a users viewpoint: absorption spectroscopy at a...

18
A users viewpoint: absorption spectroscopy at a synchrotron Frithjof Nolting

Upload: others

Post on 25-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

A users viewpoint: absorption spectroscopy at a synchrotron

Frithjof Nolting

Page 2: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

Bottom layer “pinned”Hard layer orExchange coupling

Top layer“free” can be switched

Ferromagnet

Ferromagnet

Antiferromagnet

(1) (0)

MRAMHard disk head

Magnetic data storage and recording

Low resistance high resistance

GMR Element

Page 3: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

FM

AFM

Interface

- Different models for AFM/FM coupling exist.

- Different assumptions on AFM structure lead to complete different results.

- Spin arrangement at the interface is important

•High Spatial Resolution

•Elemental Sensitivity

•Ferromagnetic Contrast

•Antiferromagnetic Contrast

•Surface/Interface Sensitivity

How?

X-ray absorption spectroscopy (XAS) with spatial resolutionPhotoemission Electron Microscope (PEEM)

Page 4: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

Photoemission Electron Microscope

I(nA)

Energy

EF

~~

hν(x-ray)

core level

valenceband

2p 3/22p1/2

Magneticlenses e-

16°

analyzer

20 kVX-rays

Sensitive to:• elemental composition• chemistry• structural parameters• electronic structure• magnetic properties

ELMITEC GmbH

Page 5: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

Magnetic microscopy

S

E

XMCD (X-ray Magnetic Circular Dichroism)

XMLD (X-ray Magnetic Linear Dichroism)

705 710 715 720 725 730

TEY

(a.u

.)

Photon energy (eV)

720 722 724 726

BA

LaFeO3

775 780 785 790 795 800

L2

L3

Photon energy (eV)

TE

Y (a

.u.)

Co

5 µm

5 µm

J. Stöhr et al. Science 1993 A. Scholl et al. Science 2000 F. Nolting et al. Nature 2000

Page 6: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

SIM Beamline Layout

UndulatorT. Schmidt

• 2 Elliptical undulators• Pure permanent magnet• 95eV < hν < 2000eV• >1019 photons/s/mrad2/mm2/400mA

• 100 % circular polarization[125 - 900 eV]reduced on higher harmonics

• Hor. & vert. linear polar.

OpticsU. Flechsig

• Plane grating monochromator

• E/∆E > 8000• <5% 2nd order light• Switch helicity• Focus 30x100µm2

EndstationC. Quitmann & F. Nolting

• SLS endstation:– PEEM & LEEM

∆x~25 - 50nm spatial∆E~150meV energy

– Sample Prep chamber– User endstation

Front end

Prepchamber

ID1 ID2 Monochromator Chopper

Refocusingoptics

MicroscopeUser

endstation

Page 7: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

705 710 715 720 725

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Inte

nsity

(a.u

.)

Photon energy (eV)

reference signal sample signal

705 710 715 720 7250.78

0.80

0.82

0.84

0.86

0.88

Inte

nsity

(a.u

.)

Photon energy (eV)

normalized signal

TEY

Reference signal Sample signal

Magnet

Sample= Norm

Reference

Moving gap and monochromator, stop, measure (1s – 1minute), moving …

How do we measure

Page 8: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

710 720-0.0020.0000.0020.0040.006

Diff

. [a.

u.]

Photon Energy [eV]

difference0.78

0.80

0.82

0.84

0.86

0.88

1 %

Inte

nsity

[a.u

.]

circular plus circuls minus

How do we measure

•Change polarization and repeat

•Take difference of spectra

Absorption spectrum requires frequent moving of gap and shiftmust not effect other beamlines

transparent!

Page 9: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

switching by moving phase

switching by moving the gaptuned detuned

move up 56 mm

move 2 mm

move 0 mm

detuned tuned

circ plus circ minus

chopper

120 s

1s - 8 s

100 Hz

Modes for switching the polarization

switching by using a chopper

Page 10: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

Alignment of IDs - Horizontal1. Horizontal overlap at Frontend

ID1

ID2

ID2Asymmetric bump

2D Frontend scan

Closed bump using chicane magnets

2. Horizontal overlap at focus of experiment ID2In

tens

ity

Horizontal position

Page 11: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

Alignment of IDs - Vertical3. Vertical (energy) overlap at focus of experiment

ID1

ID2

not yet finished !

Photon energy

Inte

nsity

Inte

nsity

Inte

nsity ID2

Absorption spectrumschematic

778.3 eV

source mono Exit slit

Page 12: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

Beam variation - Noise

horizontal movement intensity variationXAS normalization reduces it by a factor of 10-100PEEM no normalization

days no problemhours no problemsec - minutes badmili seconds ok

vertical movement energy variationno normalization!

days no problemhours badseconds badmili seconds ok

10 µm about 2%

10 µm about 10 meV

Page 13: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

700 704 708 712 716 720 7240.78

0.80

0.82

0.84

0.86

0.88

Minus Plus

Inte

nsity

(a.u

.)

Photon Energy [eV]

-0.004-0.003-0.002-0.0010.0000.0010.0020.0030.004

Min

us -

Plus

700 704 708 712 716 720 7240.78

0.80

0.82

0.84

0.86

0.88

Minus Plus

Inte

nsity

(a.u

.)

Photon Energy [eV]

-0.004-0.003-0.002-0.0010.0000.0010.0020.0030.004

Min

us -

Plus

Energy shift

Energy shift of 10 meVIdentical spectra

1 %

Page 14: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

Orbit feedbackFast orbit feedback slow orbit feedback

beam positionin ID(Bergoz)

X-ray positionin beamline

Shift and gap

Orbit correctors?

Page 15: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

705 710 715 720 725

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Inte

nsity

(a.u

.)

photon energy (eV)

with fast orbit feedback with slow orbit feedback with no orbit feedback

705 710 715 720 725

0.80

0.82

0.84

0.86

0.88

Nor

m s

igna

l (a.

u.)

Photon energy (eV)

with fast orbit feedback with slow orbit feedback

Orbit feedback – effect on measurement

Normalized signal, circular plus Difference circular plus and minus

Increased noise!!!

Page 16: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

Slow Orbit feedback

Circular plus Circular minus

beam positionin ID(Bergoz)

X-ray positionin beamline

Shift and gap

Orbit correctors?

Page 17: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

705 710 715 720 725

0.55

0.56

0.57

0.58

0.59

0.60

raw signal

Inte

nsity

(a.u

.)

photon energy (eV)

measurement one measurement two

Slow Orbit feedback

Not transparent !10 µm

Page 18: A users viewpoint: absorption spectroscopy at a …iwbs2004.web.psi.ch/documents/program/Nolting.Frithjof/1.pdfPhoton Energy [eV] difference 0.78 0.80 0.82 0.84 0.86 0.88 1 % Intensity

690 700 710 720 730 740-0.0040.0000.0040.008 1%

Diff

. (a.

u.)

Photon Energy [eV]

diff

1.15

1.20

1.25

1.30

1.35

1.40

Inte

nsity

(a.u

.)

norm1 norm2

Summary

We can do great measurements at SLS

Transparent IDs are essential! Very difficult to make a double EPU system 100% transparent. Have to rely on Orbit feedback

For the measurement “no” difference between slow and no Orbit feedback

Critical time scale second – hour (10 Hz – 0.0001 Hz)Intensity variation 0.1% ≈ 0.5 µmenergy variation 1meV ≈ 1 µm

Slow Orbit feedback is not sufficient

Fast Orbit feedback is great