abstract final id: control id: title: …oa.upm.es/20928/1/inve_mem_2012_131144.pdf · 2014. 9....

51
Print Submitted on August 23, 10:54 AM for energy12 Proof ABSTRACT FINAL ID: SM2A.3 CONTROL ID: 1464611 TITLE: Free form Optics Applications in Photovoltaic Concentration Abstract (35 Word Limit): Freeform surfaces are the key of the state-of-the-art nonimaging optics to solve the challenges in concentration photovoltaics. Different families (FK, XR, FRXI) will be presented, based on the SMS 3D design method and Köhler homogenization. AUTHORS/INSTITUTIONS: J.C. Minano, , Universidad Politecnica de Madrid, Madrid, SPAIN; KEYWORDS: General: 000.0000, General: 000.0000. ScholarOne Abstracts® (patent #7,257,767 and #7,263,655). © ScholarOne , Inc., 2012. All Rights Reserved. ScholarOne Abstracts and ScholarOne are registered trademarks of ScholarOne, Inc. Follow ScholarOne on Twitter Terms and Conditions of Use Product version number 4.0.0 (Build 66) Build date Oct 16, 2012 11:54:50. Server tss1be0013

Upload: others

Post on 03-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Print

    Submitted

    on August 23, 10:54 AM

    for energy12

    Proof

    ABSTRACT FINAL ID: SM2A.3

    CONTROL ID: 1464611

    TITLE: Free form Optics Applications in Photovoltaic Concentration

    Abstract (35 Word Limit): Freeform surfaces are the key of the state-of-the-art nonimaging optics to solvethe challenges in concentration photovoltaics. Different families (FK, XR, FRXI) will be presented, based on theSMS 3D design method and Köhler homogenization.

    AUTHORS/INSTITUTIONS: J.C. Minano, , Universidad Politecnica de Madrid, Madrid, SPAIN;

    KEYWORDS: General: 000.0000, General: 000.0000.

    ScholarOne Abstracts® (patent #7,257,767 and #7,263,655). © ScholarOne, Inc., 2012. All Rights Reserved.

    ScholarOne Abstracts and ScholarOne are registered trademarks of ScholarOne, Inc.

    Follow ScholarOne on Twitter

    Terms and Conditions of Use

    Product version number 4.0.0 (Build 66)

    Build date Oct 16, 2012 11:54:50. Server tss1be0013

    javascript:window.print()javascript:window.close()http://www.scholarone.com/http://www.twitter.com/ScholarOneNewshttp://energy12.abstractcentral.com/terms.jsp

  • SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven

    1/13

    Juan C. Miñano, Pablo Benítez, Pablo Zamora, João Mendes-Lopes, Marina Buljan, Asunción Santamaría

    Universidad Politécnica de Madrid (UPM), Spain

    LPI , Altadena, California, USA

    Freeform Optics Applications in Photovoltaic Concentration

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 2/46

    Index

    1. Introduction

    2. Free-forms in asymmetric systems

    3. Freeform Köhler array concentrators

    The VENTANA optical train

    Daido Steel’s DFK

    4. Conclusions

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 3/46

    PV technologies

    Triple-junction III-V cells (C >>1)

    III-V cells are very expensive (~$50,000/m2-$150,000/m2)!!!!!

    Silicon cells (C = 1)

    43.5%

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 4/46

    HCPV optical specs

    1. Geometrical concentration: 500-1,500

    2. Low cost of optics ( ±1deg)

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 5/46

    θ (degs)

    100

    75

    50

    25

    0.5 1 1.5

    T(θ) (%)

    α

    90%

    α

    Geometrical and chromatic aberrations

    Angle at which transmission drops to 90% of maximum

    Ideal lens

    Real lens

    Acceptance angle definition

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 6/46

    Tolerance budget has to be shared among:

    1. Sun’s angular extension ±0.27° 2. Optical components manufacturing

    (shape and roughness) 3. Module assembling 4. Array assembling,

    series connection mismatch 5. Tracker structure stiffness 6. Tracking accuracy

    Tolerance budget The acceptance angle is a common basis to measure the tolerance of a design

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 7/46

    Some Fresnel-based CPV systems

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 8/46

    Concentration Acceptance Product

    • CAP =

    • CAP ≈ constant for a given architecture

    • CAP is an important merit function

    sinC α×

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 9/46

    Classic homogenization scheme

    Prism homogenizer

    CAP~0.45 CAP~0.18

    Refractive Truncated Pyramid (RTP)

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 10/46

    Classical mirror based designs

    Cell

    Parabolic mirror Cassegrian aplanat

    CAP~0.49 CAP~0.42

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 11/46

    Cassegrian aplanat Parabolic mirror

    Some mirror-based CPV systems

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 12/46

    Why freeforms in CPV?

    • Freeforms provide more freedom to improve performance and functionality

    • Nonimaging freeforms are not more expensive than symmetric surfaces

    • Symmetric optics cannot solve satisfactorily some asymmetric CPV problems

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 13/46

    Index

    1. Introduction

    2. Free-forms in asymmetric systems

    3. Freeform Köhler array concentrators

    The VENTANA optical train

    Daido Steel’s DFK

    4. Conclusions

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 14/46

    Solar cell

    Homogenizing prism

    Free-form primary

    mirror (X) Free-form secondary lens (R)

    Side view

    • Light blocking is avoided • Wide space for heat-sink

    The freeform XR concentrator

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 15/46

    The SMS3D design method

    • SMS3D is an advanced optical design method

    • SMS3D is capable to design two freeform surfaces without optimization

    • SMS3D deals with extended sources and receivers

    Benítez, P., Miñano, J. C., Blen, J., Mohedano, R., Chaves, J., Dross, O., Hernández, M., Falicoff, W, Opt. Eng. 43(7), 1489–1502, (2004)

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 16/46

    XR SMS 3D design

    A. Cvetkovic et al. Proc. SPIE Vol. 7043-12, 2008

    SMS ribs construction

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 17/46

    XR SMS 3D design

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 18/46

    XR SMS 3D design procedure

    Final freeforms

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 19/46

    * The XR700 module developed by BOEING Co. and LPI

    (A.Plesniak et all. 34th IEEE PV Specialist Conference, 2010)

    The freeform XR concentrator

    33.2%

    Freeform mirror

    Freeform lens

    A. Cvetkovic, M. Hernández, P. Benítez, J. C. Miñano, J. Schwartz, A. Plesniak, R. Jones, D. Whelan, Proc. SPIE Vol. 7043-12, 2008

    C = 1,000x α=±1.8º

    Glass cover

    CAP~1

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 20/46

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 21/46

    Index

    1. Introduction

    2. Free-forms in asymmetric systems

    3. Freeform Köhler array concentrators

    The VENTANA optical train

    Daido Steel’s DFK

    4. Conclusions

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 22/46

    The simplest Köhler CPV design

    L. W. James, Contractor Report SAND89–7029, (1989)

    Images the Fresnel lens on the cell!

    2.834511.87419

    0.913859-0.0464674

    -1.00679-1.967120

    0.0000050.00001

    0.0000150.00002

    0.0000250.00003

    0.000035

    0.00004

    -2.8

    3451

    -2.2

    4593

    -1.6

    5734

    -1.0

    6875

    -0.4

    8016

    30.

    1084

    240.

    6970

    111.

    2856

    1.87

    419

    2.46

    277SILO (SIngle Lens secondary Optics)

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 23/46

    LPI’s Köhler array concentrators

    S

    S'

    T

    T’

    O

    I

    I’

    O’ Mi Mo

    This can de done in 2D or 3D (free-form surfaces).

    The optical process is done in parallel channels that homogenize and concentrate at the same time!

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 24/46

    The Fresnel-Köhler (FK) concentrator

    P. Benítez, J.C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, M. Hernández, Optics Express, Vol. 18, Issue S1 (Energy Express), April 2010

    Free-form lens

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 25/46

    0.0 0.2 0.4 0.6 0.8 1.0

    0.59

    0.450.36

    0.30

    0.28

    0.18

    3

    5

    7No SOE

    Spherical dome

    SILO

    XTP

    RTP

    Fresnel Kohler (FK)

    No SOE

    Spherical dome

    SILO

    XTP

    RTP

    Fresnel Kohler (FK)

    singCAP C α= ×

    25

    Comparison

    Fresnel-RTP

    0 5 10 2015 25-10 -5-15-25 -20

    5

    10

    15

    25

    20

    35

    30

    40

    45

    50

    (mm)

    55

    Spherical Dome

    FK concentrator

    Fresnel-XTP

    SILO

    Fresnel (no SOE)Since (0.59/0.45)2=1.7, the FK 1,000x is equivalent to an 580x RTP!

    APOE=625cm2 α = ±1º

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 26/46

    Freeform secondary lens Fresnel lens

    The FK concentrator

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 27/46

    FK acceptance angle

    3.0

    3.5

    4.0

    4.5

    5.0

    5.5

    6.0

    6.5

    7.0

    -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6

    Isc (A

    )

    Tracker angle (º)

    Measured = ±1.24o Simulated = ±1.25o

    C = 625x

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 28/46

    FK irradiance uniformity

    -5

    5

    0

    100

    200

    300

    400

    500

    600

    -5

    5

    -5

    5

    0

    100

    200

    300

    400

    500

    600

    -5

    5

    Measured Peak irradiance = 595 suns

    Simulated Peak irradiance = 575 suns

    Suns

    Suns

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 29/46

    The VentanaTM Optical Train • A complete off-the-shelf optics solution by Evonik and LPI • Based on the best-in-class design: The FK concentrator

    POE = primary optical element SOE = secondary optical element

    6x6 Fresnel lens parquet

    http://corporate.evonik.com/en

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 30/46

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 0.5 1 1.5 2 2.5 3

    Curr

    ent

    (A)

    Voltage (V)

    LPI-Evonik VentanaTM optical train

    Pm

    Efficiency = 32.8%* Fill Factor = 83.6% Pm = 6.97 W Isc = 2.80 A Voc = 2.95 V Irradiance = 847 W/m2 Entry Aperture = 256 m2

    *No AR coatings; @Tcell=25ºC C3MJ Spectrolab cell bin 39%

    C = 1,024x α > ±1º

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 31/46

    • Daido Steel present CPV system:

    • UPM and Daido Steel are developing a new Köhler technology, DFK, within the NGCPV project

    *Over illuminated cell area

    CAP = Cg x sin α

    • Cg* = 950 • α = ±0.92º

    CAP = 0.49

    • Higher concentration without compromising acceptance angle is desired.

    • LPI, in collaboration with UPM, has developed high-performance Köhler freeform concentrators.

    DFK

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 32/46

    Index

    1. Introduction

    2. Free-forms in asymmetric systems

    3. Freeform Köhler array concentrators

    The VENTANA optical train

    Daido Steel’s DFK

    4. Conclusions

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 33/46

    DFK optics • Cg = 1,234 • α > ±1.1º • Module efficiency > 35%

    Daedo Steel module

    & system technology

    LPI Köhler optical

    technology

    CAP > 0.67

    CAP = Cg x sin α

    DFK

    http://www.daido.co.jp/en/products/cpv/technology.html

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 34/46

    POE (4 sectors Fresnel lens)

    Flat FK (FK) Dome-shaped FK (DFK)

    DFK

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 35/46

    17.3

    13.8

    5.5

    5

    Cg=1,234x f/ 0.81 SOE material: B270-equiv. glass POE material: PMMA

    cell side

    design area side

    0.25mm wide frame around the cell for assembly tolerances

    All dimensions in mm

    DFK design parameters

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 36/46

    Irradiance uniformity

    0

    200

    400

    600

    800

    1000

    1200

    1400

    suns

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

    Effi

    cie

    ncy

    Angle (deg)

    Transmission curve

    1.18 deg

    90%

    AM1.5D spectrum, finite sun, EQE’s of 3J cell, Fresnel and absorption losses included in simulation

    CAP=0.72 > 0.67 (spec)

    DFK simulation results

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 37/46

    AR coating on SOE

    Optical efficiency

    Acceptance angle

    NO 85.6% ±1.18º

    YES 87.5% ±1.18º

    AR coating

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    300 500 700 900 1100 1300 1500 1700

    Tran

    smis

    sion

    (%)

    Wavelength (nm)

    α=0degα=10degα=20degα=30degα=40degα=50degα=60degα=70deg

    DFK: AR coating on SOE

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 38/46

    ISSUE FLAT FK DOME-SHAPED FK

    Acc. angle (α) 1 ±1.03 deg ±1.18 deg

    CAP 0.63 0.72

    Optical efficiency2 86.5% 87.5%

    Irr. uniformity Excellent Very good

    F-number 1.07 0.81

    1 Cg = 1,234x for both concentrators 2 With AR coating, no rounding of facet corners

    Performance comparison

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 39/46

    SILO

    XTP

    RTP

    esnel Kohler (FK)

    SILO

    XTP

    RTP

    esnel Kohler (FK)

    FK

    r

    r

    0.63

    DFK 0.72

    SILO

    XTP RTP

    FK DFK

    0.28

    0.32

    0.44

    Performance comparison

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 40/46

    Practical problems with RTP secondaries

    Köhler SOE Classical SOE

    Lost ray

    Every surface is optically active

    Total Internal

    Reflection (TIR)

    Silicone optical coupler

    sealant

    Only these surfaces are

    optically active

    Fixing features

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 41/46

    POE mold has a 9-part molding die

    3 different demolding movements

    Only central part (red) needs positive draft angles

    Daedo Steel advanced demolding technique

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 42/46

    Index

    1. Introduction

    2. Free-forms in asymmetric systems

    3. Freeform Köhler array concentrators

    The VENTANA optical train

    Daido Steel’s DFK

    4. Conclusions

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 43/46

    Conclusions

    • Freeform optics is a proven technology for higher performance CPV designs

    • Highly asymmetric CPV problems can optimally solved with freeforms, as the SMS3D XR design

    • Köhler array concentrators, as the FK, solve practical issues and outperform classical designs

    • Further advanced freeform concepts in progress

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 44/46

    LEGAL NOTICE

    Devices shown in this presentation are protected by the following US and International Patents and Patents Pending:

    Patents Issued

    HIGH EFFICIENY NON-IMAGING US 6,639,733 October 28, 2003 COMPACT FOLDED-OPTICS ILLUMINATION LENS US 6,896,381 May 24, 2005 COMPACT FOLDED-OPTICS ILLUMINATION LENS US 7,152,985 December 26, 2006 COMPACT FOLDED-OPTICS ILLUMINATION LENS US 7,181,378 February 20, 2007 DEVICE FOR CONCENTRATING OR COLLIMATING RADIANT ENERGY US 7,160,522 January 9, 2007 DISPOSITIVO CON LENTE DISCONTINUA DE REFLEXIÓN TOTAL INTERNA Y DIÓPTRICO ESFÉRICO PARA CONCENTRACIÓN O COLIMACIÓN DE ENERGÍA RADIANTE Spain ES P9902661 December 2, 1999 OPTICAL MANIFOLD FOR LIGHT-EMITTING DIODES US 7,380,962 OPTICAL MANIFOLD FOR LIGHT-EMITTING DIODES US 7,286,296 THREE-DIMENSIONAL SIMULTANEOUS MULTIPLE-SURFACE METHOD AND FREE-FORM ILLUMINATION-OPTICS DESIGNED THEREFROM US 7,460,985 December 2, 2008

    Partial List of Patents Pending

    DEVICE FOR CONCENTRATING OR COLLIMATING RADIANT ENERGY - a continuation of US 7,160,522 FREE-FORM LENTICULAR OPTICAL ELEMENTS AND THEIR APPLICATION TO CONDENSERS AND HEADLAMPS PCT/US2006/029464 July 28, 2006 MULTI-JUNCTION SOLAR CELLS WITH A HOMOGENIZER SYSTEM AND COUPLED NON-IMAGING LIGHT CONCENTRATOR PCT/US07/63522 March 7, 2007 OPTICAL CONCENTRATOR, ESPECIALLY FOR SOLAR PHOTOVOLTAICS PCT/US08/03439 Mar 14, 2008

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 45/46

    • This work is under the NGCPV EU-Japan project, funded by EU Commission (ENERGY,2011,2,1-1 Grant agreement no. 283798) and Japanese NEDO.

    • Devices shown in this presentation are protected under US patent 8,000,018 & International patent applications 0905286.3, 200980154626.5, 762MUMNP2011

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 46/46

    Thank you!

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 47/46

    0.76

    0.77

    0.78

    0.79

    0.8

    0.81

    0.82

    0.83

    0.84

    0.85

    0.86

    0.87

    0.88

    0 10 20 30 40 50

    Opt

    ical

    Effic

    ienc

    y

    Edge Radius (μm)

    Only Rounded Outer Corners

    Equally Rounded Inner and Outer Corners Outer

    corners Inner corners

    Outer corners

    LENS

    LENS

    No rounded corners

    ciency drop due to teeth rounded edges

    83.4%

    87.5%

    30μm

    87.0%

    0.78

    0.79

    0.8

    0.81

    0.82

    0.83

    0.84

    0.85

    0.86

    0.87

    0.88

    0.90

    0.89

    DFK round corners losses

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 48/46

    DFK with dimple DFK without dimple

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 49/46

    Top view Bottom view

    Central dimple enhanced POE design

  • SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 50/46

    Index

    1. Introduction

    2. Free-forms in asymmetric systems

    3. Freeform Köhler array concentrators

    The VENTANA optical train

    Daido Steel’s DFK

    4. Conclusions

    Número de diapositiva 1IndexNúmero de diapositiva 3HCPV optical specsNúmero de diapositiva 5Número de diapositiva 6Some Fresnel-based CPV systemsNúmero de diapositiva 8Número de diapositiva 9Classical mirror based designsSome mirror-based CPV systemsWhy freeforms in CPV?IndexThe freeform XR concentrator The SMS3D design methodNúmero de diapositiva 16Número de diapositiva 17XR SMS 3D design procedureThe freeform XR concentrator Número de diapositiva 20IndexThe simplest Köhler CPV designLPI’s Köhler array concentratorsThe Fresnel-Köhler (FK) concentratorNúmero de diapositiva 25Número de diapositiva 26Número de diapositiva 27Número de diapositiva 28The VentanaTM Optical TrainNúmero de diapositiva 30Número de diapositiva 31IndexNúmero de diapositiva 33Número de diapositiva 34Número de diapositiva 35Número de diapositiva 36Número de diapositiva 37Número de diapositiva 38Número de diapositiva 39Número de diapositiva 40Número de diapositiva 41IndexNúmero de diapositiva 43Número de diapositiva 44Número de diapositiva 45Número de diapositiva 46Número de diapositiva 47Número de diapositiva 48Número de diapositiva 49Index