achieving fine-grained cae-cae associativity via analyzable product model (apm)-based idealizations...

46
Achieving Fine-Grained CAE-CAE Associativity via Analyzable Product Model (APM)-based Idealizations Topic Area: Design-Analysis Interoperability (DAI) [email protected]. edu http://www.marc.gatech.edu/ http://eislab.gatech.edu/projects/ Developing a Design/Simulation Framework A Workshop with CPDA's Design and Simulation Council April 6, 2005 Atlanta, Georgia www.cpd-associates.com Copyright © All Rights Reserved. Permission to reproduce and distribute without changes for non-commercial purposes (including internal corporate usage) is hereby granted provided this notice and a proper citation are included. Synopsis: This talk overviews a simulation template methodology based on analyzable product models (APMs) that combine design information from multiple sources, add idealization knowledge, and bridge semantic gaps to enable advanced DAI. Backup Slides

Upload: daniel-morton

Post on 28-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Achieving Fine-Grained CAE-CAE Associativity viaAnalyzable Product Model (APM)-based Idealizations

Topic Area: Design-Analysis Interoperability (DAI)

[email protected]://www.marc.gatech.edu/

http://eislab.gatech.edu/projects/

Developing a Design/Simulation FrameworkA Workshop with CPDA's Design and Simulation Council

April 6, 2005 Atlanta, Georgiawww.cpd-associates.com

Copyright © All Rights Reserved. Permission to reproduce and distribute without changes for non-commercial purposes (including internal corporate usage) is hereby granted provided this notice and a proper citation are included.

Synopsis: This talk overviews a simulation template methodology based on analyzable product models (APMs) that combine design information from multiple sources, add idealization knowledge, and bridge semantic gaps to enable advanced DAI.

Backup Slides

Constrained Objects: A Knowledge Representation for Design, Analysis, and Systems Engineering Interoperability

Students: Manas Bajaj, Injoong Kim Faculty: Russell Peak, Miyako Wilson

Approach & StatusApproach

Extend and apply the constrained object (COB) representation and related methodology based on positive results to date

Expand within international efforts like the OMG UML for Systems Engineering work to broaden applicability and impact

Status Current generation capabilities have been successfully

demonstrated in diverse environments (circuit boards, electronic chip packages, airframes) with sponsors including NASA, Rockwell Collins, Shinko (a major supplier to Intel), and Boeing.

Templates for chip package thermal analysis are in production usage at Shinko with over 75% reduction in modeling effort (deformation/stress templates are soon to follow)

Objectives Develop better methods of capturing engineering knowledge that :

Are independent of vendor-specific CAD/CAE/SE tools Support both easy-to-use human-sensible views and robust computer-sensible formulations in a unified manner Handle a diversity of product domains, simulation disciplines, solution methods, and leverage disparate vendor tools

Apply these capabilities in a variety of sponsor-relevant test scenarios: Proposed candidates are templates and custom capabilities for design, analysis, and systems engineering

Contributions & BenefitsTo Scholarship Develop richer understanding of modeling

(including idealizations and multiple levels of abstraction) and representation methods

To Industry Better designs via increased analysis intensity Increased automation and model consistency Increased modularity and reusability Increased corporate memory

via better knowledge capture

Additional Information:

1. http://eislab.gatech.edu/projects/

2. Response to OMG UML for Systems Engineering RFI:http://eislab.gatech.edu/tmp/omg-se-33e/

3. Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-E Model Interoperabilityhttp://eislab.gatech.edu/pubs/conferences/2003-asme-detc-cie-peak/

Collaboration Needed Support for 1-3 students

depending on project scope Sponsor involvement to

provide domain knowledge and facilitate pilot usage

d i a g o n a l b r a c e l u g j o i n tj = t o p

0 . 7 5 0 0 i n

0 . 3 5 i n

0 . 7 5 0 0 i n

1 . 6 0 0 0 i n

2

0 . 7 4 3 3

1 4 . 6 8 6 K

2 . 4 0

4 . 3 1 7 K

8 . 6 3 3 K

k = n o r m

M a x . t o r q u e b r a k e s e t t i n gd e t e n t 3 0 , 2 = 3 . 5 º

7 0 5 0 - T 7 4 5 2 , M S 7 - 2 1 4

6 7 K s i

L 2 9 - 3 0 0

O u t b o a r d T E F l a p , S u p p o r t N o 2 ;I n b o a r d B e a m , 1 2 3 L 4 5 6 7

D i a g o n a l B r a c e L u g J o i n t

P r o g r a m

P a r t

F e a t u r e

L u g J o i n tA x i a l U l t i m a t e S t r e n g t h M o d e l

T e m p l a t e

j = t o p l u gk = n o r m a l d i a m e t e r ( 1 o f 4 )

D a t a s e t

m a t e r i a l

d e f o r m a t i o n m o d e l

m a x a l l o w a b l e u l t i m a t e s t r e s s , F t u L

e f f e c t i v e w i d t h , W

a n a l y s i s c o n t e x t

o b j e c t i v e

m o d e ( u l t i m a t e s t a t i c s t r e n g t h )

c o n d i t i o n

e s t i m a t e d a x i a l u l t i m a t e s t r e n g t h

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

n o r m a l d i a m e t e r , D n o r m

t h i c k n e s s , t

e d g e m a r g i n , e

P l u g j o i n t

s i z e , n

l u g s

l u g j h o l e

d i a m e t e r s

p r o d u c t s t r u c t u r e ( l u g j o i n t )

r 1

n

P jointlug

L [ j : 1 , n ]

P l u g

L [ k ]D k

o v e r s i z e d i a m e t e r , D o v e rD

P a x uW

e

t

F t u a x

K a x u

L u g A x i a l U l t i m a t eS t r e n g t h M o d e l

D M 6 6 3 0

S o l u t i o n T o o l I n t e r a c t i o n

B o u n d a r y C o n d i t i o n O b j e c t s( l i n k s t o o t h e r a n a l y s e s )

C A D - C A E A s s o c i a t i v i t y ( i d e a l i z a t i o n u s a g e )

M a t e r i a l M o d e l s

M o d e l - b a s e d D o c u m e n t a t i o n

G e o m e t r y

P KW

DD t Fa x u a x u t u a x ( )1

R e q u i r e m e n t s

Constrained Object (COB) Formulations

COB-based Airframe Analysis Template

Chip Package Stress Analysis Template

Cu(0.15)BT-Resin (0.135)

0.56

(Air)

(0.135)

Al Fin (1.5)Adhesive(0.05)

Subsystem-S

Object Relationship Diagram-S

COB StructureDefinition Language

(COS)

I/O Table-S

Constraint Graph-S

Constraint Schematic-S

STEPExpress

Express-GXML UML

3

Students: Manas Bajaj, Injoong Kim Faculty: Russell Peak, Miyako Wilson

Approach & StatusApproach

Use STEP AP210-based electronics product model for high fidelity representation of the PCB geometry

Identify key design aspects (stackup, metallization features, etc.) that concern warpage behavior of PCBs

Evaluate warpage vulnerability of PCBs: locate deformation “hot-spots” and suggest design improvements

Status Completed prototype implementation

with initial idealizations (including COTS tool web services) Under development: next level of idealizations Project seed funding provided by NIST Collaborators: AkroMetrix, InterCAX/LKSoft, Rockwell Collins

Publications Zwemer, D., Bajaj, M., Peak, R.S. et al., PWB Warpage

Analysis and Verification Using an AP210 Standards-based Engineering Framework and Shadow Moiré. To be presented at EuroSimE 2004 (May, 2004) Brussels.

http://eislab.gatech.edu/projects/nist-warpage/

Objectives Develop methodology for information-hungry analysis templates

to leverage rich product models

Application: Enable detailed thermo-mechanical warpage of printed circuit boards (PCBs)

Implement the methodology as automated design, analysis and enrichment activities in standards-based engineering frameworks

Contributions & BenefitsTo Scholarship

Develop smart, custom algorithms for processing, analyzing and deducing complex thermo-mechanical behavior of PCBs at different stages of their life cycle

To Industry Richer design and analysis models in PLM contexts Ability to publish behavioral design requirements for PCBs to circuit

board manufacturers without sharing proprietary assembly processes Increased yield and quality, and reduced costs

Collaboration Needed Explore possibilities of integrating efficient knowledge management,

smart product representation to support detailed design-analysis integration as a part of standards-based engineering framework

Support for 1-3 students depending on project scope

Standards-based Simulation Templates for ElectronicsAP210-based PCB Stackup Design and Warpage Analysis

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3

body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

Multi-Representation Architecture

Template for Model Transformation

STEP AP210-based Manufacturable Product Model

Analysis Building Block Model

Warpage Profile

1

2

3

4

Students: Sai Zeng, Injoong Kim Faculty: Russell Peak, Miyako Wilson, Robert Fulton

Approach & StatusApproach

Perform systematic process design Capture analysis concepts as rich, reusable

information models Deploy web services

Status Completed for chip package manufacturer

(Shinko) Software tool In production usage

Objectives Provide seamless integration between

design and analysis in distributed environments

Increase knowledge capture during integration

Enhance FEA model generation and reusability

Contributions & Benefits

To Scholarship Integration method to bridge systems across disciplines,

domains, and functions within PLM environmentsTo Industry

Automated FEA modeling process for chip package design Reduced FEA modeling time from days/hours to minutes

Collaboration Needed Usage extension in additional organizations

Development to extend beyond chip package applications

Support for 1-3 students depending on project scope

Additional information: http://eislab.gatech.edu/projects/shinko/

Knowledge-based FEA ModelingElectronic Chip Package Applications

Example Chip Package ProductsTool Usage View

Auto-Chopping

182 input bodies

9056 decomposed bodies

5

Pilot & Initial Production Usage ResultsProduct Model-Driven Analysis

Analysis Model Creation ActivityWith TraditionalPractice

With VTMBMethodology* Example

Create initial FEA model (QFP cases) 8-12 hours 10-20 minutes QFP208PIN

Create initial FEA model (EBGA cases) 6-8 hours 10-20 minutes EBGA352PIN

Create initial FEA model (PBGA cases) 8-10 hours 10-20 minutes PBGA256PIN

Create variant - small topology change 0.3-6 hours (10-20 minutes) - Moderate dimension change

(e.g., EBGA 600 heat sink size variations)

Create variant - moderate topology change (6-8 hours)- (10-20 minutes) - Add more features

(e.g., increase number of EBGA steps)

Create variant - large topology change (6-8 hours)+ (10-20 minutes)-or N/A

Add new types of features

(e.g., add steps to EBGA outer edges)

Reduced FEA modeling time > 10:1 (days/hours minutes) Reduced simulation cycle > 75%

Enables greater analysis intensity Better designs Leverages XAI / CAD-CAE interoperability techniques

– Objects, Internet/web services, ubiquitization methodology, …

References[1] Shinko 5/00 (in Koo, 2000)[2] Shinko evaluation 10/12/00

VTMB = variable topology multi-body technique [Koo, 2000]

6

Knowledge Representation Elements

KnowledgeRepresentation

DefinitionLanguages

Meta-Model

GraphicalRepresentations

Protocol

Operations/Methods

Structure/Content

7

COB Modeling LanguagesLexical and Graphical Formulations

StructureLevel(Template)

InstanceLevel

Subsystem-S

Object Relationship Diagram-S

COB StructureDefinition Language

(COS)

I/O Table-S

Constraint Graph-S

Constraint Schematic-S

STEPExpress

Express-G

Lexical Formulations

OWL UMLXML

COB InstanceDefinition Language

(COI)

Constraint Graph-I

Constraint Schematic-I

STEPPart 21

200 lbs

30e6 psi

100 lbs 20.2 in

R101

R101

100 lbs

30e6 psi 200 lbs

20.2 in OWL UML

Lexical Formulations

XML

OWL, XML, and UML formulationsare envisioned extensions

8

Triangle

dh

Ab

Triangle

dh

Ab

COB Structure: Graphical Forms

Tutorial: Triangle Primitive

v a r i a b l e s u b v a r i a b l es u b s y s t e m

e q u a l i t y r e l a t i o n

r e l a t i o n

s

a b

dc

a

b

d

c

e

a . das

r 1r 1 ( a , b , s . c )

e = f

s u b v a r i a b l e s . b

[ 1 . 2 ]

[ 1 . 1 ]o p t i o n 1 . 1

ff = s . d

o p t i o n 1 . 2

f = g

o p t i o n c a t e g o r y 1

gcbe

r 2

h o f c o b t y p e h

wL [ j : 1 , n ]

w j

a g g r e g a t e c . we l e m e n t w j

Basic Constraint Schematic-S Notation

c. Constraint Schematic-Sa. Shape Schematic-S

2222

1

:

21:

hbdr

bhAr

b. Relations-S

d. Subsystem-S(for reuse by other COBs)

h

b

Ad

base, br1

r2

bhA 21

height, h

222 hbd

area, A

diagonal, d

Aside: This is a “usage view” in AP210 terminology (vs. the above “design views”)

9

TriangularPrism

Vh

b

l

COBs as Building Blocks Tutorial: Triangular Prism COB Structure

c. Constraint Schematic-Sa. Shape Schematic-S

b. Relations-S

d. Subsystem-S(for reuse by other COBs)

T ria n g le

dh

Ab

T ria n g le

dh

Ab

le n g th , l vo lu m e , Vr1

AlV

c ro s s -s e c tio nh

b

V l

AlVr :1

e. Lexical COB Structure (COS)

COB triangular_prism SUBTYPE_OF geometric_shape; length, l : REAL; cross-section : triangle; volume, V : REAL;RELATIONS r1 : "<volume> == <cross-section.area> * <length>";END_COB;

10

200 lbs

30e6 psiResult b = 30e6 psi (output or intermediate variable)

Result c = 200 lbs (result of primary interest)

X

Relation r1 is suspended X r1

100 lbs Input a = 100 lbs

Equality relation is suspended

a

b

c

Example COB InstanceTutorial: Triangular Prism

Constraint Schematic-I Lexical COB Instance (COI)

state 1.0 (unsolved):INSTANCE_OF triangular_prism; cross-section.base : 2.0; cross-section.height : 3.0; length : 5.0; volume : ?;END_INSTANCE;

state 1.1 (solved):INSTANCE_OF triangular_prism; cross-section.base : 2.0; cross-section.height : 3.0; cross-section.area : 3.0; length : 5.0; volume : 15.0;END_INSTANCE;

Basic Constraint Schematic-I Notation

example 1, state 1.1

Triangle

dh

Ab

Triangle

dh

Ab

length, l volume, Vr1

AlV

cross-section

3 in2

2 in

3 in

15 in35 in

11

Convergence of Representations

Database Techniques(data structure, storage …)

Software Development(algorithms …)

Artificial Intelligence& Knowledge-Based Techniques

(structure combined with algorithms/relations/behavior)

EER

STEP Express

ER

UML

Flow Charts

OMT

Objects

Rules

Constraint graphs

Constrained Object - likeRepresentations

COBs, OCL, ...

12

Parametric DiagramFiring Range Cannon Example

From: SysML Specification v0.3 (Draft 2004-01-12) p 66

Standardization of COB Concepts and Notation

In SysML

13

Contributing COB Concepts to SysML Parametric DiagramsTutorial Example: Elementary Spring

Elementary Spring

x1

x2

k

L0

F

L

dL

«parametricRelation»L=x1-x2

«parametricRelation»F=kdL

«parametricRelation»dL=L-L0

FF

k

L

deformed state

Lo

L

x2x1

a. Shape Schematic-S

LkFr

LLLr

xxLr

:

:

:

3

02

121

b. Relations-S

L

L

Fk

undeformed length,

spring constant, force,

total elongation,

1x

Llength,0

2x

start,

end,

oLLL

12 xxL

LkF

r1

r2

r3

c. Constraint Schematic-S

SpringElementary

LL

Fk

1x L

0

2x

d. Subsystem-S

Classical COB Representation SysML Parametric Diagram

Draft 2003-12 from Alan Moore (www.artisansw.com)

and Sandy Friedenthal (LMCO)

14

Two Spring System Exampleas SysML Parametric Diagram

Two Spring System

Spring1 : Elementary Spring

x1

x2

k

L0 dL

L

F

Spring2 : Elementary Spring

x1

x2

k

F

L

dL

L0

u1

u2

P

«parametricRelation»x11=0

«parametricRelation»u2=dL2+u1

«parametricRelation»X21=X12

Draft 2003-12 from Alan Moore (www.artisansw.com)

and Sandy Friedenthal (LMCO)

P

k 1 k 2

u 2u 1

b c 1

s p r i n g 1

2u

s p r i n g 2

1u

P

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

122 uLu

b c 2 b c 3

b c 4

b c 6

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

b c 5

011 x

C l a s s i c a l C O B R e p r e s e n t a t i o n

P

k 1 k 2

u 2u 1

b c 1

s p r i n g 1

2u

s p r i n g 2

1u

P

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

122 uLu

b c 2 b c 3

b c 4

b c 6

S p r i n gE l e m e n t a r y

LL

Fk

1x L

0

2x

b c 5

011 x

C l a s s i c a l C O B R e p r e s e n t a t i o n

15

Constrained Object (COB) RepresentationCurrent Technical Capabilities - Generation 2

Capabilities & features:– Various forms: computable lexical forms, graphical forms, etc.

» Enables both computer automation and human comprehension– Sub/supertypes, basic aggregates, multi-fidelity objects– Multi-directionality (I/O changes)– Reuses external programs as white box relations– Advanced associativity added to COTS frameworks & wrappers

Analysis module/template applications (XAI/MRA): – Analysis template languages– Product model idealizations– Explicit associativity relations with design models & other analyses– White box reuse of existing tools (e.g., FEA, in-house codes)– Reusable, adaptable analysis building blocks

– Synthesis (sizing) and verification (analysis)

16

Constrained Objects (cont.) Representation Characteristics & Advantages - Gen. 2

Overall characteristics– Declarative knowledge representation (non-causal)– Combining object & constraint graph techniques– COBs = (STEP EXPRESS subset) +

(constraint graph concepts & views)

Advantages over traditional analysis representations– Greater solution control– Richer semantics

(e.g., equations wrapped in engineering context)– Unified views of diverse capabilities (tool-independent)– Capture of reusable knowledge – Enhanced development of complex analysis models

Toolkit status (XaiTools v0.4)– Basic framework, single user-oriented, file-based

See Advanced Topics

for Gen.3 Extensions

17

COB-based Constraint Schematic for Multi-Fidelity CAD-CAE Interoperability

Flap Link Benchmark Example

Material Model ABB:

Continuum ABBs:

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia, J

radius, r

undeformed length, Lo

twist,

theta start, 1

theta end, 2

r1

12

r3

0L

r

J

rTr

torque, Tr

x

TT

G, r, , ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation,L

length, L

start, x1

end, x2

E

One D LinearElastic Model

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

A

F

edb.r1

oTTT

r3

L

L

x

FF

E, A,

LLo

T, ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

Analysis Modules of Diverse Behavior & Fidelity

(CBAMs) MCAD Tools

Materials LibrariesIn-House, ...

FEA Ansys

Abaqus*

CATIA Elfini*

MSC Nastran*

MSC Patran*

...

General MathMathematica

Matlab*

MathCAD*

...

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Analysis Building Blocks(ABBs)

CATIA, I-DEAS* Pro/E* , UG *, ...

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowable

actual

MS

Margin of Safety(> case)

allowable

actual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Parts LibrariesIn-House*, ...

LegendTool AssociativityObject Re-use

18

FEA-based Analysis Subsystem Used in Linkage Plane Stress Model (2D Analysis Problem)

ts1

rs1

L

rs2

ts2tf

ws2ws1

wf

tw

F

L L

x

y

L C

Plane Stress Bodies

Higher fidelity version vs. Linkage Extensional Model

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ABBSMM SMM Template

19

SMM with Parameterized FEA ModelFlap Link Plane Stress Model

!EX,NIUX,L,WS1,WS2,RS1,RS2,TS1,TS2,TW,TF,WF,FORCE .../prep7

! element typeet,1,plane42

! material propertiesmp,ex,1,@EX@ ! elastic modulusmp,nuxy,1,@NIUX@ ! Poissons ratio

! geometric parametersL = @L@ ! lengthts1 = @TS1@ ! thickness of sleeve1rs1 = @RS1@ ! radius of sleeve1 (rs1<rs2)tf = @TF@ ! thickness of shaft flange ...

! key pointsk,1,0,0k,2,0,rs1+ts1k,3,-(rs1+ts1)*sin(phi),(rs1+ts1)*cos(phi) ...

! linesLARC,3,2,1,rs1+ts1, LARC,7,3,1,rs1+ts1, ...

! areasFLST,2,4,4 AL,P51X ...

ANSYS Prep7 Template@EX1@ = Parameters populated by context ABB

Preprocessor Model Figure

ts1

rs1

L

rs2

ts2tf

ws2ws1

wf

tw

F

L L

x

y

L C

Plane Stress Bodies

20

COB-based Constraint Schematic for Multi-Fidelity CAD-CAE Interoperability

Flap Link Benchmark Example

Material Model ABB:

Continuum ABBs:

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia, J

radius, r

undeformed length, Lo

twist,

theta start, 1

theta end, 2

r1

12

r3

0L

r

J

rTr

torque, Tr

x

TT

G, r, , ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation,L

length, L

start, x1

end, x2

E

One D LinearElastic Model

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

A

F

edb.r1

oTTT

r3

L

L

x

FF

E, A,

LLo

T, ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

Analysis Modules of Diverse Behavior & Fidelity

(CBAMs) MCAD Tools

Materials LibrariesIn-House, ...

FEA Ansys

Abaqus*

CATIA Elfini*

MSC Nastran*

MSC Patran*

...

General MathMathematica

Matlab*

MathCAD*

...

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Analysis Building Blocks(ABBs)

CATIA, I-DEAS* Pro/E* , UG *, ...

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowable

actual

MS

Margin of Safety(> case)

allowable

actual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Parts LibrariesIn-House*, ...

LegendTool AssociativityObject Re-use

21

Flap Linkage Torsional Model

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

l i n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n r e a c t i o n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b l e s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l l o w a b l et w i s t

Diverse Mode (Behavior) vs. Linkage Extensional Model

22

Short Course: Using Standards-based Engineering Frameworks forElectronics Product Design and Life Cycle Support

23

Domain

Abs

trac

tion

Leve

l

Req

uire

men

ts

Sof

twa

re

Ele

ctro

nics

Str

uctu

res

Systems Engineering

Models of varying abstractions and domains

Legend

Model interfaces:Fine-grained associativity relations among domain-specific models and system-level models

Dev

elop

men

t Pro

cess

Rich models: Information objects Parametric relations

… …

After Bajaj, Peak, & Waterbury2003-09

Optimization Knowledge Graphs for Next-Generation PLM

Customer/Acquisitions…

Hum

an

Inte

rfac

es

Optimization clusters:“Systems of systems” model subgraphs for finding satisficing solutions

2004-09

24

Towards Standards-based PLM FrameworksModel-centric view (vs. Tool-centric view)

Eagle Traditional Tools Mentor

Graphics

ElectricalCAD Tools

AP210

Doors

Slate

Systems EngineeringTools

Pro/E

CATIA

MechanicalCAD Tools

AP203, AP214 AP233, SysML

Collective Product ModelBuilding Blocks: • Information models & meta-models

• International standards• Industry specs• Corporate standards• Local customizations

• Modeling technologies:• Express, XML, UML, OWL, COBs, …

XaiToolsPWA-B LKSoft, …Gap-Filling

ToolsXaiToolsPWA-B

EPM, LKSoft, STI, …

STEP-Book AP210,SDAI-Edit,

STI AP210 Viewer, ...

Instance Browser/EditorPWB Stackup Tool,…

pgef

EngineeringFramework Tool

AP210 AP2xx

Standards-based Submodels

25

A Process Perspective

RR

R

RR

R R

R

R

R

R

R

R

R

R

R

R

R

R

RR

RR

R

R

RR

R

R

R

R R

R

R

R

R

R

R

RR

RR

R

R

RR

R

R

R

R R

R

R

R

R

R

R

R

R

R

R

R

R

RR

R

RR

RR

R

R

R

R

R

R

R

R

R

R

R

R

RR

RR

R

R

RR

R

R

R

R R

R

R

R

R

R

R

RR

RR

R

R

RR

R

R

R

R R

R

R

R

R

Process = Order in which Relationships are Applied

Product Perspective

Process Perspective

R

R

R

R

R

R

R

R

RR

R

RR

R

Source: Chris Paredis, 2004

26

Next-Generation PLM/SLiM Framework

Infrastructure: Security Notification Communication VisualizationInfrastructure: Security Notification Communication Visualization

ProcessPerspective

Requirements Definition

Product Portfolio Planning

R

R

R

R

RR

R

RR

R

R

R

R

R

RR

R

RR

R

Maintenance & Support

R

R

R

R

Knowledge

Information

Knowledge

Information

ExecutionPerspective

GRIDAnalystsAnalystsDesignersDesigners

SuppliersSuppliers ManufacturingManufacturing

CAD

R

RR

R

RR

R

R

R

R

R

R

R

R

R

R

R

RR

R

R

RR

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

CADFEM

ProcessPlanning

PDM

Product Perspective

Information

Knowledge

Information

Knowledge

Information

Knowledge

Information

Knowledge

Information

Knowledge

Knowledge& InformationRepositories

PLM/SLiM = Product/System Lifecycle Mgt.Source: Chris Paredis, 2004

27

Model interfaces:Macro-level associativityMicro-level associativity

COB-based Representation & Associativity for all Lifecycle Models

Application to DH Brown’s “12-Fold Way” Legend

COB-based models: Information objects Parametric relations

28

Security Center DashboardOverall Status of Key Systems

Crowd Controls

HVAC Systems

Biological Detection

Chemical Detection

Electrical Systems

System Status

Communication Systems

Cargo Screening

Passenger Screening

… …

Main Terminal

Source: [email protected] 2003-04-24

29

Enabling Next-Generation Model-Based Security (MBS): Complex System Representation & Model Interoperability

Hartsfield International Airport (HIA) Security Scenarios

M a t e r ia l M o d e l A B B :

C o n t in u u m A B B s :

E

O n e D L in e a rE la s t i c M o d e l

T

G

e

t

m a t e r ia l m o d e l

p o la r m o m e n t o f in e r t i a , J

r a d iu s , r

u n d e f o r m e d le n g t h , L o

t w is t ,

t h e t a s t a r t , 1

t h e t a e n d , 2

r 1

12

r 3

0L

r

JrT r

t o r q u e , T r

x

TT

G , r , , ,J

L o

y

m a t e r ia l m o d e l

t e m p e r a t u r e , T

r e f e r e n c e t e m p e r a t u r e , T o

f o r c e , F

a r e a , A

u n d e f o r m e d le n g t h , L o

t o t a l e lo n g a t io n , L

le n g t h , L

s t a r t , x 1

e n d , x 2

E

O n e D L in e a rE la s t ic M o d e l

( n o s h e a r )

T

e

t

r 1

12 xxL

r 2

oLLL

r 4

A

F

e d b . r 1

oTTT

r 3

L

L

x

FF

E , A ,

LL o

T , ,

yL

T o r s io n a l R o d

E x t e n s io n a l R o d

t e m p e r a t u r e c h a n g e , T

c t e ,

y o u n g s m o d u lu s , E

s t r e s s ,

s h e a r m o d u lu s , G

p o is s o n s r a t io ,

s h e a r s t r e s s , s h e a r s t r a in ,

t h e r m a l s t r a in , t

e la s t ic s t r a in , e

s t r a in ,

r 2

r 1)1(2

EG

r 3

r 4Tt

Ee

r 5

G

te

1 D L in e a r E la s t ic M o d e l

m a t e r ia l

e f f e c t iv e le n g t h , L e f f

l i n e a r e la s t ic m o d e l

L o

E x t e n s io n a l R o d( is o t h e r m a l )

F

L

A

L

E

x 2

x 1

y o u n g s m o d u lu s , E

c r o s s s e c t io n a r e a , A

a l1

a l3

a l2

l in k a g e

m o d e : s h a f t t e n s io n

c o n d i t io n r e a c t io n

a l lo w a b le s t r e s s

s t r e s s m o s m o d e l

M a r g in o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

S i m u l a t i o n T e m p l a t e so f D i v e r s e B e h a v i o r & F i d e l i t y

C A D T o o l s

L i b r a r i e s & D a t a b a s e sM a t e r ia ls , E q u ip m e n t ,

P e r s o n n e l , P r o c e d u r e s , …

C F DF l o t h e r m , …

G e n e r a l M a t hM a t h e m a t i c a ,

M a t l a b , …

I n t e g r a t e d S y s t e m M o d e l

E v a c u a t i o nM g t .

C o l u m nD e s t r u c t i o n

2 D

1 D

S i m u l a t i o n B u i l d i n g B l o c k s

C A T I A , . . .

S i m u l a t i o n T o o l sS y s t e m D e s c r i p t i o nT o o l s & R e s o u r c e s

3 D

f l a p _ l i n k

c r i t i c a l_ s e c t io n

c r i t i c a l_ s im p le

t 2 f

w f

t w

h w

t 1 f

a r e a

e f f e c t i v e _ le n g th

c r i t i c a l_ d e t a i le d

s t r e s s _ s t r a in _ m o d e l l in e a r _ e la s t i c

E

c t e a r e a

w f

t w

h w

t f

s le e v e _ 1

b

h

t

b

h

t

s le e v e _ 2

s h a f t

r i b _ 1

m a t e r ia l

r i b _ 2

w

t

r

x

n a m e

t 2 f

w f

t w

t 1 f

c r o s s _ s e c t io n

w

t

r

x

R 3

R 2

R 1

R 8

R 9

R 1 0

6R

R 7

R 1 2

1 1R

1R

2

3

4

5

R

R

R

R

n a m e

l in e a r _ e la s t i c _ m o d e l

w f

t w

t f

i n t e r _ a x is _ le n g t h

s le e v e _ 2

s h a f t

m a t e r ia l

l in k a g e

s le e v e _ 1

w

t

r

E

c r o s s _ s e c t io n : b a s i c

w

t

rL

w s 1

t s 1

r s 2

w s 2

t s 2

r s 2

w f

t w

t f

E

d e f o r m a t io n m o d e l

x , m a x

P a r a m e t e r iz e dF E A M o d e l

s t r e s s m o s m o d e l

M a r g in o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

u x m o s m o d e l

M a r g in o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

m o d e : t e n s io nu x , m a x

Fc o n d i t i o n r e a c t i o n

a l lo w a b le i n t e r a x i s l e n g t h c h a n g e

a l lo w a b le s t r e s s

m a t e r ia l

e f f e c t iv e le n g t h , L e f f

d e f o r m a t io n m o d e l

l in e a r e la s t i c m o d e l

L o

T o r s io n a l R o d

G

J

r

2

1

s h e a r m o d u lu s , G

c r o s s s e c t io n :e f f e c t iv e r i n g p o la r m o m e n t o f i n e r t ia , J

a l1

a l3

a l2 a

l in k a g e

m o d e : s h a f t t o r s io n

c o n d i t io n r e a c t io nT

o u t e r r a d iu s , r o a l2 b

s t r e s s m o s m o d e l

a l lo w a b le s t r e s s

t w is t m o s m o d e l

M a r g in o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g in o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l lo w a b let w is t

L e g e n dT o o l A s s o c i a t i v i t yO b j e c t R e - u s e

L e g e n dT o o l A s s o c i a t i v i t yO b j e c t R e - u s e

F E AM S C N a s t r a n , …

F a c i l i t i e s M g t . S y s t e m s…

A i r b o r n eH a z a r d F l o w

E v a c u a t i o n C o d e sE g r e s s , E x o d u s , …

0 . 5 0 0 in .0 . 0 6 0 in .

2 0 1 3 5 - 5 5 1 2 d ig i t a l o s c i l la t o rA B C _ 9 2 3 0 W a r n in g M o d u le P W B

c o m p o n e n t

l w

h

c o m p o n e n t , c

r 2

s ocs r hhh

s t a n d o f f h e ig h t , h s o :

m a x . h e ig h t ( s u r f a c e r e la t iv e ) , h s rr 1

p wbs ra thh m a x . h e ig h t ( a b s o lu t e ) , h a

p w b

l w

p w b

t

r 3

p wbs o thz zo r ig in

0 . 5 0 0 in .0 . 0 6 0 in .

2 0 1 3 5 - 5 5 1 2 d ig i t a l o s c i l la t o rA B C _ 9 2 3 0 W a r n in g M o d u le P W B

0 . 5 0 0 in .0 . 0 6 0 in .

2 0 1 3 5 - 5 5 1 2 d ig i t a l o s c i l la t o rA B C _ 9 2 3 0 W a r n in g M o d u le P W B

c o m p o n e n t

l w

h

c o m p o n e n t , c

r 2

s ocs r hhh

s t a n d o f f h e ig h t , h s o :

m a x . h e ig h t ( s u r f a c e r e la t iv e ) , h s rr 1

p wbs ra thh m a x . h e ig h t ( a b s o lu t e ) , h a

p w b

l w

p w b

t

r 3

p wbs o thz zo r ig in

c o m p o n e n t

l w

hc o m p o n e n t

l w

h

c o m p o n e n t , c

r 2

s ocs r hhh

s t a n d o f f h e ig h t , h s o :

m a x . h e ig h t ( s u r f a c e r e la t iv e ) , h s rr 1

p wbs ra thh m a x . h e ig h t ( a b s o lu t e ) , h a

p w b

l w

p w b

t

r 3

p wbs o thz zo r ig in

Source: [email protected] 2003-04-24Utilizes generalized MRA terminology (preliminary)

30

AbstractSTEP, XML, and UML:

Complementary TechnologiesOne important aspect of product lifecycle management (PLM) is the computer-sensible representation of product information. Over the past fifteen years or so, several languages and technologies have emerged that vary in their emphasis and applicability for such usage. ISO 10303, informally known as the Standard for the Exchange of Product Model Data (STEP), contains the high-quality product information models needed for electronic business solutions based on the Extensible Markup Language (XML). However, traditional STEP-based model information is represented using languages that are unfamiliar to most application developers.

This paper discusses efforts underway to make STEP information models available in universal formats familiar to most business application developers: specifically XML and the Unified Modeling Language™ (UML®). We also present a vision and roadmap for future STEP integration with XML and UML to enable enhanced PLM interoperability.

http://eislab.gatech.edu/pubs/conferences/2004-asme-detc-lubell/

Extended version in JCISE December 2004 issue:http://eislab.gatech.edu/pubs/journals/2004-jcise-peak/

Notice: Commercial equipment and materials are identified in order to describe certain procedures. Some slides include product names for example purposes only (i.e., to help clarify the concepts presented via specific instances). In no case does such identification imply recommendation or endorsement by the authors or their organizations, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. Unified Modeling Language, UML, Object Management Group, OMG, and XMI are trademarks or registered trademarks of the Object Management Group, Inc. in the U.S. and other countries. Java is a trademark or registered trademark of Sun Microsystems, Inc. Other company, product, and service names may be trademarks or service marks of others.

31

Primary Information Representation Technologies for Standards-based PLM Frameworks

(STEP Part 11)

Information Modeling Implementation Methods Standardized Content

32

STEP, XML, UML Capabilitiesregarding Engineering/Technical Domains

Characteristic Aspect Classical STEP XML UML

Information Modeling

Capability:

Popularity:

High (+) Narrow

High (-) High

High (-) High

Implementation Methods

Capability:

Popularity:

High (-) Narrow: pre-web

High High

High High

Standardized Content

Breadth:

Depth/Richness:

Coordination:

Usage:

High High High Broad (MCAD),plus Limited / Emerging (others)

Medium Medium+ Low (islands) Broad (some),plus Emerging

Medium (s/w+) Medium+ Medium Broad (some),plus Emerging

ComplementaryStrengths

Note: “Next-wave STEP” is adding XML and UML implementation methods

(a.k.a. Parts 28 and 25)

33

“STEP on a Page”Application Protocols (APs)

Source: “STEP on a Page” by Jim Nell. 2003-April-07 version. http://www.mel.nist.gov/sc5/soap/

p. 1 of 3

34

STEP on a Page - IRs, etc.

35

STEP on a Page - App. Modules (AMs)

36

User/Owner/Operator

Acquisition Authority

Systems Engineering

Management Marketing

User/Owner/Operator

Business Strategy Concept RFP Proposal Contract

Management InfoManagement Info

Mechanical ElectricalChemical

Digital

Civil

Controls

Communications

LogisticsMaintenance

Manufacture

STEPISO SC4

Specifications

Software

UMLISO SC7

EngineeringDisciplines

What is the context of Systems Engineering?

2002-04 - Mike Dickerson, NASA-JPL

37

Complementary Usage of STEP, UML, and XML for Systems Engineering: Envisioned AP233-SysML Relationship

AP-233 NeutralInfo Exchange

Format

AP-233 NeutralInfo Exchange

Format

ElectricalCAE

ElectricalCAE

MechanicalCAD

MechanicalCAD

SW DevEnvironment

SW DevEnvironment

AlgorithmDesign

AlgorithmDesign

TestingTools

TestingTools

PlanningTools

PlanningTools

XMI (XML Metamodel-

Interchange for UML)

SysMLToolsSysMLTools Systems

EngineeringSystems

Engineering

AP-233 NeutralInfo Exchange

Format

AP-233 NeutralInfo Exchange

Format

ElectricalCAE

ElectricalCAE

MechanicalCAD

MechanicalCAD

SW DevEnvironment

SW DevEnvironment

AlgorithmDesign

AlgorithmDesign

TestingTools

TestingTools

PlanningTools

PlanningTools

XMI (XML Metamodel-

Interchange for UML)

SysMLToolsSysMLTools Systems

EngineeringSystems

Engineering

Source: www.SysML.org 2003-12

38

AP 212: Electrotechnical Design and Installation

Electrotechnical Equipment in Industry

Electrotechnical Plant• Plant, e.g., Automobile• Unit, e.g., Engine Control System• Subunit, e.g., Ignition System

Electrotechnical Systems• Buildings • Plants• Transportation Systems

Equipment Coverage• Power-transmission• Power-distribution• Power-generation• Electric Machinery• Electric Light and Heat• Control Systems

Data Supporting• Terminals and Interfaces• Functional Decomposition of Product• 3D Cabling and Harnesses• Cable Tracks and Mounting Instructions

The Cable/Harness Problem

2003-11 - from Northrop Grumman Corp. (NGC)

?

?

?

?

?

?

Need to coordinate E-MCAD designs, …

ECAD (LCable**, CapitalH, …)

MCAD (UG)

In collaboration with www.InterCAX.com

40

Sample Solution ElementsLKSoft IDA-STEP and related AP212 converters (EPLAN, Lcable, …)

Possible extensions to fulfill particular company needs Ex. - merging/difference tool

AP212 standard: www.ap212.org

AP212 model interaction in IDA-STEP v1.3.1ECAD Cable/Harness Tools (e.g. EPLAN, LCable)

In collaboration with www.InterCAX.com

41

Geometry• Solids Data• Surface Data• Wireframe• Measured Data

Analysis•Simulation

Technology Data•Material Data•Form Features•Tolerance Data•Surface Conditions

Manufacturing•NC-Data•Process Plans

Specification/Configuration•Product Structure Data•Management Data

Presentation•Drawing•Visualization

ProSTEPAP 214: Core Data for Automotive

Mechanical Design Processes

42

IDA-STEP Overview

IDA-STEP Viewer (v1.2 - May, 2004 - free download)

– Supports AP203, AP212, AP214– Downloadable from www.ida-step.net

IDA-STEP Center version – Adds editing and transformation/export capabilities– Supports repository interfaces

Example end-user tool for viewing and editing rich product models

in an open standards-based PLM environment

43

Linking Intelligent 3D with Product Structure

44

Process Plan - Tree

Read Only, data generated in eM-PlannerTM / Tecnomatix

45

Linking Intelligent 2D (e.g. Factory Layout) with Product Structure

46

Example Features and Usage of Standards-based Tools for Rich Product Models (IDA-STEP v1.2)

AP203, AP212, AP214 and PDM-Schema support Viewing 2D & 3D geometry and intelligent schematics Creation and editing of rich PLM information Single user versions (PC, Workstation) Multi-user environments:

STEP database using MySQL and Oracle

Target Usage Standards-based PLM for SMEs Prime-SME collaboration via rich product models

The Adobe Acrobat / pdf equivalent for rich product models