√2

(

sβ(yd)ik−cβ(yd)ik

)

→ tree level FCNCs

→ incredible strong constraintsfrom meson mixing

K K

d

d

s

s

A,H

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 7 / 40

2HDM type I, II, III, and IV

◮ Natural Flavor Conservation: no tree level FCNCs if all types of fermionscouple only to one Higgs doublet (Glashow, Weinberg ’77)

◮ Can be enforced by:(softly broken) continuous symmetries (Peccei-Quinn)or discrete symmetries (Z2)

◮ 4 possibilities: (yu)ik H2QiUk + (yd )ik H†2 Qi Dk + (yℓ)ik H†

2 LiEk

type I type II type III type IV

up quarks H2 H2 H2 H2

down quarks H2 H1 H2 H1

leptons H2 H1 H1 H2

many recent studies of type I-IV in light of LHC data:

Ferreira, Santos, Sher, Silva ’11; Blum, D’Agnolo ’12; Azatov, Chang, Craig, Galloway ’12;

Craig, Thomas ’12; Alves, Fox, Weiner ’12; ...

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 8 / 40

2HDM type I, II, III, and IV

◮ Natural Flavor Conservation: no tree level FCNCs if all types of fermionscouple only to one Higgs doublet (Glashow, Weinberg ’77)

◮ Can be enforced by:(softly broken) continuous symmetries (Peccei-Quinn)or discrete symmetries (Z2)

◮ 4 possibilities: (yu)ik H2QiUk + (yd )ik H1QiDk + (yℓ)ik H1LiEk

type I type II type III type IV

up quarks H2 H2 H2 H2

down quarks H2 H1 H2 H1

leptons H2 H1 H1 H2

many recent studies of type I-IV in light of LHC data:

Ferreira, Santos, Sher, Silva ’11; Blum, D’Agnolo ’12; Azatov, Chang, Craig, Galloway ’12;

Craig, Thomas ’12; Alves, Fox, Weiner ’12; ...

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 8 / 40

2HDM type I, II, III, and IV

◮ Natural Flavor Conservation: no tree level FCNCs if all types of fermionscouple only to one Higgs doublet (Glashow, Weinberg ’77)

◮ Can be enforced by:(softly broken) continuous symmetries (Peccei-Quinn)or discrete symmetries (Z2)

◮ 4 possibilities: (yu)ik H2Qi Uk + (yd )ik H†2 Qi Dk + (yℓ)ik H1LiEk

type I type II type III type IV

up quarks H2 H2 H2 H2

down quarks H2 H1 H2 H1

leptons H2 H1 H1 H2

many recent studies of type I-IV in light of LHC data:

Ferreira, Santos, Sher, Silva ’11; Blum, D’Agnolo ’12; Azatov, Chang, Craig, Galloway ’12;

Craig, Thomas ’12; Alves, Fox, Weiner ’12; ...

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 8 / 40

2HDM type I, II, III, and IV

◮ Natural Flavor Conservation: no tree level FCNCs if all types of fermionscouple only to one Higgs doublet (Glashow, Weinberg ’77)

◮ Can be enforced by:(softly broken) continuous symmetries (Peccei-Quinn)or discrete symmetries (Z2)

◮ 4 possibilities: (yu)ik H2Qi Uk + (yd)ik H1Qi Dk + (yℓ)ik H†2 LiEk

type I type II type III type IV

up quarks H2 H2 H2 H2

down quarks H2 H1 H2 H1

leptons H2 H1 H1 H2

. .many recent studies of type I-IV in light of LHC data:

Ferreira, Santos, Sher, Silva ’11; Blum, D’Agnolo ’12; Azatov, Chang, Craig, Galloway ’12;

Craig, Thomas ’12; Alves, Fox, Weiner ’12; ...

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 8 / 40

Another Powerful Protection Mechanism

◮ largest symmetry group that commutes with the SM gauge group

GF = SU(3)Q ⊗ SU(3)U ⊗ SU(3)D ⊗ SU(3)L ⊗ SU(3)E ⊗ U(1)5

Minimal Flavor Violation(Chivukula, Georgi ’87; Hall, Randall ’90; D’Ambrosio et al ’02)

◮ the SM Yukawa couplings are the only spurions that break GF

yu = 3Q × 3U , yd = 3Q × 3D , yℓ = 3L × 3E

→ the “wrong” Higgs couplings y are functions of the Yukawas y

→ FCNCs are suppressed by the same small CKM factors as in the SM

→ protection mechanism holds beyond tree level

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 9 / 40

MFV Couplings to Fermions

◮ expansion of the “wrong” Higgs couplings

yu = ǫuyu + ǫ′uyuy†uyu + ǫ′′uydy†

dyu + . . .

yd = ǫdyd + ǫ′dydy†dyd + ǫ′′dyuy†

uyd + . . .

yℓ = ǫℓyℓ + ǫ′ℓyℓy†ℓ yℓ + . . .

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 10 / 40

MFV Couplings to Fermions

◮ expansion of the “wrong” Higgs couplings

yu = ǫuyu + ǫ′uyuy†uyu + ǫ′′uydy†

dyu + . . .

yd = ǫdyd + ǫ′dydy†dyd + ǫ′′dyuy†

uyd + . . .

yℓ = ǫℓyℓ + ǫ′ℓyℓy†ℓ yℓ + . . .

◮ simplified setup for studying Higgsphenomenology:

→ drop higher order terms

yu = ǫuyu

yd = ǫdyd

yℓ = ǫℓyℓ

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 10 / 40

MFV Couplings to Fermions

◮ expansion of the “wrong” Higgs couplings

yu = ǫuyu + ǫ′uyuy†uyu + ǫ′′uydy†

dyu + . . .

yd = ǫdyd + ǫ′dydy†dyd + ǫ′′dyuy†

uyd + . . .

yℓ = ǫℓyℓ + ǫ′ℓyℓy†ℓ yℓ + . . .

◮ simplified setup for studying Higgsphenomenology:

→ drop higher order terms

→ consider only real ǫ

yu = ǫuyu

yd = ǫdyd

yℓ = ǫℓyℓ

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 10 / 40

MFV Couplings to Fermions

◮ expansion of the “wrong” Higgs couplings

yu = ǫuyu + ǫ′uyuy†uyu + ǫ′′uydy†

dyu + . . .

yd = ǫdyd + ǫ′dydy†dyd + ǫ′′dyuy†

uyd + . . .

yℓ = ǫℓyℓ + ǫ′ℓyℓy†ℓ yℓ + . . .

◮ simplified setup for studying Higgsphenomenology:

→ drop higher order terms

→ consider only real ǫ

→ choose Higgs basis such that ǫu = 0(without loss of generality)

yu = 0

yd = ǫdyd

yℓ = ǫℓyℓ

◮ “aligned 2HDM” (see also Pich, Tuzon ’09; Bai, Barger, Everett, Shaughnessy ’12)

→ Higgs couplings are determined by 4 parameters: tanβ, α, ǫd , and ǫℓ

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 10 / 40

Higgs Couplings

ξ parametrize the deviations from the SM Yukawas / gauge couplings

WW/ZZ top bottom tau

hξh

V = sβ−αξh

u =cαsβ

ξhd =

−sα + ǫdcαcβ + ǫdsβ

ξhℓ =

−sα + ǫℓcαcβ + ǫℓsβ

HξH

V = cβ−αξH

u =sαsβ

ξHd =

cα + ǫdsαcβ + ǫdsβ

ξHℓ =

cα + ǫℓsαcβ + ǫℓsβ

A, H±ξA,±

V = 0 ξA,±u =

1tβ

ξA,±d =

tβ − ǫd

1 + ǫd tβξA,±ℓ =

tβ − ǫℓ1 + ǫℓtβ

→ all four light Higgs couplings are independent ...

... as long as one is not in the decoupling regime

α = β − π/2 + O(v2/M2A)

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 11 / 40

MFV Generalizes Types I - IV

ǫd → ∞ , ǫℓ → ∞ (Type I)

ǫd → 0 , ǫℓ → 0 (Type II)

ǫd → ∞ , ǫℓ → 0 (Type III)

ǫd → 0 , ǫℓ → ∞ (Type IV)

◮ ǫ parameter allow to interpolate continuously between the type I - IV

◮ interesting regions of parameter space (never reached by type I - IV)

ǫi ∼ −1/ tan β , ǫi ∼ tanα

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 12 / 40

·

The Light Higgs h

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 13 / 40

Higgs Signals

σ(pp → h → XSM) = σ(pp → h) × Γ(h → XSM)

Γtot

[GeV] HM80 100 200 300 400 1000

H+

X)

[pb]

→(p

p σ

-210

-110

1

10

210= 8 TeVs

LH

C H

IGG

S X

S W

G 2

012

H (NNLO+NNLL QCD + NLO EW)

→pp

qqH (NNLO QCD + NLO EW)

→pp

WH (NNLO QCD + NLO EW)

→pp

ZH (NNLO QCD +NLO EW)

→pp

ttH (NLO QCD)

→pp

[GeV]HM100 200 300 400 500 1000

Hig

gs B

R +

Tot

al U

ncer

t

-310

-210

-110

1

LH

C H

IGG

S X

S W

G 2

011

bb

ττ

cc

ttgg

γγ γZ

WW

ZZ

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 14 / 40

Higgs Production

◮ gluon-gluon fusion(dominated by top loop)

σ(gg → h)σ(gg → h)SM

≃ (ξht )

2

◮ production inassociation with vector bosons

σ(Wh)σ(Wh)SM

≃σ(Zh)

σ(Zh)SM≃ (ξh

V )2

◮ Vector boson fusion

σ(VBF )

σ(VBF )SM≃ (ξh

V )2

◮ production inassociation with tops

σ(tth)σ(tth)SM

≃ (ξht )

2

production cross sections depend only on“ordinary” type I - IV parameter tanβ and α

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 15 / 40

Higgs Decays

◮ decay widths into gauge bosons

Γ(h → VV )

Γ(h → VV )I-IV≃ Γ(h → gg)

Γ(h → gg)I-IV≃ Γ(h → γγ)

Γ(h → γγ)I-IV≃ 1

◮ decay widths into bb and ττ

Γ(h → bb)Γ(h → bb)II

≃(

1 − ǫd/tα1 + ǫd tβ

)2

,Γ(h → ττ)

Γ(h → ττ)II≃

(

1 − ǫℓ/tα1 + ǫℓtβ

)2

→ can be modified independently

the 2HDM type MFV is a veryflexible framework to interpret Higgs data

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 16 / 40

Fit to the Data

◮ result of a simple χ2 fit(imposing tanβ > 0.5):

two regions in the ξht – ξh

Vplane give an equally gooddescription of the data

◮ concentrate on ξht > 0

in the following

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 17 / 40

Fit to the Data

◮ also two regionsin the ξh

t – ξhb plane

◮ sign of the bottom couplingcannot be resolved with lightHiggs data

◮ in orange: region accessiblein the type II model

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 18 / 40

Fit to the Data

◮ small ξhτ coupling

is preferred due toCMS h → ττ data

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 19 / 40

Type II vs Type MFV vs Data

main differenceswith respect to type II:

1) strongly reducedh → ττ possible

2) strongly enhancedVBF h → γγ possible

⋆ best fit point

ξhV = 0.99 , ξh

t = 0.79

ξhb = ±0.73 , ξh

τ = 0

© strongly enhanced VBF h → γγ

ξhV = 0.97 , ξh

t = 0.49

ξhb = ±0.33 , ξh

τ = 0

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 20 / 40

Correlations

◮ strong enhancement of VBFh → γγ impliesupper bound on h → bb

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 21 / 40

Correlations

◮ strong enhancement of VBFh → γγ impliesupper bound on h → bb

◮ enhancement of inclusiveh → γγ impliesupper bound on h → bb

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 21 / 40

Correlations

◮ strong enhancement of VBFh → γγ impliesupper bound on h → bb

◮ enhancement of inclusiveh → γγ impliesupper bound on h → bb

◮ enhancement of inclusiveh → γγ implieslower bound on h → WW

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 21 / 40

“The Quasi Decoupling Limit”

◮ best fit values for the light Higgs couplings

ξhV = 0.99 , ξh

t = 0.79 , ξhb = ±0.73 , ξh

τ = 0

◮ couplings to gauge bosons is very SM-like

ξhV ≃ 1 −

x2

2

ξhu ≃

(

1 −x2

2

)

+ xξAu

ξhd,ℓ ≃

(

1 −x2

2

)

− xξAd,ℓ

ξHV ≃ x

ξHu ≃ −ξA

u

(

1 −x2

2

)

+ x

ξHd,ℓ ≃ ξA

d,ℓ

(

1 −x2

2

)

+ x

(see also Alves, Fox, Weiner ’12)

“Quasi Decoupling Limit”

α = β − π/2 + x , x ≪ 1

couplings of the light Higgs hto fermions can be modifiedsubstantially even for small x

⇔ couplings of the pseudoscalar Ato fermions are enhanced

⇒ couplings of the heavy Higgs Hto fermions are enhancedand “A-like”

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 22 / 40

·

The Heavy Higgs H

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 23 / 40

Higgs Coupling Sum Rules

1 + (ξAu )

2 = (ξhu)

2 + (ξHu )

2 = 1 +1t2β

1 + (ξAd )

2 = (ξhd )

2 + (ξHd )

2 =(

1 + t2β

) 1 + ǫ2d

(1 + ǫd tβ)2

1 + (ξAℓ )

2 = (ξhℓ )

2 + (ξHℓ )

2 =(

1 + t2β

) 1 + ǫ2ℓ

(1 + ǫℓtβ)2

1 = (ξhV )

2 + (ξHV )

2

Good prospects to probe the heavy scalarif the light Higgs is not exactly SM-like

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 24 / 40

Constraints from Higgs Searches

[GeV]Hm

100 200 300 400 500 600

SM

σ/σ95

% C

L Li

mit

on

1

10

210Exp. Comb.Obs. Comb.

γγ →Exp. H γγ →Obs. H

bb→Exp. H bb→Obs. H

llll→ ZZ* →Exp. H

llll→ ZZ* →Obs. H νν ll→ ZZ* →Exp. H νν ll→ ZZ* →Obs. H

llqq→ ZZ* →Exp. H llqq→ ZZ* →Obs. H

νlν l→ WW* →Exp. H

νlν l→ WW* →Obs. H qqν l→ WW* →Exp. H qqν l→ WW* →Obs. H

ττ →Exp. H ττ →Obs. H

ATLAS Preliminary 2011 + 2012 Data = 7 TeVs, -1 L dt ~ 4.6-4.8 fb∫ = 8 TeVs, -1 L dt ~ 5.8-5.9 fb∫

◮ SM Higgs searches in h → WW/ZZ

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 25 / 40

Constraints from Higgs Searches

[GeV]Hm

100 200 300 400 500 600

SM

σ/σ95

% C

L Li

mit

on

1

10

210Exp. Comb.Obs. Comb.

γγ →Exp. H γγ →Obs. H

bb→Exp. H bb→Obs. H

llll→ ZZ* →Exp. H

llll→ ZZ* →Obs. H νν ll→ ZZ* →Exp. H νν ll→ ZZ* →Obs. H

llqq→ ZZ* →Exp. H llqq→ ZZ* →Obs. H

νlν l→ WW* →Exp. H

νlν l→ WW* →Obs. H qqν l→ WW* →Exp. H qqν l→ WW* →Obs. H

ττ →Exp. H ττ →Obs. H

ATLAS Preliminary 2011 + 2012 Data = 7 TeVs, -1 L dt ~ 4.6-4.8 fb∫ = 8 TeVs, -1 L dt ~ 5.8-5.9 fb∫

◮ SM Higgs searches in h → WW/ZZ

◮ MSSM Higgs searches in H/A → bb/ττ

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 25 / 40

Allowed Parameter Space

red: excluded at 3σ

light red: excluded at 2σ

◮ large gluon gluon fusionproduction cross section of Hfor small tanβ

◮ sizable branching ratioH → WW/ZZ even for tinydeviations of ξh

V from 1

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 26 / 40

Allowed Parameter Space

red: excluded at 3σ

light red: excluded at 2σ

◮ large gluon gluon fusionproduction cross section of Hfor small tanβ

◮ sizable branching ratioH → WW/ZZ even for tinydeviations of ξh

V from 1

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 26 / 40

Allowed Parameter Space

◮ The solution with negative top coupling is excluded up to MH < 600 GeVdue to H → WW/ZZ searches

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 26 / 40

Predictions for H in the Quasi Decoupling Regime ∗

ZZ®4l ZZ®llΝΝ

ΤΤ

WW®lΝlΝ

500200 300150

0.1

1

10

MH HGeVL

Σex

cl�Σ

H

tanΒ = 0.78 , Α = -1.05 , Εb = -8.3 , Εl = -1.74

◮ best fit value with ξhb > 0

ξhV = 0.99 , ξh

t = 0.79 , ξhb = +0.73 , ξh

τ = 0

⇒ ξHV = 0.14 , ξH

t = 1.36 , ξHb = −1.78 , ξH

τ = −7.1

∗ we do not consider sizable H → hh rates

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 27 / 40

Predictions for H in the Quasi Decoupling Regime ∗

ZZ®4lZZ®llΝΝ

bb

ΤΤ

WW®lΝlΝ

500200 300150

0.1

1

10

MH HGeVL

Σex

cl�Σ

H

tanΒ = 0.78 , Α = -1.05 , Εb = -1.52 , Εl = -1.74

◮ best fit value with ξhb < 0

ξhV = 0.99 , ξh

t = 0.79 , ξhb = −0.73 , ξh

τ = 0

⇒ ξHV = 0.14 , ξH

t = 1.36 , ξHb = −12.4 , ξH

τ = −7.1

∗ we do not consider sizable H → hh rates

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 28 / 40

Predictions for H in the Quasi Decoupling Regime ∗

ZZ®4lZZ®llΝΝ

bb

ΤΤ

WW®lΝlΝ

500200 300150

0.1

1

10

MH HGeVL

Σex

cl�Σ

H

tanΒ = 0.78 , Α = -1.05 , Εb = -1.52 , Εl = -4.4

◮ only 50% suppression of h → τ+τ−

ξhV = 0.99 , ξh

t = 0.79 , ξhb = −0.73 , ξh

τ = 0.6

⇒ ξHV = 0.14 , ξH

t = 1.36 , ξHb = −12.4 , ξH

τ = −2.2

∗ we do not consider sizable H → hh rates

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 29 / 40

Two light Higgs bosons?

two Higgses atLHC and Tevatron:

Mh = 125GeV, MH = 135GeV(see also Belanger et al. ’12)

◮ include H at 135 GeVdirectly in the fit

◮ signals from the2 Higgs bosons add upin bb, ττ and WW

◮ second region with ξht < 0 is

automatically excluded

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 30 / 40

Two light Higgs bosons?

◮ degeneracy betweenpositive and negativebottom couplings to lighterHiggs is broken

◮ negative ξhb is preferred

because of larger ξHb

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 31 / 40

Two light Higgs bosons?

◮ coupling of lighter Higgs totaus is still suppressed

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 32 / 40

Two light Higgs bosons vs Data

◮ h/H → bb can beslightly enhanced

◮ h/H → ττ cannot beswitched off completely

◮ difficult to see H in thehigh resolution channels:H → γγ/ZZ = few% × SM signal

best fit couplings of h

ξhV = 0.85 , ξh

t = 0.77

ξhb = −0.52 , ξh

τ = 0.16

best fit couplings of H

ξHV = 0.53 , ξH

t = 0.66

ξHb = −2.7 , ξH

τ = −1.6

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 33 / 40

·

The Charged Higgs Boson

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 34 / 40

Possible Impact of the Charged Higgs on h → γγ

0.1 0.4 0.6 0.8 0.9

0.95

1

1.05

1.11.21.41.82.5

100 150 200 250 300-3

-2

-1

0

1

2

3

MH± HGeVL

Λh

(in the plot ξht = ξh

V = 1)

◮ charged Higgs loops inh → γγ

Γ(h → γγ) ≃ α2m3h

256π3

1v2×

×∣

ξhV A1(xW ) +

43ξh

uA1/2(xt )

+λhH±H±v2

2M2H±

A0(xH±)

2

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 35 / 40

Constraints from Vacuum Stability

◮ coupling with light Higgs determined by quartic couplings

λhH±H± = −λ1sαs2βcβ + λ2cαc2

βsβ

+λ3(cαs3β − sαc3

β) + λ4sβ−α + λ5sβcβcα+β

+λ6(cα+βs2β + 2sβsαc2

β) + λ7(cα+βc2β + 2cβcαs2

β)

→ λ3 + λ4 for large tan β and α = β − π/2

◮ necessary conditions for vacuum stability

λ1, λ2 > 0 , λ3 > −√

λ1λ2

λ3 − |λ5| > −√

λ1λ2

λ1 + λ2

2+ λ3 + λ5 − 2|λ6 + λ7| > 0

◮ do not exclude large negative λhH±H±

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 36 / 40

Constraints from Top Decays and Flavor Observables

The case of 2HDM type II

◮ tree level charged Higgscontributions to B → τν

BR(B → τν)

BR(B → τν)SM=

(

1 −m2

B

M2H±

t2β

)2

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 37 / 40

Constraints from Top Decays and Flavor Observables

The case of 2HDM type II

◮ tree level charged Higgscontributions to B → τν

BR(B → τν)

BR(B → τν)SM=

(

1 −m2

B

M2H±

t2β

)2

◮ top decayst → bH±, H± → τν/cs

H+ t(

mt

v1tβ

PL +mb

vtβPR

)

b

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 37 / 40

Constraints from Top Decays and Flavor Observables

The case of 2HDM type II

◮ tree level charged Higgscontributions to B → τν

BR(B → τν)

BR(B → τν)SM=

(

1 −m2

B

M2H±

t2β

)2

◮ top decayst → bH±, H± → τν/cs

H+ t(

mt

v1tβ

PL +mb

vtβPR

)

b

◮ loop induced FCNCs: b → sγ

MH+ & 380 GeV

(Herrmann, Misiak, Steinhauser ’12)

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 37 / 40

Constraints from Top Decays and Flavor Observables

The case of 2HDM type MFV

◮ loop induced FCNCs likeb → sγ depend strongly onhigher order terms in theYukawa expansion→ independent of→ Higgs collider pheno

◮ couplings to tR and bR becomeindependent

◮ parameter space opens upconsiderably

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 38 / 40

Summary

◮ the 2HDM type MFV generalizes the 2HDMs type I - IV

◮ it is a flexible framework to interpret Higgs data:light Higgs couplings to W/Z bosons, top, bottom and taucan be modified independently

◮ prospects for heavy Higgs searches are excellentas long as the light Higgs is not exactly SM like

→ keep searching both in SM and MSSM search channels

◮ a light charged Higgs can be made compatible with all constraints andcan enhance (or suppress...) h → γγ

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 39 / 40

·

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 40 / 40

·

Back Up

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 / back-up

Most General Higgs Potential

V = m2H1

H†1H1 + m2

H2H†

2H2

+λ1

2(H†

1H1)2 +

λ2

2(H†

2H2)2

+λ3(H†1H1)(H

†2H2) + λ4(H

†2H1)(H

†1H2)

+(

Bµ(H2H1) +λ5

2(H2H1)

2

−λ6(H2H1)H†1H1 − λ7(H2H1)H

†2H2 + h.c.

)

Wolfgang Altmannshofer (Fermilab) 2HDM with MFV @ LHC Nov. 8, 2012 1 / back-up