a users viewpoint: absorption spectroscopy at a...
Embed Size (px)
TRANSCRIPT
-
A users viewpoint: absorption spectroscopy at a synchrotron
Frithjof Nolting
-
Bottom layer “pinned”Hard layer orExchange coupling
Top layer“free” can be switched
Ferromagnet
Ferromagnet
Antiferromagnet
(1) (0)
MRAMHard disk head
Magnetic data storage and recording
Low resistance high resistance
GMR Element
-
FM
AFM
Interface
- Different models for AFM/FM coupling exist.
- Different assumptions on AFM structure lead to complete different results.
- Spin arrangement at the interface is important
•High Spatial Resolution
•Elemental Sensitivity
•Ferromagnetic Contrast
•Antiferromagnetic Contrast
•Surface/Interface Sensitivity
How?
X-ray absorption spectroscopy (XAS) with spatial resolutionPhotoemission Electron Microscope (PEEM)
-
Photoemission Electron Microscope
I(nA)
hν
Energy
EF
~~
hν(x-ray)
core level
valenceband
2p 3/22p1/2
Magneticlenses e-
16°
analyzer
20 kVX-rays
Sensitive to:• elemental composition• chemistry• structural parameters• electronic structure• magnetic properties
ELMITEC GmbH
-
Magnetic microscopy
S
E
XMCD (X-ray Magnetic Circular Dichroism)
XMLD (X-ray Magnetic Linear Dichroism)
705 710 715 720 725 730
TEY
(a.u
.)
Photon energy (eV)
720 722 724 726
BA
LaFeO3
775 780 785 790 795 800
L2L3
Photon energy (eV)
TE
Y (a
.u.)
Co
5 µm
5 µm
J. Stöhr et al. Science 1993 A. Scholl et al. Science 2000 F. Nolting et al. Nature 2000
-
SIM Beamline Layout
UndulatorT. Schmidt
• 2 Elliptical undulators• Pure permanent magnet• 95eV < hν < 2000eV• >1019 photons/s/mrad2/mm2/400mA• 100 % circular polarization
[125 - 900 eV]reduced on higher harmonics
• Hor. & vert. linear polar.
OpticsU. Flechsig
• Plane grating monochromator
• E/∆E > 8000•
-
705 710 715 720 725
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
Inte
nsity
(a.u
.)
Photon energy (eV)
reference signal sample signal
705 710 715 720 7250.78
0.80
0.82
0.84
0.86
0.88
Inte
nsity
(a.u
.)
Photon energy (eV)
normalized signal
TEY
Reference signal Sample signal
Magnet
Sample= Norm
Reference
Moving gap and monochromator, stop, measure (1s – 1minute), moving …
How do we measure
-
710 720-0.0020.0000.0020.0040.006
Diff
. [a.
u.]
Photon Energy [eV]
difference0.78
0.80
0.82
0.84
0.86
0.88
1 %
Inte
nsity
[a.u
.]
circular plus circuls minus
How do we measure
•Change polarization and repeat
•Take difference of spectra
Absorption spectrum requires frequent moving of gap and shiftmust not effect other beamlines
transparent!
-
switching by moving phase
switching by moving the gaptuned detuned
move up 56 mm
move 2 mm
move 0 mm
detuned tuned
circ plus circ minus
chopper
120 s
1s - 8 s
100 Hz
Modes for switching the polarization
switching by using a chopper
-
Alignment of IDs - Horizontal1. Horizontal overlap at Frontend
ID1
ID2
ID2Asymmetric bump
2D Frontend scan
Closed bump using chicane magnets
2. Horizontal overlap at focus of experiment ID2In
tens
ity
Horizontal position
-
Alignment of IDs - Vertical3. Vertical (energy) overlap at focus of experiment
ID1
ID2
not yet finished !
Photon energy
Inte
nsity
Inte
nsity
Inte
nsity ID2
Absorption spectrumschematic
778.3 eV
source mono Exit slit
-
Beam variation - Noise
horizontal movement intensity variationXAS normalization reduces it by a factor of 10-100PEEM no normalization
days no problemhours no problemsec - minutes badmili seconds ok
vertical movement energy variationno normalization!
days no problemhours badseconds badmili seconds ok
10 µm about 2%
10 µm about 10 meV
-
700 704 708 712 716 720 7240.78
0.80
0.82
0.84
0.86
0.88
Minus Plus
Inte
nsity
(a.u
.)
Photon Energy [eV]
-0.004-0.003-0.002-0.0010.0000.0010.0020.0030.004
Min
us -
Plus
700 704 708 712 716 720 7240.78
0.80
0.82
0.84
0.86
0.88
Minus Plus
Inte
nsity
(a.u
.)
Photon Energy [eV]
-0.004-0.003-0.002-0.0010.0000.0010.0020.0030.004
Min
us -
Plus
Energy shift
Energy shift of 10 meVIdentical spectra
1 %
-
Orbit feedbackFast orbit feedback slow orbit feedback
beam positionin ID(Bergoz)
X-ray positionin beamline
Shift and gap
Orbit correctors?
-
705 710 715 720 725
-0.001
0.000
0.001
0.002
0.003
0.004
0.005
0.006
Inte
nsity
(a.u
.)
photon energy (eV)
with fast orbit feedback with slow orbit feedback with no orbit feedback
705 710 715 720 725
0.80
0.82
0.84
0.86
0.88
Nor
m s
igna
l (a.
u.)
Photon energy (eV)
with fast orbit feedback with slow orbit feedback
Orbit feedback – effect on measurement
Normalized signal, circular plus Difference circular plus and minus
Increased noise!!!
-
Slow Orbit feedback
Circular plus Circular minus
beam positionin ID(Bergoz)
X-ray positionin beamline
Shift and gap
Orbit correctors?
-
705 710 715 720 725
0.55
0.56
0.57
0.58
0.59
0.60
raw signal
Inte
nsity
(a.u
.)
photon energy (eV)
measurement one measurement two
Slow Orbit feedback
Not transparent !10 µm
-
690 700 710 720 730 740-0.0040.0000.0040.008 1%
Diff
. (a.
u.)
Photon Energy [eV]
diff
1.15
1.20
1.25
1.30
1.35
1.40
Inte
nsity
(a.u
.)
norm1 norm2
Summary
We can do great measurements at SLS
Transparent IDs are essential! Very difficult to make a double EPU system 100% transparent. Have to rely on Orbit feedback
For the measurement “no” difference between slow and no Orbit feedback
Critical time scale second – hour (10 Hz – 0.0001 Hz)Intensity variation 0.1% ≈ 0.5 µmenergy variation 1meV ≈ 1 µm
Slow Orbit feedback is not sufficient
Fast Orbit feedback is great