absence of biomarker evidence for early eukaryotic life ... · (kendall, creaser, gordon, & anbar,...

14
Geobiology. 2019;1–14. wileyonlinelibrary.com/journal/gbi | 1 © 2019 John Wiley & Sons Ltd Received: 24 August 2018 | Revised: 24 October 2018 | Accepted: 27 November 2018 DOI: 10.1111/gbi.12329 ORIGINAL ARTICLE Absence of biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper Group: Searching across a marine redox gradient in mid-Proterozoic habitability Kevin Nguyen 1 | Gordon D. Love 1 | J. Alex Zumberge 1 | Amy E. Kelly 2 | Jeremy D. Owens 3 | Megan K. Rohrssen 4 | Steven M. Bates 1 | Chunfang Cai 5 | Timothy W. Lyons 1 1 Department of Earth Sciences, University of California, Riverside, California 2 Shell International Exploration and Production, Houston, Texas 3 Department of Earth, Ocean & Atmospheric Sciences, Florida State University, Tallahassee, Florida 4 Department of Earth & Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan 5 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China Correspondence Gordon D. Love and Timothy W. Lyons, Department of Earth Sciences, University of California, Riverside, CA. Emails: [email protected] (GDL) and timothyl@ ucr.edu (TWL) Funding information Directorate for Geosciences; NASA Astrobiology Institute, Grant/Award Number: NNA15BB03A Abstract By about 2.0 billion years ago (Ga), there is evidence for a period best known for its extended, apparent geochemical stability expressed famously in the carbonate–car - bon isotope data. Despite the first appearance and early innovation among eukary- otic organisms, this period is also known for a rarity of eukaryotic fossils and an absence of organic biomarker fingerprints for those organisms, suggesting low diver - sity and relatively small populations compared to the Neoproterozoic era. Nevertheless, the search for diagnostic biomarkers has not been performed with guidance from paleoenvironmental redox constrains from inorganic geochemistry that should reveal the facies that were most likely hospitable to these organisms. Siltstones and shales obtained from drill core of the ca. 1.3–1.4 Ga Roper Group from the McArthur Basin of northern Australia provide one of our best windows into the mid-Proterozoic redox landscape. The group is well dated and minimally metamor - phosed (of oil window maturity), and previous geochemical data suggest a relatively strong connection to the open ocean compared to other mid-Proterozoic records. Here, we present one of the first integrated investigations of Mesoproterozoic biomarker records performed in parallel with established inorganic redox proxy indi- cators. Results reveal a temporally variable paleoredox structure through the Velkerri Formation as gauged from iron mineral speciation and trace-metal geochemistry, vacillating between oxic and anoxic. Our combined lipid biomarker and inorganic geochemical records indicate at least episodic euxinic conditions sustained predomi- nantly below the photic zone during the deposition of organic-rich shales found in the middle Velkerri Formation. The most striking result is an absence of eukaryotic steranes (4-desmethylsteranes) and only traces of gammacerane in some samples— despite our search across oxic, as well as anoxic, facies that should favor eukaryotic habitability and in low maturity rocks that allow the preservation of biomarker al- kanes. The dearth of Mesoproterozoic eukaryotic sterane biomarkers, even within the more oxic facies, is somewhat surprising but suggests that controls such as the long-term nutrient balance and other environmental factors may have throttled the abundances and diversity of early eukaryotic life relative to bacteria within marine

Upload: others

Post on 03-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Geobiology. 2019;1–14. wileyonlinelibrary.com/journal/gbi  | 1© 2019 John Wiley & Sons Ltd

    Received:24August2018  |  Revised:24October2018  |  Accepted:27November2018DOI:10.1111/gbi.12329

    O R I G I N A L A R T I C L E

    Absence of biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper Group: Searching across a marine redox gradient in mid- Proterozoic habitability

    Kevin Nguyen1 | Gordon D. Love1  | J. Alex Zumberge1 | Amy E. Kelly2 |  Jeremy D. Owens3 | Megan K. Rohrssen4 | Steven M. Bates1 | Chunfang Cai5 |  Timothy W. Lyons1

    1DepartmentofEarthSciences,UniversityofCalifornia,Riverside,California2ShellInternationalExplorationandProduction,Houston,Texas3DepartmentofEarth,Ocean&AtmosphericSciences,FloridaStateUniversity,Tallahassee,Florida4DepartmentofEarth&AtmosphericSciences,CentralMichiganUniversity,MountPleasant,Michigan5InstituteofGeologyandGeophysics,ChineseAcademyofSciences,Beijing,China

    CorrespondenceGordonD.LoveandTimothyW.Lyons,DepartmentofEarthSciences,UniversityofCalifornia,Riverside,CA.Emails:[email protected](GDL)[email protected](TWL)

    Funding informationDirectorateforGeosciences;NASAAstrobiologyInstitute,Grant/AwardNumber:NNA15BB03A

    AbstractByabout2.0billionyearsago(Ga),thereisevidenceforaperiodbestknownforitsextended,apparentgeochemicalstabilityexpressedfamouslyinthecarbonate–car-bonisotopedata.Despitethefirstappearanceandearlyinnovationamongeukary-otic organisms, this period is also known for a rarity of eukaryotic fossils and anabsenceoforganicbiomarkerfingerprintsforthoseorganisms,suggestinglowdiver-sity and relatively small populations compared to the Neoproterozoic era.Nevertheless, the search for diagnostic biomarkers has not been performedwithguidance from paleoenvironmental redox constrains from inorganic geochemistrythat should reveal the facies thatweremost likelyhospitable to theseorganisms.Siltstonesandshalesobtainedfromdrillcoreoftheca.1.3–1.4GaRoperGroupfromtheMcArthurBasinofnorthernAustraliaprovideoneofourbestwindowsintothemid-Proterozoicredoxlandscape.Thegroupiswelldatedandminimallymetamor-phosed(ofoil windowmaturity),andpreviousgeochemicaldatasuggestarelativelystrongconnection to theopenoceancompared toothermid-Proterozoic records.Here, we present one of the first integrated investigations of Mesoproterozoic biomarkerrecordsperformedinparallelwithestablishedinorganicredoxproxyindi-cators.ResultsrevealatemporallyvariablepaleoredoxstructurethroughtheVelkerriFormation as gauged from ironmineral speciation and trace-metal geochemistry,vacillating between oxic and anoxic.Our combined lipid biomarker and inorganicgeochemicalrecordsindicateatleastepisodiceuxinicconditionssustainedpredomi-nantlybelowthephoticzoneduringthedepositionoforganic-richshalesfoundinthemiddleVelkerriFormation.Themoststrikingresultisanabsenceofeukaryoticsteranes(4-desmethylsteranes)andonlytracesofgammaceraneinsomesamples—despiteoursearchacrossoxic,aswellasanoxic,faciesthatshouldfavoreukaryotichabitabilityand in lowmaturityrocksthatallowthepreservationofbiomarkeral-kanes.ThedearthofMesoproterozoiceukaryoticsteranebiomarkers,evenwithinthemoreoxicfacies,issomewhatsurprisingbutsuggeststhatcontrolssuchasthelong-termnutrientbalanceandotherenvironmentalfactorsmayhavethrottledtheabundancesanddiversityofearlyeukaryoticliferelativetobacteriawithinmarine

    www.wileyonlinelibrary.com/journal/gbihttps://orcid.org/0000-0002-6516-014Xmailto:[email protected]:[email protected]:[email protected]

  • 2  |     NGUYEN Et al.

    1  | INTRODUC TION

    The mid-Proterozoic (2.0–1.0Ga) is well known for its long-livedgeochemicalstasis,showingonlysubtlevariationincarbonateδ13Cspanningthis interval (Brasier&Lindsay,1998).Bytheendofthistime interval, themajor clades of crown eukaryotes had diverged(Parfrey, Lahr, Knoll, & Katz, 2011), but their evolutionary devel-opmentwasapparentlystifledsothatdiversitypatternsandabun-danceswerepersistentlylowcomparedtothelaterNeoproterozoic(Knoll, Javaux, Hewitt, & Cohen, 2006). Pastwork has suggestedthat low-oxygencontentsandrelated limitedavailabilityofcriticalnutrientsintheoceanmayhavecontributedtotheapparentbiogeo-chemicalandpaleobiologicalstasis (Derry,2015;Laakso&Schrag,2017; Lyons, Reinhard, & Planavsky, 2014; Reinhard etal., 2013,2016).Despite important innovationsduring this interval, this ap-parentmonotonyrelativetotheeventsthatfollowedhasledtothecommonreferraloftheperiod2.0and1.0Gaasthe“dullesttimeinEarth’shistory”(Brasier&Lindsay,1998;Buick,DesMarais,&Knoll,1995).

    Ourcurrentunderstandingof the redoxchemistryof themid-Proterozoicoceanisthatthesurfacewatersweremostlikelyoxygen-ated,whilethedeeperlow-oxygenwatersweremarkedbysulfidic(euxinic)zonesatintermediatedepths,particularlyalongthehighlyproductiveoceanmargins (Canfield,1998). Iron-richanoxic (ferru-ginous)conditionsdominatedatgreaterdepth (Lyons,Reinhard,&Scott,2009;Planavskyetal.,2011;Poulton&Canfield,2011).Theredoxstructureoftheoceanatthattimemayhaveinfluencedthepatterns and rates of evolution bymodulating the spatiotemporaldistributionofessentialmacro-andmicronutrients,aswellasoverallavailabilityofoxygen(Anbar&Knoll,2002;Derry,2015;Laakso&Schrag,2017;Lyonsetal.,2014;Reinhardetal.,2013,2016).Ithasbeen suggested that biological feedbacks, including sulfide-basedanoxygenic photosynthesis (Johnston, Wolfe-Simon, Pearson, &Knoll, 2009),may have helpedmaintain aworldwith low-oxygenlevels and sulfide pervasive enough to limit the development andproliferationofearlycomplexlife.However,variousfeedbacksmakethepersistenceofwidespreadanoxia, particularly euxinia, equallychallenging.Specifically,nutrientlimitationscoupledtowidespreadanoxiaandeuxinia(e.g.,lossoffixednitrogenthroughdenitrificationandperhaps limitedavailabilityoftrace-metalmicronutrientssuchasmolybdenum) can result in reduced availability of organicmat-terrequiredtosustainanoxiaviaaerobicrespirationandtosupport

    sulfide production viamicrobial sulfate reduction (Anbar & Knoll,2002;Scottetal.,2008).Theapparentbalanceamongthesefeed-backsthatkeptthemid-Proterozoicocean“dull”remainsatopicripeforfurtherstudy.

    Itiswidelyacceptedthatthechemistryoftheearlyoceanandlifeco-evolved.However,thetruegeochemicalnatureofEarth’s“boringbillion”remainspoorlyconstrained.TherearemanylinesofevidencethatdocumentanincreaseinEarth’ssurfaceoxidationstateapproxi-mately2.4–2.3Ga(Bekkeretal.,2004;Luoetal.,2016),andanotherbiospheric oxygenation estimated between 800 and 550Ma (re-viewedinOch&Shields-Zhou,2012)thatwascoincidentwithaglobalexpansionofeukaryoticabundanceinthemarinerealm(Brocksetal.,2017;Issonetal.,2018).Conditionsintheinterveningmid-Proterozoicarelessstudiedandcorrespondinglylessknown,withthelikelihoodofintermediateredoxstatesintheoceanandatmosphere.Manyofthemost-citeddatahavecomefromtheMcArthurBasinofnorthernAustralia.Specifically,shalesoftheRoperGroupinthisregionhaveemergedasoneofourbestarchivesofmid-Proterozoicoceanredoxbecausethegroupiswelldated,minimallymetamorphosed,andlieinthemiddleofthiskeyinterval(Jackson,Sweet,&Powell,1988).Mostimportantly, sedimentological andgeochemical data suggest a rela-tivelystrongconnectiontotheopenoceaninmainlyanoutershelfsetting(Abbott&Sweet,2000;Jackson,Powell,Summons,&Sweet,1986;Jackson&Raiswell,1991;Jacksonetal.,1988).Asaresult,con-ditionsintheRoperGroupmayreflecttheredoxstateoftheglobaloceanandspecificallytheconditionsthatfavored,orchallenged,thedevelopmentandexpansionofcomplexlifeduringthisinterval.Giventhispotential,wehereinreportonthefirsthigh-resolution,fullyinte-gratedgeochemicalstudyoftheRoperGroup—withthegoalofper-formingorganicbiomarkerworkwithinatightinorganicgeochemicalcontextthatdefinesagradientinhabitabilityandthuspotentialeu-karyoticinhabitation.Ourresultssuggestthatcontrolsotherthanjustlocalredoxmodulatedthedistributionofsteroid-producingeukary-otesinthemid-Proterozoicocean.

    1.1 | Sampling location

    Much of the attention drawn to theMcArthur Basinwas initiallythrough the discovery of “live oil”, originally reported by Jacksonetal. (1986). Their findings garnered significant interest in thearea,andsubsequent investigationshavebeendesigned todefineits depositional environment. Concisely, the Roper Group within

    microbial communities. Given that molecular clocks predict that sterol synthesisevolvedearly in eukaryotichistory, and (bacterial) fossil steroidshavebeen foundpreviouslyin1.64Garocks,thenaverylowenvironmentalabundanceofeukaryotesrelativetobacteriaisourpreferredexplanationforthelackofregularsteranesandonlytracesofgammaceraneinafewsamples.ItisalsopossiblethatearlyeukaryotesadaptedtoMesoproterozoicmarineenvironmentsdidnotmakeabundantsteroidli-pidsortetrahymanolintheircellmembranes.

  •      |  3NGUYEN Et al.

    theMcArthur Basin is located at the tip of northern Territory ofAustralia,neartheGulfofCarpentaria,andoccursoveranareaofat least 145,000km2with amaximum thickness of approximately5,000m(Abbott&Sweet,2000).ThesamplesinthisstudyarefromtheVelkerriFormationsampledintheAltree-2drillcore;theVelkerrihasaknownextentofatleast80,000km2(Jackson&Raiswell,1991)and iswithin the oilwindow, as reflected by its thermalmaturity(Crick,1992;Summons,Taylor,&Boreham,1994).Jackson,Sweet,Page, and Bradshaw (1999) reported a U-Pb age of 1,492±4Mafrom the lowermost member of the Roper Group, the MainoruFormation,implyingyoungeragesforthedepositionoftheVelkerriFormation.Re-Osageconstraintsyieldedageestimatesforthebase(1,417±29Ma) and top (1,361±21Ma) of theVelkerri Formation(Kendall,Creaser,Gordon,&Anbar,2009),althoughdetritalzirconU-PbdatessuggestthattheVelkerriFormationwasdepositedbe-tween 1,349 and 1,320Ma (Yang etal., 2017). The Altree-2 drillcorewassampledoveradepth intervalof440–1,250m,coveringthe full thickness of the Velkerri Formation. The formation is di-vided into three informal subunits—the upper (392–672m), mid-dle (672–948m), and lower Velkerri (948–1,242m). The VelkerriFormationstratawerelikelydepositedinadistalmarineshelfsetting(Abbott&Sweet,2000).Rock-Evalpyrolysisdata(HydrogenIndex,Table1)independentlyconfirmedthatthesecoresamplesgenerallyspan a thermalmaturity range spanning from early oilwindow tojustbeyondpeakoilwindowandthusaresuitablefordetailedor-ganicgeochemicalinvestigationsincetheserocksarethermallywellpreserved.

    2  | METHODS

    2.1 | Inorganic geochemistry

    Samplingspecificallytargeteddrillcoreshalestoexplorethedegreeofoxygenationwithinthelocalwatercolumnandtoprovideaddedperspectiveonoxygenintheglobalocean.Totalcarbon(TC),totalinorganic carbon (TIC), and total sulfur (TS)weremeasuredby in-fraredabsorptionofCO2/SO2usinganEltraCS-500equippedwithafurnaceandacidificationmodule.TCandTSweredeterminedviacombustion at1,400°C,whileTICwas liberated via reactionwith4MHCl.Totalorganiccarbon(TOC)wascalculatedbydifference.

    SequentialextractionofreactiveFephaseswascarriedoutusingthepreviouslydescribedmethod(Poulton&Canfield,2005)andan-alyzedonanAgilent7500cequadrupoleinductivelycoupledplasmamassspectrometer(ICP-MS).ReproducibilityofFespeciationmea-surements, based on replicate analyseswithin and between sam-plebatches,wasbetterthan93%.Pyriteiron(FePy)wasquantifiedusingchromouschloridedistillationfollowedbytitrationwithiodineasoutlined inRef. (Canfield,Raiswell,Westrich,Reaves,&Berner,1986).Apyritestandardwas included ineverysamplebatch. Ironrelationshipswerealsoassessedusing theconventionaldegreeofpyritizationtechnique(DOP;Raiswell,Buckley,Berner,&Anderson,1988), whereby residual (unpyritized) “reactive” Fe is extractedusingaboiling,12MHClstep.ThisDOPtechniquewill,ifanything,

    overestimatethetrulyreactivephases.Assuch,falsepositivesforeuxiniaareunlikely,andhighDOPvaluesaretakenasaparticularlyrobust indicatorofthatcondition intheancientwatercolumn(re-viewedLyons&Severmann,2006).Onceextracted,theamountofironwasquantifiedspectrophotometricallyusingthestandardfer-rozinemethod. Replicate analysis yielded a standard deviation of0.25wt.%.

    PyritesulfurinthesampleswasalsoextractedusingtheCrre-ductionmethodforsulfur isotopeanalysisviaasilvernitratetrap,ratherthanthezincacetatesolutionusedforthepyrite-Squantifica-tionbyiodometrictitration.Theresultingsilversulfidewashomoge-nized,weighedwithexcessV2O5,andcombustedonlineforanalysesof34S/32SratiosusingaThermoDeltaVmassspectrometer,whicharereportedusingthedeltanotationaspermil(‰)deviationsfromtheViennaCanyonDiabloTroilite(VCDT)standard.Reproducibilitywasbetterthan0.14‰basedonsingle-runandlong-termstandardmonitoring(additionalanalyticaldetailsfortheDOPandδ34Sdeter-minationsareprovidedintheSupportingInformation).

    Amulti-aciddigestiontechniquewasemployedfortrace-metalanalysis. Samples were ashed at 900°C for 24hr, and mass lostthroughignitionwasrecordedpriortoundergoingaciddigestion(HF,HNO3,andHCl).AnalyseswereperformedonsameICP-MSwiththeDevonianOhioShale(SDO-1)asareference,withreproducibilityinindividualrunsofbetterthan95%forthepresentedelements.

    2.2 | Organic geochemistry

    2.2.1 | Extraction of free (extractable) biomarker lipids

    Fororganicbiomarkeranalysis,coresamplesweretrimmedwithawater-cooled rock saw to removeouterweathered surfaces (typi-cally5–10mmthicknesswasremoved)toexposeasolidinnerpor-tion, which was fragmented. The resulting chips from this innerportionweresolvent-rinsedpriortopowderinginazirconiaceramicpuckmillwithinaSPEX8515shatterbox.Lipidbiomarkerswereex-tractedat100°Cin9:1dichloromethane/methanol(v/v)mixturefor15minsinaCEMMicrowaveAcceleratedReactionSystem(MARS).Wholerockbitumenswereseparatedintosaturates,aromatics,andpolar (N, S, O compounds) fractions by silica column chromatog-raphy. Typically 10–20g of rock powderwas used for extraction,yielding from 0.3 to 7.5mg of bitumen per gram of rock powder(mean=3.5mg per gram, Supporting Information Table S5). Fullprocedural blanks with pre-combusted quartz sand (850°C) wereperformed inparallelwitheachbatchof rocks toensure that anybackgroundhydrocarboncompoundswerenegligibleincomparisonwithbiomarkerabundances.

    2.2.2 | Catalytic hydropyrolysis (HyPy) of pre- extracted rocks/kerogens

    Pre-extracted rock residues, containing predominantly kerogen,weresubjectedtocontinuous-flowcatalytichydropyrolysis (HyPy)

  • 4  |     NGUYEN Et al.

    TABLE 1 SelectedgeochemicaldataandlipidbiomarkerratiosforAltree-2rocksusedfororganicgeochemicalinvestigation

    Dep

    th (m

    )TO

    C (w

    t.%)

    HI

    S (w

    t.%)

    MPI

    - 1%

    RcTs

    /(T

    s + T

    m)

    C 29α

    β/C 3

    0αβ

    C 30H

    βα

    /αβ

    C 31α

    βS/

    (S +

    R)

    2αM

    eH

    (%)

    G/H

    C 27 S

    t/C 3

    0αβ

    C 21 +

    C22

    St

    /C 3

    0αβ

    Tota

    l st

    eran

    es

    (ppm

    sat

    s)

    Tota

    l ho

    pane

    s (p

    pm s

    ats)

    452.

    14–4

    52.2

    21.

    5–

    1.23

    0.45

    0.67

    0.59

    0.98

    0.06

    0.57

    5.9

    0.04

    0.00

    0.00

  •      |  5NGUYEN Et al.

    tocleavecovalentbondsandfragmentthekerogenmatrixintosolu-bleproducts(Love,Snape,Carr,&Houghton,1995;Loveetal.,2009)for subsequent GC-MS and MRM-GC-MS analysis. The parallelanalysesofcovalentlyboundbiomarkersandotherboundmolecularconstituents,alongsidetheanalysisofrockbitumens,giveusconfi-dencethatwehavecorrectlyidentifiedsyngeneticcompoundsandallowsustoscreenforanysignificantcontaminationcontributionsinanimportantself-consistencycheck(Loveetal.,2009).Extractedsamplepowders(~1.0–1.8g)weresecuredintheHyPyreactortubeatopa steelwoolplug,whichwasSoxhlet-extracted (DCM,48hr)andbaked(450°C,2hr)toensurethatnocontaminateswereintro-ducedtothesample.FullproceduralHyPyblankswereconductedusingcleansilicagelasasubstrate.BlankHyPyrunswereconfirmedtobecleanandfreeofcontamination,asdescribedinFrenchetal.(2015).HyPyisatemperatureprogrammedpyrolysismethodusingtwo temperature ramps: 0–250°C at 100°C/min immediately fol-lowedby250–520°Cat8°C/minwhilemaintainingconstanthydro-genpressureof~15MPawithahydrogen sweepgas flow rateof6dm3/min.Thepyrolysatewascollected inadry ice-cooledprod-ucttrapontosilicagel(35–70mesh,activatedat450°Covernight).AftereachHyPyrun,thesilicagelplugfromthetrapcontainingtheadsorbedpyrolysateproductwasseparatedusingthesamecolumnchromatographicandGC-MSmethodologyasdescribedfortherockbitumens.

    2.2.3 | Lipid biomarker analysis and quantification

    Gas chromatography–mass spectrometry (GC-MS)was performedon saturated and aromatic hydrocarbon fractions from rock bitu-mensandhydropyrolysatesinfullscanmodeoveramassrangeof

    50–600DaonanAgilent5975CinertMassSelectiveDetector(MSD)massspectrometerinterfacedtoanAgilent7890AGCequippedwithaDB-1MScapillarycolumn(60m×0.32mm,0.25μmfilm)andruninsplitlessinjectionmodewithHeascarriergas.ThetemperatureprogramforGC-MSfullscanwas60°C(2min),rampedto150°Cat20°C/min,thento325°Cat2°C/min,andheldat325°Cfor20min.200ngofd14- p-terphenylstandardwasaddedtobetween1.4and12.1mgofaromatichydrocarbonfractionasastandardforquantifi-cation.MPI-1indexvalueswerecalculatedusing178Dapeakareasforphenanthreneand192Dapeakareasformethylphenanthrenes.

    Toprobepolycyclicalkanebiomarkerdistributionsindetail,meta-stablereactionmonitoring–gaschromatography–massspectrometry(MRM-GC-MS)was conducted on the saturated hydrocarbon frac-tionsfromrockbitumensandkerogenhydropyrolysateswithaWatersAutoSpecPremiermassspectrometer.ThespectrometerisequippedwithanAgilent7890AgaschromatographandDB-1MScoatedcap-illarycolumn(60m×0.25mm,0.25μmfilmthickness)usingsplitlessinjectionandHeforcarriergas.TheGCtemperatureprogramusedforcompoundseparationconsistedofaninitialholdat60°Cfor2min,heatingto150°Cat10°C/min,followedbyheatingto320°Cat3°C/min,andafinalholdat320°Cfor22min.MRMtransitionsforC27–C35 hopanes,C31–C36methylhopanes,C21–C22andC26–C30steranes,C30 methylsteranes, and C19–C26 tricyclics were monitored. Biomarkercompoundswere identified based on retention time and publishedmassspectraandquantified inMRM-GC-MSbycomparisonwithadeuteratedC29steraneinternalstandard(d4- ααα-24-ethylcholestane(20R);ChironLaboratories,AS)assumingequalresponsefactorsbe-tweensamplecompoundsandtheinternalstandard.Individualyieldsofhopaneandsteranediastereoisomersfoundinfulllaboratorypro-ceduralblanksweretypically0.4reflectanoxicdeposition.FePy/FeHRratiosabove0.8reflecteuxinicdeposition(Poulton&Canfield,2011).FeT/Al ratios below 0.4–0.5typicallyreflectoxicsettings,whilearatioof0.6–1.0likelyindicatesanoxia/euxinia.DashedlinerepresentsaverageoxicmarinevaluesfortheFespeciationdata.%Rc:vitrinitereflectanceequivalent;DOP:degreeofpyritization;FeHR:highlyreactiveiron;FePy:pyriteiron;FeT:totaliron;TIC:totalinorganiccarbon;TOC:totalorganiccarbon;TS:totalsulfur

  • 6  |     NGUYEN Et al.

    3  | RESULTS AND DISCUSSION

    3.1 | Total organic carbon, inorganic carbon, and total sulfur

    Totalorganiccarbon(TOC)content isappreciable inmostofthecoresamples(Figure1),withvaluesreachingashighas8.8wt.%(Supporting Information Table S1). The lower Velkerri ismarkedbytwoepisodeswhereTOCcontenthoversaround3.5wt.%onaverageforafewmetersrelativetoabaselinewithnear-zeroval-ues.ThemiddleVelkerrishowshigherTOCcontentsrangingfromroughly 5.5wt.% at 932m to amaximumof 8.8wt.% at 707m,withageneralup-core increase,beforeoscillatingbetweenverylowandvaluesashighas6.2wt.%intheupperVelkerri.Highor-ganic content observed in the Velkerri Formation is interpretedto reflecthighbut varyingorganic carbonburial against aback-dropofrelativelylowclasticdilution(Warren,George,Hamilton,& Tingate, 1998). TIC content for the majority of the sampleswasconsistentlylowthroughoutthesequence,rangingfrom0to1.2wt.%,withthelatterequatingtoabout10%calciumcarbonate.TSbehavedsimilarlytoTOC,rangingfromvaluesbelowdetectiontoamaximumof9.9wt.%at707minthemiddleVelkerribeforetaperingofftolowconcentrationsrangingfromvaluesbelowde-tection to1wt.% in theupperVelkerri (Figure1andSupportingInformationTableS1).

    3.2 | The iron paleoredox proxies and δ34S

    Highlyreactiveiron(FeHR)iscomprisedofpyriteiron(FePy)andotheriron-bearingphasesthatarereactivetowardsulfideinthewatercol-umnand/orduringearlydiagenesis—that is, ferric (oxyhydr)oxides(FeOx),magnetite(FeMag),andironassociatedwithcarbonates(FeCarb; Poulton&Canfield,2005).Modernmarinesedimentsdepositedbe-neathoxicwatersexhibitFeHR/FeTratiosthataverageabout0.2andseldomexceed0.38,whichisoftentreatedastheupperlimitforoxicdeposition(reviewedinPoulton&Canfield,2011).Valueswellabovethis threshold implyanoxicdeposition (Raiswell&Canfield,1998);cautionmustbeexercisedwheninterpretingdatathatfallnearthethresholdvalue.Theratiofortotalirontoaluminum,FeT/Al,canalsobeusedasanindicatorforwatercolumnanoxia ifFeenrichmentsare significantly above the average for continental crust (Lyons&Severmann,2006;Taylor&McLennan,1985).IfanoxiaisindicatedbyhighFeHR/FeTandFeT/Alratios,theFePy/FeHRratiocanfurtherdistinguishbetweenanoxiaandeuxinia.Undereuxinic conditions,appreciableFe2+andsolidhighlyreactiveFephasescannotcoexistsimultaneouslywithfreeH2Sinthewatercolumn—withtheresultofnear-completeconversionofFeHRtopyriteandthushighFePy/FeHR ratios.

    Values for FeHR/FeT and FeT/Al in the lower Velkerri are con-sistent with oxic deposition (Figure1 and Supporting InformationTables),withratiosfallingbelow0.2andslightlyabove0.4,respec-tively.However,oxicdepositioncanbedifficult todelineateusingtheironproxiesbecauserapidsedimentationcandilutethereactive

    Fepool(aswellasredox-sensitivetracemetals)—thatis,theenrich-mentsthatarediagnosticofanoxicconditions—viaextremedetritalinputs(Lyons&Severmann,2006).However,FeHR/FeTvaluesinthemiddleandupperunitsareoftenelevated,and thepersistenceofshales throughout all three subunitmakes it difficult to argue forsignificant temporalchanges in ratesorpatternsof sedimentationasrelated,forexample,tovaryingwaterdepth.Moreover,previouswork has shown that comprehensive dilution of the FeHR enrich-mentsthatarediagnosticofanoxiaseemstorequireextremelyhighratesofsedimentation(Lyons&Severmann,2006).Althoughfalsepositivesforoxicdepositionarepossible,weshouldbeabletorec-ognize theseextremesusingstandardsedimentologicalandstrati-graphiccriteria.Finally,thepresenceofsomehighvaluesforFePy/FeHR in the lower interval, despite lowFeHR/FeT, suggests sulfidicbuildupinporefluidsbeneathoxicbottomwaters,asisobservedinmarine sediments today (Canfield,Raiswell,&Bottrell, 1992).Thehigherobservedorganiccontentsofthesethinintervals,relativetothoseimmediatelyaboveandbelow,wouldhavefavoredintensedi-ageneticpyriteformation.

    Awater column transition to euxinia during deposition of themiddleVelkerri is suggestedby simultaneously elevatedFeHR/FeT,FeT/Al,andFePy/FeHR.Thesevaluestaperoffgraduallyupsectionataround850mandbecomepronounceagainat725m,suggestingatransienteuxinicphasefollowedbypersistenteuxinia.Euxiniaisalsoconvincingly indicatedfor thismiddle intervalbyhighDOPvaluesthatapproach1.0nearthetop(Figure1).Thesameupperportionofthemiddleintervalisalsomarkedbyanobviousdecreaseinδ34Svalues. Such isotopically light values can be interpreted to reflecta predominance ofwater column (euxinic) pyrite formation underopen-systemconditions (Lyons,1997).The remainingvaluesshowthe34Senrichmentsthataretypicalofthemid-Proterozoic,whichareoftenattributedtogenerallylowsulfateavailabilityintheoceanatthistime(Canfield,Farquhar,&Zerkle,2010;Kah,Lyons,&Frank,2004;Shen,Knoll,&Walter,2003).Theheaviestvalue,+25.8‰,oc-curs in theupperVelkerriandcloselymatchesapastestimate fortheisotopiccompositionofcoevalseawatersulfate(Muir,Donnelly,Wilkins,&Armstrong,1985).TowardtheupperVelkerri,valuesforFeT/Alremainelevated,whilethoseofFeHR/FeToscillate—suggest-ingferruginousandoxicconditions.FerruginousratherthaneuxinicconditionsareconfirmedbyintermediateFePy/FeHRratios.Overall,theironproxiessuggestatexturedpaleoredoxstructureforVelkerriFormation—fromoxicgradingtowardeuxinic inthelowerVelkerri,thentransientlyeuxinictopersistentlyeuxinicinthemiddleVelkerri,andfinallyoscillatingbetweenferruginousandoxicconditionsintheupperVelkerri.

    3.3 | Trace- metal proxies

    Molybdenum(Mo),uranium(U),andvanadium(V)concentrations(Figure2andTablesinSupportingInformation)areatcrustallev-els in the lowerVelkerribut reachamaximaof105ppmforMoand21ppmforUinthemiddleVelkerri.SimilarvaluesforMoandUwerepreviouslyobservedfromthesameunitsbyKendalletal.

  •      |  7NGUYEN Et al.

    (2009) and Partin etal. (2013), respectively.Mo, U, and V con-centrations return to crustal levels in theupperVelkerri. Strongenrichment inMoconvincinglyarguesforeuxinicdepositionbe-causeMoburial is favoredunderreducingconditionsmarkedbyappreciableH2Sinthewatercolumn,withthelowerenrichmentsbeingcharacteristicofsulfidethatisconfinedtotheporewaters(Scott&Lyons,2012).Molybdenumenrichmentcanalsotracktheavailabilityoforganiccarbon ineuxinic systems (Algeo&Lyons,2006),butweobservethesamestratigraphictrendforMo/TOC(Figure2)—suggesting thatwe are notmissing a euxinic intervalbecauseoflowTOC.UraniumandVontheotherhandrequirelessreducingconditionsandcanbeenrichedinsedimentsmarkedbyanoxicbutnotnecessarilyeuxinicconditions(Tribovillard,Algeo,Lyons,&Riboulleau,2006; seeSupporting Information for a re-lateddiscussionofVgeochemistryandPartinetal.,2013,forad-ditionalbackgroundonU).Pronouncedenrichmentsforallthreemetals, combinedwith the Fe proxy data, point convincingly todominantlyeuxinicconditionsinthemiddleVelkerri.Thehigh-endconcentrationsforMoandU inthis intervalareamongthe larg-estknownforthemid-Proterozoic.MagnitudesoflocalMoandUenrichmentineuxinicsedimentsarecontrolledinpartbythespa-tialextentofeuxiniaandanoxiaintheglobalocean(Partinetal.,2013;Reinhardetal.,2013;Scottetal.,2008).Assuch,theserela-tivelyhighMoandUvaluesmaymarkatransientoxidationeventin the ocean–atmosphere system during the mid-Proterozoic.Importantly, other recent, independent studies of Velkerri tracemetal and U isotope data have suggested transient, perhapsglobal-scalemarineoxygenation for this timeperiod (Mukherjee&Large,2016;Yangetal.,2017).

    ConcentrationsforMo,U,andVaboveandbelowthemiddlein-tervalareatnear-crustallevels.Despiteevidenceforintermittently

    ferruginouswatersintheupperpart,FeHR/FeT ratios are generally lowinbothintervals.Collectively,thetrace-metalandFespeciationresults imply at least moderate levels of marine oxygenation lo-cally,andperhapsglobally,throughouttheVelkerritimeofthemid-Proterozoic.Consequently,thesesamples,forbothlocalandglobalreasons, are particularly appropriate for our organic geochemicalsearchforeukaryotes.

    Consistent with our integrated, conceptual paleoredox modelfortheVelkerriFormation,manganese(Mn)concentrationbehavesantithetically toMo,U,andV,exhibiting lowvalues in theeuxinicintervals and high values when the prevailing redox was domi-nantlyoxic (lowerVelkerri)orvacillatingbetween ferruginousandoxic conditions (upper Velkerri). These Mn enrichments suggestgreaterMn-oxideburial,implyingappreciableoxygenperiodicallyinthewatercolumn(Calvert&Pedersen,1993;Froelichetal.,1979).Furthermore,MnappearstobetrackingTIC,whichweassumetore-flectauthigenicMn-richcarbonate.Inthiscase,theprerequisiteforMn-carbonateprecipitationisoxicbottomwaterswhereMnoxidesare trapped in the sediments and redox cycled repeatedly, result-ingindissolvedMnbuildupinthesubsurfaceanoxicportionsoftheporewaterprofileandsubsequentcarbonprecipitation (Calvert&Pedersen,1993,1996).

    3.4 | Lipid biomarkers

    Our inorganicgeochemical frameworkcanyieldnuanced informa-tion that can resolve longstanding questions about the extent ofmid-Proterozoiceukaryoticdevelopment, theenvironmentalback-ground,andthenutrientconditionsoftheirearlyevolution.Inthiscontext,welookforpossiblebiomarkersbytargetingstratathathadappreciablyhightotalorganiccarbon(TOC)content(>1wt.%);high

    F IGURE  2 ChemostratigraphicrecordsforAltree-2drillcorefortheVelkerriFormation,RoperGroupwithstratigraphicvariationsof:Mn;Mo;Mo/TOC;U;V;andtheprevalentmarineredoxconditionsforeachinterval.Mo/TOCpanelhasbeenculled(TOCwithvalues

  • 8  |     NGUYEN Et al.

    and lowMoconcentrations;andfaciesoverall that reflectvaryingdepositional redox environments, including independent sugges-tionsofatleastintermittentlyhospitableoxicconditionsinthewa-tersbelowthesurfacemixedlayer.Consequently,selectedsamplesfromAltree-2 core covermost of the Velkerri Formation, rangingfrom452to1,205mdepth(seeTable1).

    Althoughlipidbiomarkerscancontributetoabetterunderstand-ingofmid-Proterozoicoceanchemistryandbiology,importantana-lyticalself-consistencychecksarerequiredtoverifysyngenicityofthecompoundsdetected.Contaminationisaprimaryconcern—frommigrationofhydrocarbonsacross abillionormoreyearsofburialhistoryorfromoil-basedadditivesusedtodrillthecores(Grosjean&Logan,2007).Fortunately,wecanscreenforthispossibilitythroughmeticulousmethodologydesignedtoidentifyandpreventcontami-nation(Brocks,2011;Brocksetal.,2017;Flannery&George,2014;Frenchetal.,2015;Loveetal.,2009;Luo,Hallmann,Xie,Ruan,&Summons,2015;Pawlowska,Butterfield,&Brocks,2013;Zumbergeetal.,2018).

    Saturated and aromatic hydrocarbon fractions, obtained fromrockbitumensextractedfrominnercoreportions,wereanalyzedforthis study to generate various parameters such asmethylphenan-threneindex(MPI-1;Radke&Welte,1983),aswellasvarioushopaneandsteranemolecular ratios (Peters,Walters,&Moldowan,2005;Summons,Powell,&Boreham,1988).Theseconstraintswereusedtocheckforsystematicchangesinmaturityratioswithburialdepthtoensurethatthebitumenrecordshavenotbeencompromisedbyhigh thermal overprints or obvious exogenous hydrocarbon/othercontaminant inputs (Table1). Methylphenanthrene and phenan-threneratios, in thiscaseusing theMPI-1 index, (Table1)showedsystematic increases with increasing burial depth—values beganincreasing from0.49at725m (middleVelkerri) to ashighas1.48at1205m (lowerVelkerri).Thispattern isverysimilar toprevious

    reports of aromatic hydrocarbons from the same core (Summonsetal.,1994). Inaddition,data for%Rc (vitrinite reflectancecalcu-latedfromMPI-1)pointtoathermalmaturityrangeforthesesam-ples spanning fromearly oilwindow towithin themiddle intervaloftheoilwindow(Figure1,Table1),asindependentlyverifiedfromRock-Evaldata(hydrogenindex)andfromthealkanebiomarkerma-turityparameters.Cross-checkingwithratiosofC27hopanes18α(H)-22,29,30-trisnorneohopane(Ts)and17α(H)-22,29,30-trisnorhopane(Tm)—whereTsisthemoststablethermodynamicconfiguration,andthushighervaluesofTs/(Ts+Tm)representanincreaseinthermalmaturity (Seifert &Moldowan, 1978)—shows that the alkane andaromaticmaturityratiosareself-consistent.ATs/(Ts+Tm)ratioof0.59isobservedat452m(upperVelkerri);theseratiosincreasetoashighas0.78at852m.Highervaluesaregenerallyfoundindeepersamples, although mineralogy can exert a secondary control onabsolutevalues.Moreover,moretanes (βα–isomers)are thermody-namicallylessstablethantheαβ-hopanes,andthelowratiosofC30 βα–isomers/αβ–isomersobserved(0.06–0.07,Table1)fortheupperandmiddleVelkerristrataarealsoconsistentlyuncontaminatedho-panesignaturesfromrockswithintheoilwindow.

    Acrossthisfullgradientinoceanchemistry,asdistinguishedbyinorganic geochemical characteristics, we found no evidence forany C27–C30 sterane biomarkers in any samples at levels detect-able above our lowdetection limit usingMRM-GC-MS (estimatedat

  •      |  9NGUYEN Et al.

    orregularsteranespresentmustbelowerthan0.1ppmofthetotalalkane fractions in concentration. Overall, three important self-consistencycheckssupportourfindingthateukaryoticsteranebio-markers in these rocksareeither absentorpresent invanishinglysmall amounts below detection limits: (a) C27–30 regular steranes were also below detection limits in the hydropyrolysates derivedfrom the corresponding kerogen phases for seven pre-extractedrock powders, even though kerogen-bound hopaneswere detect-able;(b)anydetectableamountsofextractabletracesteraneswereonly found in outer exposed core portions, which are more sus-ceptibletocontaminant inputs,butwerecompletelyabsent inthepristine“inner”coreportionsanalyzedseparately(Figure3);and(c)short-chain sterane compounds (in our case,wemonitoredC21+22 steranesusingtheappropriateMRM-GC-MStransitions),whicharecommonlyfoundtogetherwiththeusualC27–C30parentsteranesinoilwindow-maturerocks,werealsoabsentintheinnercoreextracts

    andkerogenhydropyrolysates.Additionally,gammacerane,whichisthefossilalkanebiomarkerderivedfromtetrahymanolwhichcanbesynthesizedbyciliatedprotozoans,some low-oxygen-adapteduni-cellulareukaryotesaswellassomebacteria(Takashitaetal.,2017),isonlyfound intraceamountsrelativetohopanes intwosamplesandisbelowdetectionlimitsinalltheothers(Table1).

    Inadditiontothelackofdiscerniblesteranes,patternsoflinearandbranchedalkanes(mostlyintheC13–C24rangeforn-alkanesandmethylalkanesintotalionchromatograms),aswellasidentificationofrobusthopanesignalsusingMRM-GC-MSdetectionforboththebitumenandkerogenproducts(Figures4and5),suggestabacteri-allydominatedecologythatdroveprimaryproductivityasfoundpre-viously fromanalysesofextractablebitumenfrommiddleVelkerriFormationblackshalesfromtheWalton-2core(Flannery&George,2014).Analysesofoil inclusions fromtheBessieCreekSandstoneunderlying theVelkerriFormation (which is themost likely source

    F IGURE  4 ComparisonofC27–C33 hopanedistributionsfromMRM-GCMSofsaturatedhydrocarbonfractionsfor(a)Phanerozoicoilstandardand(b)Altree-2rockbitumenextract(ca.452mdepth)fromtheuppermemberoftheVelkerriFm.SeeTable1forpeakassignments

    Ts TmBNH

    29H

    29Tso

    30H

    30-nor30M

    31HS+R 32H

    S+R 33HS+Rγ

    (a)

    (b)

    TsTm

    29H

    29Ts

    30H

    SR S

    RS R

    Oil standard

    Velkerri Fm. (452 m)

    60:00 66:00 RT (min)62:00 64:00 68:0058:00

    F IGURE  5 Comparisonoffree(extractable)andkerogen-boundC27–C31 hopanesfromMRM-GCMSofsaturatedhydrocarbonfractionsfor(a)solvent-extractablebitumenand(b)kerogenhydropyrolysateofAltree-2samplefromca.452mdepth.SeeTable1forpeakassignments.MRMparent/daughtertransitions and relative abundances arealsoshown.Thekerogen-boundhopanesexhibitaslightlylessmaturediasteroisomericdistributionthanthefreehopanesduetostericprotectionthroughbindinginthekerogenmatrix(Loveetal.,1995),whichistheclassicancientbiomarkerpatternforrocksofallagesandapositivetestforsyngenicityofthehopaneseriesintheserocks 54:00 60:00 66:00

    C31H426→191

    45 | 18

    C30H412→191

    97 | 42

    C29H398→191100 | 100

    C27H370→191

    72 | 91

    TsTm

    αβ

    Tsβαdia

    dia

    αβ

    βα

    diaS+R

    R

    Tm

    Ts

    (a) (b)

    βα

    αβ

    βα

    αβ

    βα

    βα

    Sαβ

    RSαβ

    27β

    RT (min) 54:00 60:00 66:00 RT (min)

  • 10  |     NGUYEN Et al.

    rock) revealedabroadrangebiomarkersderivedmainly frombac-teria but either lacking or having only trace quantities of eukary-oticsteranebiomarkers(Dutkiewicz,Volk,Ridley,&George,2003).Overall,thegeochemistryoftheoilinclusions,intermsofthemajorhydrocarbonconstituents,isverysimilartothebitumenandsourcerocksobserved from theRoperGroup (Flannery&George, 2014;Volk,Dutkiewicz,George,&Ridley,2003;Volk,George,Dutkiewicz,&Ridley, 2005). Further, since other polycyclic biomarker alkaneswere preserved in these rocks (such as tricyclic terpanes and ho-panes),theabsenceofsteranesignal isnotduetopoorbiomarkerpreservationarisingfromstructuralmodificationordestructionduetothermalcrackingduringburialmaturation,consistentwiththelowthermalgradeofthestrataasalreadydemonstrated.

    Notonlywereregularsteranesabsentintheeuxinicinterval,buttheywerealsonotdetectedintherelativelymoreoxicfacies,sug-gestingthat(steroid-synthesizing)eukaryoteswerenotecologicallywidespreadandabundantinsuchdistalshelfmarinesettingsduringthismid-Proterozoic interval—in contrast to the later Proterozoic.Previousmodelshaveassertedthatlownutrientavailabilityandas-sociateddeficiencies in oxygenmayhave throttled early diversityandabundancesofeukaryotes(Anbar&Knoll,2002;Javaux,Knoll,&Walter,2001;Lyonsetal.,2014;Reinhardetal.,2013).Alternatively,a taphonomicbiaseffecthasbeenproposed for lowpreservationpotential of steroids in mid-Proterozoic rocks (Pawlowska etal.,2013), a hypothetical mechanism termed the “mat-seal effect” inwhichenhancedmicrobialreworkingofsteroidlipidsdepositedonthesurfaceofbenthicmicrobialmatswasproposedtopreferentiallydepletesedimentarysteroidcompoundsintheextractablebitumenphase.Inourstudy,wefindnoevidencefor(a)shortsteranecom-pounds (C21+22steranes)withpartiallydegradedside-chains intherockbitumens,or (b)oranyboundsteranecompoundscovalentlylinkedwithinthe(insoluble)kerogenphasewhichwouldhavebeensequesteredearlyinthedepositionalhistory.Ithasbeenshownpre-viouslyfromarangeofmodernaquaticenvironmentsthatkerogenformationcommencesveryearlyduringdiagenesis,beginninginthewatercolumnandresultinginappreciablesequestrationofbiolipidsintoan insolublemacromolecularorganicphase that isnot readilybiodegradable (Farrimond etal., 2003). Since the macromolecularhostmatrixprotectstheboundmolecularconstituentsfrommicro-bial degradation, the complete lack of any free or kerogen-boundsterane biomarkers detected in Velkerri Fm. rocks shown heresuggeststhatthedearthofregularsteranesisunlikelytobeacon-sequenceofa“mat-seal”taphonomicbiasoperatingagainstpreser-vationofancientsteroidbiomarkers.

    FullscanGC-MSanalysisofaromaticfractionsfromtherockbi-tumensalsorevealednodiscerniblearomaticcarotenoidbiomarkersderivedfromanoxygenicphotosyntheticbacteria,suchasChlorobi,in 133 and 134Da mass chromatograms. Despite other series ofpolyaromatic hydrocarbons being abundant, both the 2,3,6- and2,3,4-trimethyl-substitutedarylisoprenoidalserieswerebelowourdetection limit estimated at 1ppm of the total mass of aromatichydrocarbonsfor individualcompounds.Abundantaromaticcarot-enoid biomarkers for both green and purple sulfur bacteria were

    detectedpreviouslyinrocksofthe1.64GaBarneyCreekFormation,alsofromtheMcArthurBasin(Brocksetal.,2005).Incontrast,theVelkerri Formation shows no detectable aryl isoprenoids and C40 parent carotenoid markers for anoxygenic phototrophic bacteria,which suggests that photic zone euxinia was not commonly sus-tainedinthedepositionalenvironment.Further,sincethewatercol-umndepthforVelkerriFm.strata,depositedindeepmarinesettingsontheouterslopeandmoredistal,islikelytohavebeensignificantlydeeperthanphoticzonewaterdepths(typicallydowntoca.100m),then proliferation of photosynthetic benthicmats on the seafloorwouldbelikelyunsustainableduetolowlightlevelrestrictions.

    With our new results,we can comfortably assert that the ab-sence of diagnostic biomarkers for eukaryotic organisms is nota product of locally inhospitable conditions due to a continuousabsence of oxygen in the bottom waters and a correspondingpersistenceof anoxiaor euxinia. The suggestion, then, is that theenvironmentoftheVelkerriFormationmayhavebeen,ifanything,morefavorablethanmanymid-Proterozoicsettings.Specifically,theVelkerriwaslikelymarkedbyatleastepisodicallyhospitablewatersduringanintervalinEarthhistorymoregenerallycharacterizedbydelayed eukaryotic proliferation inmore prominently inhospitableoceans.Inotherwords,theVelkerriFormationprovidesaspecialifnotuniqueenvironmentalwindowtosampletheglobalevolutionarystateofcomplexlife—freeoflocalredoxbias.

    Molecular clock studies (Gold, Caron, Fournier, & Summons,2017)predictthatsterolsynthesisevolvedearlyineukaryoticevo-lution significantly prior to the diversification of crown group eu-karyotesandthat the lasteukaryoticcommonancestorLECAwasprobablycapableofmakingsterols(Desmond&Gribaldo,2009).Insupport of this, bacterially derived steroidswithmethylation pre-servedatC-4(Wei,Yin,&Welander,2016)havebeenreportedinimmaturerocksfromca.1.64GaBarneyCreekFormation (Brocksetal., 2005) showing that steroid synthesis significantly predatesthe1.3–1.4GaRoperGroup.Afundamentalconclusionofourstudythen is that eukaryotes did not make significant contributions tothe sedimentaryorganicmatter deposited in theMcArthurBasin,asgaugedfrombiomarkerabundancepatterns,suggestingthateu-karyoteswerenotabundantmarineprimaryproducersduringthisintervalof themid-Proterozoic.One importantcaveat is that low-oxygen-adaptedeukaryoteswhichdidnotpossesssterolsmayhavebeenpartofthecommunitystructure,sinceafewanaerobicprotistshaverecentlybeenshowntolackeithersterolsortetrahymanolintheircellmembranes(Takashitaetal.,2017).Bothalowabundanceof microbial eukaryotes relative to bacteria and the possibility ofadaptedeukaryoticprotists thatdidnotmakesteroidsor tetrahy-manolcanpotentiallyreconcilethefindingofeukaryoticmicrofossilsinRoperGroupstrata(Javaux,Knoll,&Walter,2004)butnodetect-ablerecordofestablishedeukaryoticbiomarkers.

    Arecentconsensushasemergedfromcarefulanalysisoflowma-turityancientsedimentaryrocksthatC27–C30steranes,biomarkerssourcedfromeukaryotes,arebelowdetectioninrockbitumensformid-Proterozoic strata andmore generally in rocks older than ca.800Ma (Blumenberg, Thiel, Riegel, Kah, & Reitner, 2012; Brocks

  •      |  11NGUYEN Et al.

    etal., 2005, 2015, 2017; Flannery & George, 2014; French etal.,2015; Isson etal., 2018; Luo etal., 2015; Pawlowska etal., 2013).Indeed, theoldest robust reports of ancient steranes derive fromrocksoftheChuarGroupandVisingsöGroup(700–800Ma)usingthehighsensitivityofMRM-GC-MSforbiomarkerdetection(Brocksetal.,2015,2017).Incontrast,abundanthopanesderivedfromdi-versebacterialsourceareubiquitousinimmaturerocksasfarbackas1.64Ga(Brocksetal.,2005).Themostparsimoniousinterpretationofthelackofdetectablesteranesinourviewisthataerobiceukary-otesdidnotbecomeecologicallywidespreadandabundant in theglobaloceansuntilwell into theNeoproterozoicera (Brocksetal.,2017) and that source biota in mid-Proterozoic and older oceansweredominatedbybacteria(Brocksetal.,2005,2017;Flannery&George,2014;Issonetal.,2018;Luoetal.,2015).Arecentmolecu-larclockanalysis(Gibsonetal.,2017)predictsthatphotosynthesisdidnotactuallyemergeinEukaryauntilca.1.25Ga,andthiscouldhelpexplainthebacterialecologicaldominanceofRoperGroupbio-markerassemblages,althoughthedivergencetimeuncertaintiesforsuchestimatescanbe largeand this innovationdoesnotcoincidewiththeubiquityofeukaryoticsteranesinancientrocksbeingde-layeduntilca.800Maandyounger,asdescribedabove.

    Previous microfossil studies indicate only a modestMesoproterozoic eukaryote diversity as gauged from acritarchs(Beghin etal., 2017; Javaux etal., 2004), even from settings in-terpreted as oxic in the Mesoproterozoic ocean (Sergeev, Knoll,Vorob’eva,&Sergeeva,2016;Sperlingetal.,2014).Furthermore,theapparentdisparitybetweensomeoccurrencesofMesoproterozoiceukaryotic acritarchs yet no detectable record of regular ster-anesappearstocontinuetill1.0GaintheMalginFormationoftheSiberianPlatform(Suslova,Parfenova,Saraev,&Nagovitsyn,2017),while thermally immature rocks from the1.1GaAtarGroupwerealso shown tobedevoidof steroidbiomarkers (Blumenbergetal.,2012).Whilemicrofossil analysis is themost sensitive and appro-priate approach for assessing the first appearance of eukaryoticcellsinancientsedimentaryrocks,discernibleacritarchmicrofossilstypically represent only a smallmass fraction of the total ancientsedimentaryorganicmatter (mainly amorphous kerogen) and thusit isdifficult toquantify theeukaryoticcontributionswithout lipidbiomarkersourceinputconstraints.InsightsfromacombinationofmicrofossilandbiomarkerapproachesinthestudiesofProterozoicgeobiologyarehenceusefulandcomplementary.

    4  | CONCLUSIONS

    Ironandtrace-metaldatafromtheVelkerriFormationrevealthattherewasmoreapparenttemporalvariabilityinthemarineredoxconditions, at least locally and perhaps globally, during themid-Proterozoic than was previously recognized through analysis ofthesameinterval (Kendalletal.,2009;Mukherjee&Large,2016;Shen,Canfield,&Knoll,2002;Shenetal.,2003;Yangetal.,2017).Overall, the system appears to have evolved from one that wasdominantlyoxicduringdepositionofthelowerVelkerriFormation

    toeuxinicinthemiddleVelkerri.Morespecifically,themiddleunitismarkedbyevidenceforatransientperiodofeuxiniabracketedbyevidenceformorepersistentwatercolumnsulfidepriortothedep-ositionoftheupperVelkerri,assupportedbythecombinedFeandModata.TheupperVelkerriFormationshowsanintriguingcombi-nationoflowtrace-metalabundancesbutnumerousFespeciationdatasuggestingfrequentferruginousbutnoteuxinicdeposition—withotherFespeciationdatathataremorereasonablyattributedtooxicconditions.ThelackofUandVenrichmentplacespossibleconstraintson the limiteddurationof theanoxicconditions—andtherelativeratesofUandVversusFeenrichment—andthepos-sibilityofVandUremobilizationunderconditionsofrapidredoxvariability(andsubsequentoxicoverprintsspecifically).TheFesig-naturesof ferruginous conditions, by contrast, couldbe retainedevenifreducedFephaseswereoxidized.Themostlikelyscenariofortheupperintervalisoneofoscillatoryredoxbetweenoxicandanoxicmarinedeposition.

    Arecentviewofthemid-ProterozoicoceanredoxstructurewaspresentedinPlanavskyetal.(2011)andPoultonandCanfield(2011),whichsuggestsadominantly ferruginousdeepoceanwitheuxinialimitedtoproductivemargins(seealsoReinhardetal.,2013;asre-viewed in Lyons etal., 2014).Ourdata—specifically comparativelyhigh Mo contents in the middle euxinic interval and suggestionsfrom the Fe speciation data for at least intermittently oxic condi-tions above and below, perhaps at some appreciablewater depthgiventhefine-grainednatureofthesediments—suggestredoxvari-ability and an interval of relatively oxic marine conditions in themid-Proterozoic. The depth, lateral extent, and concentrations ofmarineoxygenationaredifficulttoconstrainandinnowayunambig-uouslydemandwidespreadoxygenationduringthisinterval.Theseinferred conditions for the Velkerri Formation do, however,makeit a particularly attractive target in our search for eukaryotic bio-signatures—withinaframeworkofboth localandglobalredoxandimpliednutrientcontrols.Moreover,weshouldbeabletoinferqual-itativelyvariationsinproductivityandorganicmatterpreservationacross local redoxgradients, if those localcontrolsdominated theeukaryoticsignalstrength.Inotherwords,welookedforeukaryoticsignalsinfaciesexpectedtofavortheirproduction(oxic)andpres-ervation(anoxic)—recognizingthatanoxicbottomwaterscanrecord(withstrongfidelity)eukaryoticproductioninshallow,overlyingoxicwaters.Atthesametime,proximaldeeperanoxicwaterscanchal-lengeshalloweukaryoticlifethroughupwardmixingofthosewaters(Hardistyetal.,2017).

    Despiteourcareful, independentconsiderationofprimaryredoxcontrols, biomarker data across the three intervals of the VelkerriFormation show no clear evidence for the presence of the regularsteranecompoundsthatareconsidereddiagnosticofeukaryoticlife,eveninstratawithappreciableTOCandsuggestionsofoxicdeposi-tion.Inaddition,therearenosignificantdetectablelevelsofaromaticcarotenoidbiomarkersforgreenandpurplesulfurbacteria;thus,sub-stantial anoxygenic photosynthesis could not have been supportedasamajormodeofprimaryproductionatleastinthissettingatthistime (Johnston etal., 2009). The lack of aryl isoprenoids and C40

  • 12  |     NGUYEN Et al.

    parentcarotenoidmarkersforanoxygenicphototrophicbacteriaintheVelkerriFormationcontrastsbiomarkerevidence forgreenandpur-plesulfurbacteriafoundintheolderBarneyCreekFormation(Brocksetal., 2005).Weare leftwith the conclusion that photic zoneeux-inia,ifpresent,wasperhapsofrelativelylimitedextentduringdeposi-tionoftheVelkerriFormationeventhoughdeepereuxinicconditionswererelativelywidespreadcomparedtothemodernrecord(Reinhardetal.,2013).Whileweareprovidingonlyonesnapshotof themid-Proterozoicworld,italsoraisesdoubtsastowhethereuxiniawasshal-lowandabundantenoughtosupportappreciableanoxygenicprimaryproductionviasulfideoxidation—particularlyinopenmarinesettings.Overall, the absence of eukaryotic biomarker signals in our sam-ples—despiteourcarefulsearchwithinapaleoenvironmentalcontextinformedby ironmineraland traceelementgeochemistry—suggeststhatothercontrolssuchassynergisticlong-termnutrientandecolog-icalfactorsmayhaveheldcomplexeukaryoticlifeatbaypendingtheprofoundenvironmentalchangesthatmarkedthelaterProterozoic.

    ACKNOWLEDG MENTS

    Funding was provided by the Earth-Life Transitions and FESDprograms of the U.S. National Science Foundation and theNASA Astrobiology Institute under Cooperative Agreement No.NNA15BB03AissuedthroughtheScienceMissionDirectorate.GDLthankstheAgouronInstitutefortheAutospecGC-MSinstrumentatUCR.Manythankstothepeoplewhohelpedwithlaboratorywork,analysis,anddiscussion:DaltonHardisty,EmilyHaddad,RosemarieBisquera, Konstantin Choumiline, Petra Schoon, Alexandria Ruiz,LauraWehrmann,NataschaRiedinger,andMichaelDahl.

    CONFLIC T OF INTERE S T

    Theauthorsdeclarenoconflictinginterests,financialorotherwise.

    ORCID

    Gordon D. Love https://orcid.org/0000-0002-6516-014X

    R E FE R E N C E S

    Abbott, S. T., & Sweet, I. P. (2000). Tectonic control on third-ordersequences in a siliciclastic ramp-style basin: An example fromthe Roper Superbasin (Mesoproterozoic), northern Australia.Australian Journal of Earth Sciences, 47, 637–657. https://doi.org/10.1046/j.1440-0952.2000.00795.x

    Algeo,T.J.,&Lyons,T.W.(2006).Mo–totalorganiccarboncovariationinmodernanoxicmarineenvironments:Implicationsforanalysisofpaleoredoxandpaleohydrographicconditions.Paleoceanography,21,PA1016.https://doi.org/10.1029/2004pa001112

    Anbar,A.D.,&Knoll,A.H.(2002).Proterozoicoceanchemistryandevo-lution: A bioinorganic bridge? Science,297, 1137–1142. https://doi.org/10.1126/science.1069651

    Beghin,J.,Storme,J.-Y.,Blanpied,C.,Gueneli,N.,Brocks,J.J.,Poulton,S.W.,&Javaux,E.J.(2017).MicrofossilsfromthelateMesoproterozoic– Early Neoproterozoic Atar/El Mreiti Group, Taoudeni Basin,

    Mauritania,northwesternAfrica.Precambrian Research,291,63–82.https://doi.org/10.1016/j.precamres.2017.01.009

    Bekker,A.,Holland,H.,Wang,P.-L.,Rumble,D.,Stein,H.,Hannah,J.,…Beukes,N. (2004).Dating the rise of atmospheric oxygen.Nature,427,117–120.https://doi.org/10.1038/nature02260

    Blumenberg, M., Thiel, V., Riegel, W., Kah, L. C., & Reitner, J.(2012). Biomarkers of black shales formed by microbial mats,Late Mesoproterozoic (1.1 Ga) Taoudeni Basin, Mauritania.Precambrian Research, 196–197, 113–127. https://doi.org/10.1016/j.precamres.2011.11.010

    Brasier,M.D.,&Lindsay, J.F. (1998).Abillionyearsofenvironmentalstabilityandtheemergenceofeukaryotes:NewdatafromnorthernAustralia. Geology,26,555–558.https://doi.org/10.1130/0091-7613(1998)026<0555:ABYOES>2.3.CO;2

    Brocks, J. J. (2011).Millimeter-scaleconcentrationgradientsofhydro-carbonsinArcheanshales:Live-oilescapeorfingerprintofcontam-ination? Geochimica et Cosmochimica Acta,75, 3196–3213. https://doi.org/10.1016/j.gca.2011.03.014

    Brocks, J. J., Jarrett,A. J.M.,Sirantoine,E.,Hallmann,C.,Hoshino,Y.,Liyanage, T. (2017). The rise of algae in Cryogenian oceans andthe emergence of animals. Nature, 548, 578–581. https://doi.org/10.1038/nature23457

    Brocks, J. J., Jarrett, A. J., Sirantoine, E., Kenig, F., Moczydlowska,M., Porter, S.,&Hope, J. (2015). Early sponges and toxic protists:Possiblesourcesofcryostane,anagediagnosticbiomarkerantedat-ingSturtianSnowballEarth.Geobiology,14,129–149.

    Brocks, J. J.,Love,G.D.,Summons,R.E.,Knoll,A.H.,Logan,G.A.,&Bowden, S. A. (2005). Biomarker evidence for green and purplesulphur bacteria in a stratified Palaeoproterozoic sea.Nature,437,866–870.https://doi.org/10.1038/nature04068

    Buick,R.,DesMarais,D.J.,&Knoll,A.H. (1995).Stable isotopiccom-positionsofcarbonatesfromtheMesoproterozoicBangemallgroup,northwesternAustralia.Chemical Geology,123,153–171.https://doi.org/10.1016/0009-2541(95)00049-R

    Calvert, S. E., & Pedersen, T. F. (1993). Geochemistry of re-cent oxic and anoxic marine sediments: Implications for thegeological record. Marine Geology, 113, 67–88. https://doi.org/10.1016/0025-3227(93)90150-T

    Calvert, S. E., & Pedersen, T. F. (1996). Sedimentary geochemistry ofmanganese; implicationsfortheenvironmentofformationofman-ganiferous black shales. Economic Geology, 91, 36–47. https://doi.org/10.2113/gsecongeo.91.1.36

    Canfield, D. E. (1998). A newmodel for Proterozoic ocean chemistry.Nature,396,450–453.https://doi.org/10.1038/24839

    Canfield,D.E.,Farquhar,J.,&Zerkle,A.L.(2010).Highisotopefraction-ationsduringsulfatereductioninalow-sulfateeuxinicoceananalog.Geology,38,415–418.https://doi.org/10.1130/G30723.1

    Canfield,D.E.,Raiswell,R.,&Bottrell,S.H.(1992).Thereactivityofsed-imentary ironminerals toward sulfide.American Journal of Science,292,659–683.https://doi.org/10.2475/ajs.292.9.659

    Canfield,D.E.,Raiswell,R.,Westrich,J.T.,Reaves,C.M.,&Berner,R.A.(1986).Theuseofchromiumreductionintheanalysisofreducedinorganicsulfurinsedimentsandshales.Chemical Geology,54,149–155.https://doi.org/10.1016/0009-2541(86)90078-1

    Crick, I. H. (1992). Petrological and maturation characteristics of or-ganicmatterfromthemiddleProterozoicMcArthurBasin,Australia.Australian Journal of Earth Sciences, 39, 501–519. https://doi.org/10.1080/08120099208728042

    Derry, L. A. (2015). Causes and consequences ofmid-Proterozoic an-oxia. Geophysical Research Letters, 42, 8538–8546. https://doi.org/10.1002/2015GL065333

    Desmond,E.,&Gribaldo,S. (2009).Phylogenomicsofsterolsynthesis:Insights into the origin, evolution, and diversity of a key eukary-oticfeature.Genome Biology and Evolution,1,364–381.https://doi.org/10.1093/gbe/evp036

    https://orcid.org/0000-0002-6516-014Xhttps://orcid.org/0000-0002-6516-014Xhttps://doi.org/10.1046/j.1440-0952.2000.00795.xhttps://doi.org/10.1046/j.1440-0952.2000.00795.xhttps://doi.org/10.1029/2004pa001112https://doi.org/10.1126/science.1069651https://doi.org/10.1126/science.1069651https://doi.org/10.1016/j.precamres.2017.01.009https://doi.org/10.1038/nature02260https://doi.org/10.1016/j.precamres.2011.11.010https://doi.org/10.1016/j.precamres.2011.11.010https://doi.org/10.1130/0091-7613(1998)026%3c0555:ABYOES%3e2.3.CO;2https://doi.org/10.1130/0091-7613(1998)026%3c0555:ABYOES%3e2.3.CO;2https://doi.org/10.1016/j.gca.2011.03.014https://doi.org/10.1016/j.gca.2011.03.014https://doi.org/10.1038/nature23457https://doi.org/10.1038/nature23457https://doi.org/10.1038/nature04068https://doi.org/10.1016/0009-2541(95)00049-Rhttps://doi.org/10.1016/0009-2541(95)00049-Rhttps://doi.org/10.1016/0025-3227(93)90150-Thttps://doi.org/10.1016/0025-3227(93)90150-Thttps://doi.org/10.2113/gsecongeo.91.1.36https://doi.org/10.2113/gsecongeo.91.1.36https://doi.org/10.1038/24839https://doi.org/10.1130/G30723.1https://doi.org/10.2475/ajs.292.9.659https://doi.org/10.1016/0009-2541(86)90078-1https://doi.org/10.1080/08120099208728042https://doi.org/10.1080/08120099208728042https://doi.org/10.1002/2015GL065333https://doi.org/10.1002/2015GL065333https://doi.org/10.1093/gbe/evp036https://doi.org/10.1093/gbe/evp036

  •      |  13NGUYEN Et al.

    Dutkiewicz,A.,Volk,H.,Ridley,J.,&George,S.C. (2003).Biomarkers,brines,andoilintheMesoproterozoic,RoperSuperbasin,Australia.Geology,31,981–984.https://doi.org/10.1130/G19754.1

    Farrimond,P.,Love,G.D.,Bishop,A.N., Innes,H.E.,Watson,D.F.,&Snape, C. E. (2003). Evidence for the rapid incorporation of ho-panoids into kerogen.Geochimica et Cosmochimica Acta,67, 1383–1394.https://doi.org/10.1016/S0016-7037(02)01287-5

    Flannery,E.N.,&George,S.C.(2014).Assessingthesyngeneityandindi-geneityofhydrocarbonsinthe~1.4GaVelkerriFormation,McArthurBasin, using slice experiments.Organic Geochemistry,77, 115–125.https://doi.org/10.1016/j.orggeochem.2014.10.008

    French, K. L., Hallmann, C., Hope, J. M., Schoon, P. L., Zumberge, J.A., Hoshiono, Y., … Summons, R. E. (2015). Reappraisal of hydro-carbon biomarkers in Archean rocks. Proceedings of the National Academy of Sciences,112(19), 5915–5920. https://doi.org/10.1073/pnas.1419563112

    Froelich,P.N.,Klinkhammer,G.P.,Bender,M.L.,Luedtke,N.A.,Heath,G.R.,Cullen,D.,…Maynard,V.(1979).EarlyoxidationoforganicmatterinpelagicsedimentsoftheeasternequatorialAtlantic:Suboxicdia-genesis. Geochimica et Cosmochimica Acta,43, 1075–1090.https://doi.org/10.1016/0016-7037(79)90095-4

    Gibson,T.M.,Shih,P.M.,Cumming,V.M.,Fischer,W.W.,Crockford,P.W.,Hodgskiss,M.S.W.,…Halverson,G.P.(2017).PreciseageofBangiomorpha pubescensdatestheoriginofeukaryoticphotosynthe-sis. Geology,46,135–138.

    Gold, D. A., Caron, A., Fournier, G. P., & Summons, R. E. (2017).Paleoproterozoicsterolbiosynthesisandtheriseofoxygen.Nature,543,420–423.https://doi.org/10.1038/nature21412

    Grosjean, E.,& Logan,G.A. (2007). Incorporation of organic contam-inants into geochemical samples and an assessment of potentialsources:Examples fromGeoscienceAustraliamarinesurveyS282.Organic Geochemistry, 38, 853–869. https://doi.org/10.1016/j.orggeochem.2006.12.013

    Hardisty,D.S.,Lu,Z.,Bekker,A.,Diamond,C.W.,Gill,B.C.,Jiang,G.,…Lyons,T.W.(2017).PerspectivesonProterozoicsurfaceoceanredoxfrom iodine contents in ancient and recent carbonate. Earth and Planetary Science Letters, 463, 159–170. https://doi.org/10.1016/j.epsl.2017.01.032

    Isson,T.T.,Love,G.D.,Dupont,C.L.,Reinhard,C.T.,Zumberge,J.A.,Asael,D.,…Planavsky,N.J.(2018).Trackingtheriseofeukaryotestoecologicaldominancewithzincisotopes.Geobiology,16,341–352.https://doi.org/10.1111/gbi.12289

    Jackson, M. J., Powell, T. G., Summons, R. E., & Sweet, I. P. (1986).Hydrocarbon shows and petroleum source rocks in sedimentsas old as 1.7 × 109 years. Nature, 322, 727–729. https://doi.org/10.1038/322727a0

    Jackson,M.J.,&Raiswell,R.(1991).Sedimentologyandcarbon-sulphurgeochemistryoftheVelkerriFormation,amid-Proterozoicpotentialoil source innorthernAustralia.Precambrian Research,54,81–108.https://doi.org/10.1016/0301-9268(91)90070-Q

    Jackson, M. J., Sweet, I. P., Page, R. W., & Bradshaw, B. E. (1999).The South Nicholson and Roper Groups: Evidence for the earlyMesoproterozoicRopersuperbasin.InB.E.Bradshaw&D.L.Scott(Eds.),Integrated basin analysis of the Isa superbasin using seismic, well-log, and geopotential data: An evaluation of the economic potential of the Northern Lawn Hill Platform.Canberra,ACT:AustralianGeologicalSurveyOrganisationRecord19.

    Jackson,M.J.,Sweet,I.,&Powell,T.G.(1988).PetroleumgeologyandgeochemistryoftheMiddleProterozoic,McArthurBasin,NorthernAustralia.I:Petroleumpotential.Aust. Petrol. Explor. Assoc. J,28,283.

    Javaux, E. J., Knoll, A. H., &Walter,M. R. (2001).Morphological andecological complexity in early eukaryotic ecosystems.Nature,412,66–69.https://doi.org/10.1038/35083562

    Javaux,E.J.,Knoll,A.H.,&Walter,M.R.(2004).TEMevidenceforeu-karyoticdiversityinmid-Proterozoicoceans.Geobiology,2,121–133.https://doi.org/10.1111/j.1472-4677.2004.00027.x

    Johnston, D. T., Wolfe-Simon, F., Pearson, A., & Knoll, A. H. (2009).Anoxygenic photosynthesis modulated Proterozoic oxygen and sus-tainedEarth’smiddleage.Proceedings of the National Academy of Sciences,106,16925–16929.https://doi.org/10.1073/pnas.0909248106

    Kah,L.C.,Lyons,T.W.,&Frank,T.D.(2004).Lowmarinesulphateandprotracted oxygenation of the Proterozoic biosphere.Nature,431,834–838.https://doi.org/10.1038/nature02974

    Kendall, B., Creaser, R.A.,Gordon,G.W.,&Anbar,A.D. (2009). Re–Os and Mo isotope systematics of black shales from the MiddleProterozoicVelkerriandWollogorang formations,McArthurBasin,northern Australia. Geochimica et Cosmochimica Acta, 73, 2534–2558.https://doi.org/10.1016/j.gca.2009.02.013

    Knoll, A. H., Javaux, E. J., Hewitt, D., & Cohen, P. (2006). Eukaryoticorganisms in Proterozoic oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 1023–1038. https://doi.org/10.1098/rstb.2006.1843

    Laakso,T.A.,&Schrag,D.P. (2017).A theoryofatmosphericoxygen.Geobiology,15(3),366–384.https://doi.org/10.1111/gbi.12230

    Love,G.D.,Grosjean,E.,Stalvies,C.,Fike,D.A.,Grotzinger,J.P.,Bradley,A. S.,… Summons,R. E. (2009). Fossil steroids record the appear-anceofDemospongiaeduring theCryogenianperiod.Nature,457,718–722.https://doi.org/10.1038/nature07673

    Love,G.D.,Snape,C.E.,Carr,A.D.,&Houghton,R.C.(1995).Releaseofcovalently-boundbiomarkersinhighyieldsfromkerogenviacata-lytichydropyrolysis.Organic Geochemistry,23,981–986.https://doi.org/10.1016/0146-6380(95)00075-5

    Luo, G., Hallmann, C., Xie, S., Ruan, X., & Summons, R. E. (2015).Comparative microbial diversity and redox environments of blackshale and stromatolite facies in the Mesoproterozoic XiamalingFormation.Geochimica et Cosmochimica Acta,151,150–167.https://doi.org/10.1016/j.gca.2014.12.022

    Luo,G.,Ono,S.,Beukes,N. J.,Wang,D.T.,Xie, S.,&Summons,R.E.(2016).RapidoxygenationofEarth’satmosphere2.33billionyearsago. Science Advances, 2, e1600134. https://doi.org/10.1126/sciadv.1600134

    Lyons, T. W. (1997). Sulfur isotopic trends and pathways of iron sul-fide formation in upper Holocene sediments of the anoxic BlackSea.Geochimica et Cosmochimica Acta,61, 3367–3382. https://doi.org/10.1016/S0016-7037(97)00174-9

    Lyons,T.W.,Reinhard,C.T.,&Planavsky,N.J.(2014).Theriseofoxy-geninEarth/’searlyoceanandatmosphere.Nature,506,307–315.https://doi.org/10.1038/nature13068

    Lyons,T.W.,Reinhard,C.T.,&Scott,C.(2009).Redoxredux.Geobiology,7,489–494.https://doi.org/10.1111/j.1472-4669.2009.00222.x

    Lyons,T.W.,&Severmann,S.(2006).Acriticallookatironpaleoredoxproxies:Newinsightsfrommoderneuxinicmarinebasins.Geochimica et Cosmochimica Acta, 70, 5698–5722. https://doi.org/10.1016/j.gca.2006.08.021

    Muir,M.,Donnelly, T.,Wilkins, R.,&Armstrong,K. (1985). Stable iso-tope, petrological, and fluid inclusion studiesofminormineral de-posits from the McArthur Basin: Implications for the genesis ofsomesediment-hostedbasemetalmineralizationfromtheNorthernTerritory.Australian Journal of Earth Sciences,32,239–260.https://doi.org/10.1080/08120098508729328

    Mukherjee,I.,&Large,R.R.(2016).PyritetraceelementchemistryoftheVelkerriFormation,RoperGroup,McArthurBasin:Evidenceforatmo-sphericoxygenationduringtheBoringBillion.Precambrian Research,281,13–26.https://doi.org/10.1016/j.precamres.2016.05.003

    Och,L.M.,&Shields-Zhou,G.A. (2012).TheNeoproterozoicoxygen-ation event: Environmental perturbations and biogeochemical cy-cling. Earth- Science Reviews, 110, 26–57. https://doi.org/10.1016/j.earscirev.2011.09.004

    Parfrey,L.W.,Lahr,D.J.G.,Knoll,A.H.,&Katz,L.A.(2011).Estimatingthe timing of early eukaryotic diversification with multigene mo-lecularclocks.Proceedings of the National Academy of Sciences,108,13624–13629.https://doi.org/10.1073/pnas.1110633108

    https://doi.org/10.1130/G19754.1https://doi.org/10.1016/S0016-7037(02)01287-5https://doi.org/10.1016/j.orggeochem.2014.10.008https://doi.org/10.1073/pnas.1419563112https://doi.org/10.1073/pnas.1419563112https://doi.org/10.1016/0016-7037(79)90095-4https://doi.org/10.1016/0016-7037(79)90095-4https://doi.org/10.1038/nature21412https://doi.org/10.1016/j.orggeochem.2006.12.013https://doi.org/10.1016/j.orggeochem.2006.12.013https://doi.org/10.1016/j.epsl.2017.01.032https://doi.org/10.1016/j.epsl.2017.01.032https://doi.org/10.1111/gbi.12289https://doi.org/10.1038/322727a0https://doi.org/10.1038/322727a0https://doi.org/10.1016/0301-9268(91)90070-Qhttps://doi.org/10.1038/35083562https://doi.org/10.1111/j.1472-4677.2004.00027.xhttps://doi.org/10.1073/pnas.0909248106https://doi.org/10.1038/nature02974https://doi.org/10.1016/j.gca.2009.02.013https://doi.org/10.1098/rstb.2006.1843https://doi.org/10.1098/rstb.2006.1843https://doi.org/10.1111/gbi.12230https://doi.org/10.1038/nature07673https://doi.org/10.1016/0146-6380(95)00075-5https://doi.org/10.1016/0146-6380(95)00075-5https://doi.org/10.1016/j.gca.2014.12.022https://doi.org/10.1016/j.gca.2014.12.022https://doi.org/10.1126/sciadv.1600134https://doi.org/10.1126/sciadv.1600134https://doi.org/10.1016/S0016-7037(97)00174-9https://doi.org/10.1016/S0016-7037(97)00174-9https://doi.org/10.1038/nature13068https://doi.org/10.1111/j.1472-4669.2009.00222.xhttps://doi.org/10.1016/j.gca.2006.08.021https://doi.org/10.1016/j.gca.2006.08.021https://doi.org/10.1080/08120098508729328https://doi.org/10.1080/08120098508729328https://doi.org/10.1016/j.precamres.2016.05.003https://doi.org/10.1016/j.earscirev.2011.09.004https://doi.org/10.1016/j.earscirev.2011.09.004https://doi.org/10.1073/pnas.1110633108

  • 14  |     NGUYEN Et al.

    Partin,C.A.,Bekker,A.,Planavsky,N.J.,Scott,C.T.,Gill,B.C.,Li,C.,…Lyons,T.W. (2013).Large-scale fluctuations inPrecambrianatmo-spheric and oceanic oxygen levels from the record ofU in shales.Earth and Planetary Science Letters,369–370, 284–293. https://doi.org/10.1016/j.epsl.2013.03.031

    Pawlowska,M.M.,Butterfield,N.J.,&Brocks,J.J.(2013).LipidtaphonomyintheProterozoicandtheeffectofmicrobialmatsonbiomarkerpres-ervation. Geology,41,103–106.https://doi.org/10.1130/G33525.1

    Peters,K.E.,Walters,C.C.,&Moldowan, J.M. (2005).The biomarker guide.Cambridge,UK:CambridgeUniversityPress.

    Planavsky,N.J.,McGoldrick,P.,Scott,C.T.,Li,C.,Reinhard,C.T.,Kelly,A.E.,…Lyons,T.W.(2011).Widespreadiron-richconditionsinthemid-Proterozoicocean.Nature,477, 448–451.https://doi.org/10.1038/nature10327

    Poulton, S.W.,&Canfield,D. E. (2005).Development of a sequentialextraction procedure for iron: Implications for iron partitioning incontinentallyderivedparticulates.Chemical Geology,214,209–221.https://doi.org/10.1016/j.chemgeo.2004.09.003

    Poulton,S.W.,&Canfield,D.E.(2011).Ferruginousconditions:Adom-inantfeatureoftheoceanthroughEarth’shistory.Elements,7,107–112.https://doi.org/10.2113/gselements.7.2.107

    Radke,M.,&Welte,D.(1983).Themethylphenanthreneindex(MPI):Amaturityparameterbasedonaromatichydrocarbons. InM.Bjorøyet al. (Eds.), Advances in organic geochemistry 1981 (pp. 504–512).Chichester,UK:Wiley.

    Raiswell,R.,Buckley,F.,Berner,R.A.,&Anderson,T.(1988).Degreeofpyritization of iron as a paleoenvironmental indicator of bottom-wateroxygenation.Journal of Sedimentary Research,58(5),812–819.

    Raiswell,R.,&Canfield,D.E. (1998).Sourcesof iron forpyrite forma-tion in marine sediments. American Journal of Science,298,219–245.https://doi.org/10.2475/ajs.298.3.219

    Reinhard,C.T.,Planavsky,N.J.,Gill,B.C.,Ozaki,K.,Robbins,L.J.,Lyons,T.W.,…Konhauser,K.O.(2016).Evolutionoftheglobalphosphoruscycle. Nature,541,386–389.

    Reinhard, C. T., Planavsky, N. J., Robbins, L. J., Partin, C. A., Gill, B. C.,Lalonde,S.V.,…Lyons,T.W.(2013).Proterozoicoceanredoxandbio-geochemical stasis. Proceedings of the National Academy of Sciences,110,5357–5362.https://doi.org/10.1073/pnas.1208622110

    Scott,C.,&Lyons,T.W. (2012).Contrastingmolybdenumcycling andisotopicpropertiesineuxinicversusnon-euxinicsedimentsandsed-imentary rocks: Refining the paleoproxies. Chemical Geology, 324,19–27.https://doi.org/10.1016/j.chemgeo.2012.05.012

    Scott,C., Lyons,T.W.,Bekker,A., Shen,Y.,Poulton,S.W.,Chu,X.,&Anbar, A. D. (2008). Tracing the stepwise oxygenation of theProterozoic ocean.Nature,452, 456–459. https://doi.org/10.1038/nature06811

    Seifert,W.K.,&Moldowan,J.M.(1978).Applicationsofsteranes,ter-panesandmonoaromaticstothematuration,migrationandsourceofcrude oils. Geochimica et Cosmochimica Acta,42,77–95.https://doi.org/10.1016/0016-7037(78)90219-3

    Sergeev,V.N.,Knoll,A.H.,Vorob’eva,N.G.,&Sergeeva,N.D.(2016).Microfossils from the lower Mesoproterozoic Kaltasy Formation,EastEuropeanPlatform.Precambrian Research,278,87–107.https://doi.org/10.1016/j.precamres.2016.03.015

    Shen,Y.,Canfield,D.E.,&Knoll,A.H.(2002).MiddleProterozoicoceanchemistry: Evidence from theMcArthurBasin, northernAustralia.American Journal of Science, 302, 81–109. https://doi.org/10.2475/ajs.302.2.81

    Shen,Y.,Knoll,A.H.,&Walter,M.R.(2003).Evidenceforlowsulphateandanoxiainamid-Proterozoicmarinebasin.Nature,423,632–635.https://doi.org/10.1038/nature01651

    Sperling,E.A.,Rooney,A.D.,Hays,L.,Sergeev,V.N.,Vorob’eva,N.G.,Shergeeva,N.D.,…Knoll,A.H.(2014).Redoxheterogeneityofsub-surfacewatersintheMesoproterozoicocean.Geobiology,12,373–386.https://doi.org/10.1111/gbi.12091

    Summons,R.E.,Powell,T.G.,&Boreham,C. J. (1988).Petroleumge-ologyandgeochemistryoftheMiddleProterozoicMcArthurBasin,Northern Australia: III. Composition of extractable hydrocarbons.Geochimica et Cosmochimica Acta, 52, 1747–1763. https://doi.org/10.1016/0016-7037(88)90001-4

    Summons, R. E., Taylor, D., & Boreham, C. (1994). Geochemical toolsfor evaluating petroleum generation in the Middle Proterozoicsediments of the McArthur Basin, Northern Territory, Australia.Australian Petroleum Exploration Association Journal,34,692.

    Suslova,E.A.,Parfenova,T.M.,Saraev,S.V.,&Nagovitsyn,K.E.(2017).Organic geochemistry of rocks of the Mesoproterozoic MalginFormation and their depositional environments (southeasternSiberian Platform). Russian Geology and Geophysics, 58, 516–528.https://doi.org/10.1016/j.rgg.2016.09.027

    Takashita, K., Chikarisha, Y., Tanifuji, G., Ohkouchi, N., Hashimoto, T.,Fujikara, K., & Roger, A. J. (2017). Microbial eukaryotes that lacksterols. Journal of Eukaryotic Microbiology,64,897–900.https://doi.org/10.1111/jeu.12426

    Taylor,S.R.,&McLennan,S.M.(1985).In the continental crust: Its compo-sition and evolution.Malden,MA:BlackwellPublishing.

    Tribovillard, N., Algeo, T. J., Lyons, T. W., & Riboulleau, A. (2006).Tracemetals as paleoredox and paleoproductivity proxies: An up-date. Chemical Geology, 232, 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012

    Volk,H.,Dutkiewicz,A.,George,S.C.,&Ridley,J.(2003).OilmigrationintheMiddleProterozoicRoperSuperbasin,Australia:Evidencefromoilinclusionsandtheirgeochemistries.Journal of Geochemical Exploration,78,437–441.https://doi.org/10.1016/S0375-6742(03)00152-3

    Volk,H.,George,S.C.,Dutkiewicz,A.,&Ridley,J.(2005).Characterisationof fluid inclusion oil in a Mid-Proterozoic sandstone and doler-ite (Roper Superbasin, Australia).Chemical Geology, 223, 109–135.https://doi.org/10.1016/j.chemgeo.2004.12.024

    Warren, J. K., George, S. C., Hamilton, P. J., & Tingate, P. (1998).Proterozoic source rocks: Sedimentology and organic characteris-ticsof theVelkerriFormation,NorthernTerritory,Australia.AAPG Bulletin,82,442–463.

    Wei,J.H.,Yin,X.,&Welander,P.V. (2016).Sterolsynthesis indiversebacteria. Frontiers in Microbiology,7,990.

    Yang, S., Smith, T. M., Collins, A. S., Munson, T. J., Shoemaker, B.,Nicholls, D., …Glorie, S. (2017). Uranium isotope compositions ofmid-Proterozoicblackshales:Evidenceforanepisodeof increasedoceanoxygenationat1.36Gaandevaluationoftheeffectofpost-depositionalhydrothermalfluidflow.Precambrian Research,29,187–201.https://doi.org/10.1016/j.precamres.2017.06.016

    Zumberge,J.A.,Love,G.D.,Cárdenas,P.,Sperling,E.A.,Gunasekera,S.,Rohrssen,M.,…Summons,R.E.(2018).Demospongesteroidbio-marker26-methylstigmastaneprovidesevidenceforNeoproterozoicanimals. Nature Ecology & Evolution, 2, 1709–1714. https://doi.org/10.1038/s41559-018-0676-2

    SUPPORTING INFORMATION

    Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

    How to cite this article:NguyenK,LoveGD,ZumbergeJA,etal.AbsenceofbiomarkerevidenceforearlyeukaryoticlifefromtheMesoproterozoicRoperGroup:Searchingacrossamarineredoxgradientinmid-Proterozoichabitability.Geobiology. 2019;00:1–14. https://doi.org/10.1111/gbi.12329

    https://doi.org/10.1016/j.epsl.2013.03.031https://doi.org/10.1016/j.epsl.2013.03.031https://doi.org/10.1130/G33525.1https://doi.org/10.1038/nature10327https://doi.org/10.1038/nature10327https://doi.org/10.1016/j.chemgeo.2004.09.003https://doi.org/10.2113/gselements.7.2.107https://doi.org/10.2475/ajs.298.3.219https://doi.org/10.1073/pnas.1208622110https://doi.org/10.1016/j.chemgeo.2012.05.012https://doi.org/10.1038/nature06811https://doi.org/10.1038/nature06811https://doi.org/10.1016/0016-7037(78)90219-3https://doi.org/10.1016/0016-7037(78)90219-3https://doi.org/10.1016/j.precamres.2016.03.015https://doi.org/10.1016/j.precamres.2016.03.015https://doi.org/10.2475/ajs.302.2.81https://doi.org/10.2475/ajs.302.2.81https://doi.org/10.1038/nature01651https://doi.org/10.1111/gbi.12091https://doi.org/10.1016/0016-7037(88)90001-4https://doi.org/10.1016/0016-7037(88)90001-4https://doi.org/10.1016/j.rgg.2016.09.027https://doi.org/10.1111/jeu.12426https://doi.org/10.1111/jeu.12426https://doi.org/10.1016/j.chemgeo.2006.02.012https://doi.org/10.1016/j.chemgeo.2006.02.012https://doi.org/10.1016/S0375-6742(03)00152-3https://doi.org/10.1016/j.chemgeo.2004.12.024https://doi.org/10.1016/j.precamres.2017.06.016https://doi.org/10.1038/s41559-018-0676-2https://doi.org/10.1038/s41559-018-0676-2https://doi.org/10.1111/gbi.12329