abundances in the universe/crust fe be mg al si pb

84
Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Upload: jacey-whitlow

Post on 19-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Abundances in the Universe/Crust

Fe

Be

Mg Al Si

Pb

Page 2: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Melting Temperature

Page 3: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Goldschmidt Classification

Page 4: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Chondrite

Siderophile (Fe, Ni...)

Lithophile (Si, Mg, Ca, Al, K...)

Atmophile (N, He...)

Page 5: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

INCOMPATIBLES

U

Th

Al

He

COMPATIBILITY/INCOMPATIBILITY DURING PARTIAL MELTING

Page 6: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

From Doin

Sea surface (Geoid)

Page 7: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 8: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Backgroundvelocity

Poiseuille

Stokes

Guess?

Measured

Page 9: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Backgroundvelocity

Poiseuille

Stokes

Hawaii 7.0 t/sBowie 0.3 t/s

All hostpots 55 t/sSlabs 650 t/s

Page 10: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

From Hofmann

Page 11: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

DEPLETED MORB SOURCEENRICHED HIMU, EM, CC SOURCESPRIMITIVE/DEPLETED LOIHI SOURCE?CC and MORB SOURCE complementaryNb, Pb, Ti anomalies due to subduction (CC, MORB and OIB)

Page 12: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

D/N=D0/N+P

0/N(1-exp(t/T))

D=daughterP=parent

N=reference stable isotope of DT=time constant

P D N106

87 Sr 86 Sr 49

40 K 1U 0.7

Tln(2) Ga

147 Sm 143 Nd 144 Nd87 Rb

40 Ar 36 Ar4 He 3 He

Page 13: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

ISOTOPIC RATIOS

Page 14: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Rares Gas

From Hart & Zindler

Page 15: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Primitive

Himu

EM2

EM1

Page 16: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

MORB Midocean ridge basaltextracted from MORB source or DMM

OIB Oceanic ridge basaltextracted from?????

Primitive Mantle (PREMA) Loihi-Icelandic Type (Primitive HE Mantle)EM1 (Enriched Mantle=oceanic sediments?)EM2 (Enriched Mantle=continental sediments?)HIMU (high U/Pb=oceanic crust?)FOZO-C

Page 17: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

M

Mass Balance for trace elements

Primitive Mantle = Crust+Morb source+Hidden res

Page 18: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 19: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 20: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

40Argon

Produced in the Earth 940 pmol/g

Atmosphere 44%

Crust 3.5%

Upper mantle .9 % (25 pmol/g)

Lower mantle 52 % (720 pmol/g)

But K/U??

50-200 pmol/g

Another K-rich reservoir?

From Davies

Page 21: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

OIBs are more heterogeneous than MORBsBut the same trends are seen in MORBs and OIBsThere is a hidden reservoirSlightly depleted=lower mantlePrimitive=50% of the mantleEnriched (D'' with MORBs composition)

Page 22: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 23: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 24: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 25: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Hiding a layer:

Density and density jumpsPhase changesCoupling between chemistry and phase jumpsViscous stratification

Page 26: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 27: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Less density chemical density difference is required at larger depth

Page 28: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 29: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

MINERALOGY VS SEISMOLOGY

From Matas

Page 30: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

CLAPEYRON SLOPE

P

T

Phase Dense

Light Phase

AveragePhase transition depth

Page 31: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

From Machetel

Page 32: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 33: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Crust density: Mineralogy

Page 34: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Mantle, Lithosphere and oceanic crust

Page 35: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

DOUBLE PHASE CHANGES

P

T

Dense Phase A

Light Phase A

Average Phase transition depthsfor A and B

Light Phase B

Dense Phase B

Page 36: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Seismic tomography

Page 37: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

From Grant/Van der Hilst

Page 38: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Seismic tomography

Page 39: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 40: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Paleomap

Page 41: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 42: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 43: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 44: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Geoid

Comp. Geoid

Page 45: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 46: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

The Mantle viscosity increases with depth by a factor 10-100

Can it help preserving primitive compositions?

Page 47: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 48: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 49: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Poloidal/Toroidal

Bercovici

Page 50: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 51: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 52: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 53: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Poincar₫ Section

Page 54: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 55: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

From Ferrachat

Page 56: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 57: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 58: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 59: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 60: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 61: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 62: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 63: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Farnetani or Schmalzl and Hansen

Hotspot (no)Entrainment

Page 64: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Persistance of blobs

Spence, Manga

Page 65: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Persistance of blobs

Merveilleux

Stretching StretchingStretching Stretching

Reorientation Reorientation

Page 66: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 67: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 68: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 69: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

500

myr

s

2 byrs

Page 70: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 71: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

Mantle, Lithosphere and oceanic crust

Page 72: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

MANTLE

Atmosphere

C. Crust

D ''

Residual lith.

Page 73: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 74: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

MANTLE

Atmosphere

C. Crust

D ''

Residual lith.Flux fromhotspots

Uniformgrowth

Uniform growth

Degassing

No crustalrecycling

Fractionation +

Fractionation -

Page 75: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 76: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 77: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 78: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 79: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 80: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 81: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 82: Abundances in the Universe/Crust Fe Be Mg Al Si Pb
Page 83: Abundances in the Universe/Crust Fe Be Mg Al Si Pb

No real geochemical indication of the existence of primitive material

Strong indications that the 670 km depth boundary is permeable

Strong indications of a viscosity increase with depth by 10-100

This viscosity increase does not stratify the mixing

3D convection more efficient mixer with, than without plates

Highly viscous, small, primitive blobs may survive(?)

Need of a reservoir to store incompatible elements

Seems difficult to hide a dense reservoir in the mantle

Crust segregation in D'' may be the deep enriched reservoir(EM, HIMU)

The remaining lithosphere may be the depleted (''primitive-like'')reservoir

Page 84: Abundances in the Universe/Crust Fe Be Mg Al Si Pb