a virtual li/s battery: modeling, simulation and computer-aided development david n. fronczek 1,2,3...

31
A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center (DLR) 2 Helmholtz Institute Ulm (HIU) 3 Lawrence Berkeley National Laboratory (LBNL) 4 From 09/2012: Offenburg University of Applied Sciences

Upload: gyles-mccoy

Post on 19-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

A virtual Li/S battery: Modeling, simulation and computer-aided development

David N. Fronczek1,2,3 and Wolfgang G. Bessler1,2,4

1German Aerospace Center (DLR) 2Helmholtz Institute Ulm (HIU)3Lawrence Berkeley National Laboratory (LBNL)4From 09/2012: Offenburg University of Applied Sciences

Page 2: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

A virtual Li/S battery: Modeling, simulation and computer-aided development

• Introduction

• Fundamentals of Li/S batteries

• Modeling approach

• Simulation results

• Outlook & Summary

www.DLR.de • Chart 2

Page 3: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

DLR – The German Aerospace Center

Locations and employees

- ~8000 employees across 33 institutes and facilities at13 sites.

- Offices in Brussels, Paris and Washington.

- DLR Institute of Technical Thermodynamics: R&D activity of Electrochemical Energy Technology since 1986

n Cologne

n Oberpfaffenhofen

Braunschweig n

n Göttingen

Berlin n

n Bonn

n Neustrelitz

Weilheim n

Bremen n n Trauen

n Dortmund

Lampoldshausen n

Hamburg n

Stuttgart n

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 • www.DLR.de • Chart 3

http://www.dlr.de/tt/en/

Page 4: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

Electrochemical Energy Technology

Head: Prof. K. Andreas Friedrich

PersonnelAbout 60 employees 5 research areas

- SOFC – Günter Schiller - PEFC – Erich Gülzow - Batteries – Norbert Wagner- Modeling – Wolfgang Bessler- Electrochemical systems – Josef Kallo

Budget 2011~ 8 M€ (without operation cost of large test facilities)About 50 % third-party funding

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 • www.DLR.de • Chart 4

Page 5: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

Modeling and simulation of lithium batteries

LiFePO4 batteries:Electrochemistry and impedance

Li+e–

-Understanding and optimization of physicochemical behavior

Thermal management and runaway risk

-Understanding and optimization of thermal and safety behavior

Lithium-sulfur cells:Redox chemistry and transport

-Analysis of cycling propertiesand chemical reversibility

Lithium-air cells:Multi-phase chemistry and reversibility

- Improvement of porous air electrode

Lithium-ion technology Post lithium-ion cells

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 • www.DLR.de • Chart 5

Page 6: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

Helmholtz Institute Ulm forElectrochemical Energy Storage

• Center of Excellence for research in electrochemical energy storage

• Started in Jan. 2011

• New building on University Ulm campusfor 80 scientists (2013)

• DLR battery modeling activities are integrated into HIU

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 • www.DLR.de • Chart 6

http://www.hiu.kit.edu/

Page 7: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

A virtual Li/S battery: Modeling, simulation and computer-aided development

• Introduction

• Fundamentals of Li/S batteries

• Modeling approach

• Simulation results

• Outlook & Summary

www.DLR.de • Chart 7

Page 8: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

www.DLR.de • Chart 8 > Lithium/Sulfur Batteries: An Elementary Modeling Approach > D. N. Fronczek • ModVal 9 > April 2, 2012

Lithium/sulfur batteries – properties and potentials

Li-Ionhigh E

Pb Li-Ionhigh P

Li/S Li-air

10 100 1000 10000

Specific energy / Wh/kg

gasoline(50 % of theoretical max.)

10 100 1 000 10 000Specific Energy / Wh/kg

Y. Mikhaylik et al., Sion Power Corp., ECS presentation, 2009.

USABC targetsLi/S (2009)

Rate Cap.

Lower T

Power Density

Specific Power

Recharge Time

Specific Energy

Energy density

Upper T

Cycle life

Page 9: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

www.DLR.de • Chart 9> Lithium/Sulfur Batteries: An Elementary Modeling Approach > D. N. Fronczek • ModVal 9 > April 2, 2012

Lithium/sulfur battery – layout

Global reaction: S8 + 16 Li 8 Li⇄ 2S + 3400 kJ/mol

Complex chemistry, complex multi-phase behavior!

PositiveElectrode

Negative ElectrodeSeparator

Lithium(metal)

Sulfur / Carbon matrix Organic Electrolyte

Li+ Li0

Dis

ch

arg

e

Ch

arg

e

S8

Li2S8

Li2S4

Li2S2

Li2S

S82−

S62−

S42−

S22−

S2−

Li2S6

Cur

rent

col

lect

or

Cur

rent

col

lect

or

Page 10: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

A virtual Li/S battery: Modeling, simulation and computer-aided development

• Introduction

• Fundamentals of Li/S batteries

• Modeling approach

• Simulation results

• Outlook & Summary

www.DLR.de • Chart 10

Page 11: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

Computational domain

• Modeling framework: DENIS (detailed electrochemistry and numerical impedance simulation)*

• 1D continuum model, 15 mesh points

• 169 algebraic and differential equations (standard model)

y

PositiveElectrode

Separator NegativeElectrode

www.DLR.de • Chart 11

*W. G. Bessler, S. Gewies, M. Vogler, A new framework for physically based modeling of solid oxide fuel cells, Electrochimica Acta 53 (2007) 1782-1800.

Page 12: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

Governing equations

• Electrochemistry (evaluated by CANTERA†):

Rates of production and relation to current

Modified Arrhenius rate expressions

• Transport in the liquid electrolyte: diluted solution theory

Nernst-Planck-eq.

†D. G. Goodwin et al., Cantera, http://code.google.com/p/cantera, 2001-2012.

www.DLR.de • Chart 12

Page 13: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

Governing equations

• Evolution of Phases‡

Production rate derived from chemical source terms

Adaptive active surfaces ( : volume fraction)

• Plus boundary conditions, e.g. electroneutrality

www.DLR.de • Chart 13> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

‡J. P. Neidhardt, D. N. Fronczek, T. Jahnke, T. Danner, B. Horstmann, and W. G. Bessler, "A flexible framework for modeling multiple solid, liquid and gaseous phases in batteries and fuel cells," J. Electrochem. Soc., in press (2012)

Page 14: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

Electrochemical model

Chemical reactions considered on the positive electrode side:

sulfur reduction precipitationS8(s) ⇌ S8(l)

S8(l) + 2 e− ⇌ S82− 2 Li+ + S8

2− ⇌Li2S8(s)

S82− + 2⁄3 e− ⇌ 4⁄3 S6

2− 2 Li+ + S62− ⇌

Li2S6(s)

S62− + e− ⇌ 3⁄2 S4

2− 2 Li+ + S42− ⇌ Li2S4(s)

S42− + 2 e− ⇌ 2 S2

2− 2 Li+ + S22− ⇌

Li2S2(s)

S22− + 2 e− ⇌ 2 S2− 2 Li+ + S2− ⇌

Li2S(s)

Lithium plating/stripping on the negative electrode side:

Li(s) Li⇌ + + e−

Global reaction: 16 Li + S8 8 Li⇌ 2S + 3400 kJ/mol, EMF = ~2.2 V

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 • www.DLR.de • Chart 14

* K. Kumaresan, Y. Mikhaylik and R. E. White, J. Electrochem. Soc. 155, A576 (2008)

Page 15: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

Lis

t o

f p

aram

eter

s

www.DLR.de • Chart 15> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

Page 16: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

A virtual Li/S battery: Modeling, simulation and computer-aided development

• Introduction

• Fundamentals of Li/S batteries

• Modeling approach

• Simulation results

• Outlook & Summary

www.DLR.de • Chart 16

Page 17: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

Simulated experiment

• CC discharge, CCCV charge @ ~1/50 C

0 50 100 150 200

-0.4

-0.2

0.0

0.2

0.4

Time / h

C

urre

nt d

ensi

ty /

A/m

2

0

400

800

1200

1600

2000

Cap

acity

/

Ah/

kgS

ulfu

r

www.DLR.de • Chart 17

Page 18: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

www.DLR.de • Chart 18> Lithium/Sulfur Batteries: An Elementary Modeling Approach > D. N. Fronczek • ModVal 9 > April 2, 2012

Results: Discharge / charge profile

• Two distinct stages during discharge can be reproduced

• Explanation: Presence of solid S8 (Phase I) or Li2S (Phase II)

• CV charge phase

necessary to re-

cover full capacity

• Asymmetric phase

behavior during

charge/discharge

0 50 100 1502.0

2.2

2.4

2.6

2.8

Time / h

Ce

ll vo

ltag

e /

V

0.0

0.1

0.2

0.3

0.4

0.5

Li2S

Vol

ume

frac

tion

S8(s)

Page 19: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

Results: Discharge / charge profilecompared to experiment

Experiment Simulation

www.DLR.de • Chart 19> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

0 400 800 1200 16001.5

2.0

2.5

Discharge capacity / Ah/kgSulfur

Cel

l vol

tage

/ V

0 400 800 1200 16001.8

2.0

2.2

2.4

2.6 0.01C 0.1C 1C

Cel

l vol

tage

/ V

Discharge capacity / Ah/kg of S8

*N. Cañas, K. Hirose, N. Wagner, Ş. Sörgel and K. A. Friedrich, "In-situ XRD and electrochemical characterization of cathodes for Li-sulfur batteries“, 2nd Ertl Symposium on Surface and Interface Chemistry, June 24–27 2012, Stuttgart, Germany, Poster.

Page 20: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

Results: Cathode composition

• The composition of the cathode varies tremendously during discharge and charge, as phases are formed and consumed

• Discharge and charge are asym-metric processes, introducing hyster-esis into the system

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 • www.DLR.de • Chart 20

0 50 100 150 200

Vol

ume

frac

tion

Time / h

Carbon

Sulfur

Li2S

Electrolyte

0.4

0.2

0.0

1.0Discharge CC charge CV charge

0.5

Page 21: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

Results: Cathode compositioncompared to experiment

www.DLR.de • Chart 21> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

*N. Cañas, K. Hirose, N. Wagner, Ş. Sörgel and K. A. Friedrich, "In-situ XRD and electrochemical characterization of cathodes for Li-sulfur batteries“, 2nd Ertl Symposium on Surface and Interface Chemistry, June 24–27 2012, Stuttgart, Germany, Poster.

Li2S [2 2 2]

S8 [2 2 2]

- *

Page 22: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

Results: Concentrations

• Species concen-trations are highly time and SOC dependant

• S8 and S2− concen-trations buffered by presence of solid phases

• Current breaks down when electrolyte is depleted of (Poly-) sulfide ions

0 50 100 15010-9

10-6

10-3

100

103

Time / h

Con

cent

ratio

ns /

mol

/l

Li+

S2-

S8(l)

S2-4

S2-6

PF-6

S2-2

S2-8

Discharge ← → Charge

www.DLR.de • Chart 22

Page 23: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

0 100 200 300 4000

100

200

300

400

Im /

Ohm

*cm

2

Re / Ohm*cm2

100 % 99 % 75 % 50 % 25 % 3 %

Results: Impedance

• EIS simulation based on

physicochemical model

(no equivalent circuit)*

• Non-ambivalent

interpretation of results

• Cell performs best when

discharged!

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 • www.DLR.de • Chart 23

*W. G. Bessler, "Rapid impedance modeling via potential step and current relaxation simulations," J. Electrochem. Soc. 154, B1186-B1191

Page 24: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

0 100 200 300 4000

100

200

300

400

Im /

Ohm

*cm

2

Re / Ohm*cm2

100 % 99 % 75 % 50 % 25 % 3 %

Results: Impedancecompared to experiment

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 • www.DLR.de • Chart 24

*W. G. Bessler, "Rapid impedance modeling via potential step and current relaxation simulations," J. Electrochem. Soc. 154, B1186-B1191

Experiment Simulation

Page 25: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

A virtual Li/S battery: Modeling, simulation and computer-aided development

• Introduction

• Fundamentals of Li/S batteries

• Modeling approach

• Simulation results

• Outlook & Summary

www.DLR.de • Chart 25

Page 26: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

Outlook

Li/S trends:

• Higher sulfur contents

• Engineered nanostructured

materials

• Profound understanding is

paramount to successful

electrode/cell design

www.DLR.de • Chart 26> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

*E. J. Cairns, " Beyond Lithium Ion: The Lithium/Sulfur Cell “, Beyond Lithium Ion V Meeting,June 5–7, 2012, Berkeley, CA

Page 27: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

Summary

• Li/S model implemented in multi-phase framework

• Prediction of- voltage, current and capacity- concentrations- porosity and volume fractions

• Qualitative explanation of- two distinct stages during discharge- electrochemical impedance

• Toolset established for further investigations,

e.g. of degradation mechanisms

Li

S

0 500 1000 1500

Discharge capacity / Ah/kgSulfur

Ce

ll vo

ltag

e

/ V

Vo

lum

e f

ract

ion

S8Li2S

0.5

0.0

0.25

2.5

2.4

2.3

www.DLR.de • Chart 27

Page 28: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

A virtual Li/S battery: Modeling, simulation and computer-aided development

• Appendix

www.DLR.de • Chart 28

Page 29: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

Multi-scale modeling of electrochemical systems

- Knowledge-based advancement of fuel cells and batteries at DLR using multi-scale and multi-physics modeling and simulation methods

- Head: Wolfgang G. Bessler. Group: ~10 scientists and PhD students

www.DLR.de • Chart 29> Lithium/Sulfur Batteries: An Elementary Modeling Approach > D. N. Fronczek • ModVal 9 > April 2, 2012

Page 30: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

Lis

t o

f eq

uat

ion

s

www.DLR.de • Chart 30> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 •

Page 31: A virtual Li/S battery: Modeling, simulation and computer-aided development David N. Fronczek 1,2,3 and Wolfgang G. Bessler 1,2,4 1 German Aerospace Center

Results: Transport in the Li/S cell

• The sulfur content in the porous cathode changes significantly and non-uniformly

during discharge and charge

• Sulfur is redistributed in the cell

> A virtual Li/S battery: Modeling, simulation and computer-aided development > D. N. Fronczek > Next Generation Batteries 2012 > July 19, 2012 • www.DLR.de • Chart 31