achieving safe and effective moderate to deep ... · surgical site infections pulmonary...

56
Provided by ASHP Supported by an educational grant from Merck Achieving Safe and Effective Moderate to Deep Neuromuscular Blockade and Reversal in the Perioperative Setting A Virtual Midday Symposium conducted at the 2020 ASHP Midyear Clinical Meeting and Exhibition Monday, December 7, 2020 1:00 – 2:30 pm ET Home Study Available January 20, 2021 – May 12, 2022 FACULTY Rachel C. Wolfe, Pharm.D., M.H.A., BCCCP, Activity Chair Clinical Pharmacy Specialist Perioperative and Surgical Critical Care Barnes‐Jewish Hospital St. Louis, Missouri Deborah Wagner, Pharm.D., FASHP Clinical Professor of Pharmacy and Anesthesiology University of Michigan Ann Arbor, Michigan Glenn S. Murphy, M.D. Clinical Professor, Department of Anesthesiology University of Chicago Pritzker School of Medicine Director of Clinical Research NorthShore University Health System Evanston, Illinois View faculty bios at ashpadvantage.com/nmbreversal CE PROCESSING Participants will process CE credit online at http://elearning.ashp.org/my‐activities. CE credit will be reported directly to CPE Monitor. Per ACPE, CE credit for live Midyear activities must be claimed by February 1, 2021. CE credit for this archived activity must be claimed no later than 60 days from the date of completion. ACCREDITATION The American Society of Health‐System Pharmacists is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education. ACPE #: 0204‐0000‐20‐436‐L01‐P 0204‐0000‐20‐436‐H01‐P 1.5 hour, application‐based The American Society of Health System Pharmacists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The American Society of Health‐System Pharmacists designates this internet live course for a maximum of 1.5 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Upload: others

Post on 26-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Provided by ASHP Supported by an educational grant from Merck 

    Achieving Safe and Effective Moderate to Deep Neuromuscular Blockade and Reversal in the Perioperative Setting 

    A Virtual Midday Symposium conducted at the 2020 ASHP Midyear Clinical Meeting and Exhibition Monday, December 7, 2020  1:00 – 2:30 pm ET 

    Home Study Available  January 20, 2021 – May 12, 2022 

    FACULTY Rachel C. Wolfe, Pharm.D., M.H.A., BCCCP, Activity Chair Clinical Pharmacy Specialist Perioperative and Surgical Critical Care Barnes‐Jewish Hospital St. Louis, Missouri 

    Deborah Wagner, Pharm.D., FASHP Clinical Professor of Pharmacy and Anesthesiology University of Michigan Ann Arbor, Michigan 

    Glenn S. Murphy, M.D. Clinical Professor, Department of Anesthesiology University of Chicago Pritzker School of Medicine Director of Clinical Research NorthShore University Health System Evanston, Illinois 

    View faculty bios at ashpadvantage.com/nmbreversal 

    CE PROCESSING Participants will process CE credit online at http://elearning.ashp.org/my‐activities. CE credit will be reported directly to CPE Monitor. Per ACPE, CE credit for live Midyear activities must be claimed by February 1, 2021.  CE credit for this archived activity must be claimed no later than 60 days from the date of completion. 

    ACCREDITATION 

    The American Society of Health‐System Pharmacists is accredited by the  Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education.  ACPE #:  0204‐0000‐20‐436‐L01‐P 

     0204‐0000‐20‐436‐H01‐P 

    1.5 hour, application‐based 

    The American Society of Health System Pharmacists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. 

    The American Society of Health‐System Pharmacists designates this internet live course for a maximum of 1.5 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity. 

    https://www.ashpadvantage.com/nmbreversal/

  • ASHP FINANCIAL RELATIONSHIP DISCLOSURE STATEMENT 

    Planners, presenters, reviewers, ASHP staff, and others with an opportunity to control CE content are required to disclose relevant financial relationships with ACCME‐defined commercial interests. All actual conflicts of interest have been resolved prior to the continuing education activity taking place. ASHP will disclose financial relationship information prior to the beginning of the activity.  

    A relevant financial relationship is defined as a financial relationship between an individual (or spouse/partner) in control of content and a commercial interest, in any amount, in the past 12 months, and products and/or services of the commercial interest (with which they have the financial relationship) are related to the continuing education activity.  

    An ACCME‐defined commercial interest is any entity producing, marketing re‐selling, or distributing healthcare goods or services consumed by, or used on, patients. The ACCME does not consider providers of clinical service directly to patients to be commercial interests—unless the provider of clinical service is owned, or controlled by, an ACCME‐defined commercial interest. 

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved.2

  • Provided by ASHP Supported by an educational grant from Merck

    Achieving Safe and Effective Moderate to Deep Neuromuscular Blockade and Reversal in the Perioperative Setting

    Rachel C. Wolfe, Pharm.D., M.H.A., BCCCPClinical Pharmacy Specialist, Barnes Jewish Hospital

    St. Louis, Missouri

    Deborah Wagner, Pharm.D., FASHPClinical Professor of Pharmacy and Medicine, University of Michigan

    Ann Arbor, Michigan

    Glenn S. Murphy, M.D.Clinical Professor of Anesthesiology, University of Chicago

    Evanston, Illinois 

    Financial Relationship DisclosureRachel Wolfe, Pharm.D.• Consultant and Speakers Bureau, MerckGlenn Murphy, M.D.• Speakers Bureau and Advisory Board, MerckDeborah Wagner, Pharm.D., FASHP• Advisory Board, Merck and Fresenius Kabi

    All other planners, presenters, reviewers, ASHP staff, and others with an opportunity to control content report no financial relationships relevant* to this activity.

    *As defined by the ACCME definition of commercial entity.

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved.3

  • • Assess risk for post‐operative complications in patientsreceiving neuromuscular blocking agents (NMBAs).

    • Explain the key components of neuromuscular blockade (NMB)and reversal during the intraoperative phase of care.

    • Summarize the impact of residual NMB on patient and healthcare system outcomes.

    • Apply strategies to improve interprofessional communicationacross the continuum of care when managing patientsreceiving NMB agents.

    Learning Objectives

    Pharmacology of Neuromuscular Blocking and Reversal Agents and Patient Risk 

    FactorsRachel C. Wolfe, Pharm.D., M.H.A., BCCCP‐Activity Chair

    Clinical Pharmacy SpecialistPerioperative and Surgical Critical Care

    Barnes‐Jewish HospitalSt. Louis, Missouri

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved.4

  • • BT is a 75‐year‐old male (5’11”, 136 kg, body mass index [BMI] 41.8 kg/m2)scheduled for a laparoscopic colon resection

    • PMH– Heart failure– Chronic obstructive pulmonary disease (COPD)– Hypertension– Diabetes mellitus– Obstructive sleep apnea (OSA)

    • BT recently recovered from a mild case of COVID‐19 pneumonia 3 weeks ago• Preoperative O2 saturation 93%, BP 132/90 mm Hg, RR 14/min• Blood glucose 140 mg/dL

    Patient Case

    Postoperative Complications Associated with Neuromuscular Blockade 

    Rachel C. Wolfe, PharmD, MHA, BCCCPPerioperative Clinical Pharmacy Specialist

    Barnes‐Jewish HospitalSt. Louis, Missouri

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved.5

  • Postoperative Complications

    Excessive sedation

    Respiratory depression

    Residual neuromuscular blockade

    Delirium/cognitive dysfunction

    Nausea/vomiting

    Uncontrolled acute pain

    Ileus

    Bleeding

    Surgical site infections

    Pulmonary complications

    Persistent pain

    Chronic opioid use

    Classification of Neuromuscular BlockersNeuromuscular Blocking Agents (NMBAs)

    DepolarizingSuccinylcholine

    Non-depolarizing

    Aminosteroid Rocuronium

    Vecuronium

    Benzylisoquinolinium Mivacurium

    Atracurium

    Cisatracurium

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 6

  • Non‐depolarizing NMBAsAntagonize the action of acetylcholine (ACh) in a competitive manner

    Bind to both presynaptic and postsynaptic receptors

    Binding is dynamic with repeated association and dissociation

    How Do NMBAs Compare?NMBA Metabolism Intubating 

    Dose (mg/kg)*Onset(min)

    Recovery Begins (min)

    Half‐life (min)

    Succinylcholine Plasma pseudocholinesterase

    0.6‐1

  • Why do we use NMBAs?Improves intubating conditions

    Optimal surgical field conditions

    Ventilation management

    NMBAs: Flip Side of That Coin

    NMBAs are associated with a 

    significant increased risk of postoperative 

    pulmonary complications (PPCs)

    Bulka C et al. Anesthesiology. 2016; 125:647‐55.Kirmeier E et al. Lancet Respir Med. 2019; 7(2):129‐40.

    Cammu G. Curr Anesthesiol Rep. 2020; 27:1‐6.

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 8

  • • Impairment of the normal phasic activity of genioglossus muscle– Impacts pharyngeal airway patency

    • Abnormal coordination of pharyngeal and upper esophageal muscles– Impacts aspiration risk

    • Impairment of the peripheral chemoreflex loop at the carotid bodies– Impacts respiratory homeostasis

    Miskovic A et al. Br J Anaesth. 2017; 118:317‐34.Broens S et al. Anesthesiology. 2019; 131:467‐76.

    Postoperative Respiratory Effects of NMBAs

    Increased airway 

    resistanceUpper airway obstruction Hypoventilation

    Oxygen desaturation and hypoxia

    Impaired or misdirected swallowing

    Inability to cough 

    Aspiration pneumonia Pneumonitis

    Pulmonary congestion

    Postoperative pneumonia

    Impaired hypoxic 

    respiratory driveReintubation

    Cammu G. Curr Anesthesiol Rep. 2020; 27:1‐6.

    Postoperative Pulmonary Complications

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 9

  • Miskovic A et al. Br J Anaesth. 2017; 118:317‐34.Kirmeier E et al. Lancet Respir Med. 2019; 7:129‐40.

    Hristovska AM et al. Cochrane Database Syst Rev. 2017; 8:CD012763.

    Preoperative SpO2 ≤ 94%

    ASA class ≥3

    Age ≥ 60 yr

    Duration of procedure > 2 hr

    Emergent surgery

    Intrathoracic or upper abdominal surgery

    NMBA utilization

    Smoking status

    Poor functional health status

    Severe respiratory disease (e.g., COPD)

    Obstructive sleep apnea

    BMI > 40 kg/m2

    Chronic renal insufficiency

    Congestive heart failure

    History of recent respiratory infection

    Male

    Risk Factors for Postoperative Pulmonary Complications (PPCs)

    Factors Contributing to PPCs

    Aging Americans and Surgery• Americans undergo an average of 9.2 surgical procedures per lifetime– 3.4 inpatient operations– 2.6 outpatient operations– 3.2 non‐operating room invasive procedures

    Lee P et al. J Am Coll Surg. 2008; 207(3):S75. 

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 10

  • Only a Piece of the Safety & Quality Puzzle

    • Safe use of neuromuscular blockade 

    Optimize Outcomes

    Reversal StrategyDose Monitoring

    PACU HandoffSelection

    PACU: Post anesthesia care unit

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 11

  • Biro P. Anesth Analg. 2019; 128(6):1361‐1363.

    Neuromuscular Blockade MonitoringDepth of Block Post‐tetanic 

    count (PTC)Qualitative 

    TOFQuantitative TOF Ratio

    TOF Depiction

    Complete 0 0 0Profound  1‐3 0 0Deep ≥ 4 0 0Moderate N/A 1‐3 0Shallow N/A 4, with fade 0.1 to 

  • • Primary reversal option for succinylcholine• Not recommended for non‐depolarizing NMBAs

    – Evidence indicates spontaneous reversal is associated with worse outcomes

    • How often is spontaneous reversal chosen to reverse non‐depolarizing NMBAs at your institution?

    Bulka C. et.al. Anesthesiology. 2016; 125:647‐655.Bronsert MR et al. Anesth Analg. 2017; 124:1476‐83.

    Time

    Pharmacologic Reversal

    ACETYLCHOLINESTERASE INHIBITOR

    NEOSTIGMINESELECTIVE RELAXANT BINDING AGENT

    SUGAMMADEX

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 13

  • Brull SJ. Anesthesiology. 2017; 126:173‐90.Bridion (sugammadex) prescribing information. Merck and co., Inc. 2020 Jun.

    Bloxoverz (neostigmine) prescribing information. Avadel Legacy Pharmaceuticals, LLC. 2017 Jan. 

    Depth of Block

    PTC Qualitative TOF

    Quantitative TOF Ratio

    TOF Visual Neuromuscular Blockade Reversal Agents

    Complete 0 0 0 Sugammadex 16 mg/kg (emergent reversal of rocuronium 1.2 mg/kg)

    Profound  1‐3 0 0

    Deep ≥ 4 0 0 Sugammadex 4 mg/kg

    Moderate NA 1‐3 0 Sugammadex 2‐4 mg/kg Neostigmine 0.05‐ 0.07 mg/kg (TOF 2‐3)

    Shallow NA 4, with fade 0.1 to 

  • • Cannot reverse complete, profound, or deep block• Reversal of moderate block takes significant time• Coadministration with an anticholinergic agent

    – Anticholinergic side effects (e.g., delirium, sedation, constipation, urinary retention)

    • Has been associated with the following postop complications – Residual NMB– Postoperative nausea and vomiting (PONV)– Delayed return of bowel function– Bradycardia

    Neostigmine: Important Considerations

    Bloxoverz (neostigmine) prescribing information. Avadel Legacy Pharmaceuticals, LLC. 2017 Jan.Hristovska AM et.al. Anaesthesia. 2018;73(5):631‐641.

    Sugammadex• Selective relaxant binding agent

    – Distributes throughout the plasma– Encapsulates and inactivates rocuronium

    and vecuronium, shifting the NMBA awayfrom the neuromuscular junction

    – Complex is renally eliminated without undergoing metabolism (half‐life 2 hr)• Predictable, highly effective reversal agent

    – Complete recovery in 1‐3 minutes• Able to reverse deep and moderate block• Emergent reversal induction dose is only approved for rocuronium‐induced blockade

    – Affinity higher for rocuronium• No muscarinic or anticholinergic properties

    Rocuroniumor 

    Vecuronium Sugammadex Complex

    Bridion (sugammadex) prescribing information. Merck and Co., Inc. 2020 Jun.

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 15

  • • Drug interactions with hormonal contraceptives and ondansetron• Rare but serious adverse effects

    – Marked bradycardia– Hypersensitivity reaction

    • Cost: higher than the combination of neostigmine + glycopyrrolate 

    Sugammadex: Important Considerations

    Bridion (sugammadex) prescribing information. Merck and Co., Inc. 2020 Jun.Hristovska AM et.al. Anaesthesia. 2018;73(5):631‐641. 

    • Not recommended in patients with creatinine clearance 

  • • BT is transported to the OR for his laparoscopic colon resection procedure

    Patient Case

    Intraoperative Monitoring and Assessment/Monitoring of Patient Risk Factors

    Glenn S. Murphy, M.D.Clinical Professor, Department of AnesthesiologyUniversity of Chicago Pritzker School of Medicine

    Director of Clinical ResearchNorthShore University Health System

    Evanston, Illinois

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 17

  • Objectives• Review the incidence and clinical implications of post‐

    operative residual neuromuscular blockade (PRNB)• Discuss various modes of neuromuscular monitoring 

    and the effects on monitoring on outcomes• Examine clinical studies which have documented the 

    importance of reversal of neuromuscular blockade at the conclusion of surgery

    BT is transported back to the OR for a 3‐hr surgery. He is given lidocaine, propofol, rocuronium 1.2 mg/kg, and fentanyl for 

    rapid sequence induction. General anesthesia is maintained with sevoflurane. No additional rocuronium is given.  Neuromuscular 

    blockade is monitored at the facial nerve with a PNS (TOF stimulation). At the end of surgery, BT has 4/4 twitches (no 

    fade), a strong hand grip, and is able to lift his head on his own. No reversal agent was given.  BT is subsequently extubated and 

    transported to the PACU. 

    PNS:  peripheral nerve stimulator

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 18

  • Residual Neuromuscular Block: Rediscovering the Obvious

    “In the United States, approximately 112,000 patients annually are at risk of adverse events associated with discharge from the operating room with residual neuromuscular blockade”

    Brull SJ. Anesth Analg. 2008;107:11‐13.

    Naguib M et al. Anesth Analg. 2010; 111:110‐9.

    0%

    20%

    40%

    60%

    80%

    100%

    No Yes

    Has respondent ever observed a patient exhibiting clinically significant residual NMB after the administration of a NMBA in 

    his/her recovery room or PACU?  

    Europe US

    573

    212156

    1565

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 19

  • Devices to Assess Neuromuscular Blockade

    • Qualitative Monitor • Quantitative monitor

    • With quantitative neuromuscular monitoring– Traditional definition: TOF ratio 

  • The RECITE US Study• Prospective observational study of the incidence of PRNB at 10 U.S. hospitals (academic and private practice)

    • ASA I‐III patients undergoing abdominal surgery were assessed• TOF ratios measured immediately before extubation Results• 255 patients enrolled• Incidence PRNB:  64.7% had TOF ratio 

  • Residual Neuromuscular Block in the Elderly:  Incidence and Clinical Implications

    • Data prospectively collected on 150 younger (18‐50 yr) and 150 elderly (>70 yr) patients

    • TOF ratios measured on arrival to PACU• Patients examined for adverse respiratory events from 

    tracheal extubation until hospital discharge• Postoperative muscle weakness quantified using a 

    standardized exam, and PACU and hospital lengths of stay were determined

    Murphy GS et al.  Anesthesiology. 2015; 123:1322‐36.

    Results

    • Incidence of PRNB was 57.7% in elderly and 30.0% in younger patients (P

  • Residual Neuromuscular Blockade in the PACU:  Observational Cross‐Sectional Study of a Multi‐Center 

    Cohort• Multi‐center study in Spain• Enrolled 763 patients from 26 centers• TOF ratios assessed at admission to PACUResults• 27% patients TOF ratio 

  • Does qualitative neuromuscular monitoring reduce the risk of residual block or impact clinical recovery?

    • 39 surgical patients randomized to TOF monitoring or no monitoring in OR

    Results• No monitoring group

    47% TOF ratio 

  • • Study examined the ability of anesthesiologists to detect fade using TOF stimulation at varying levels of neuromuscular blockade

    Results• Inexperienced in use of nerve stimulators

    ‐Unable to feel fade unless TOF ratios 

  • Kotake Y et al. Anesth Analg. 2013; 117:345‐51.

    Reversal with Sugammadex in the Absence of Monitoring

    Does quantitative neuromuscular monitoring reduce the risk of residual blockade or impact clinical recovery?

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 26

  • 3‐dimensional Acceleromyography

    Murphy GS et al. Anesthesiology. 2018; 129:880‐8.

    Comparison of the TOFscan and the TOF‐Watch SX during Recovery of Neuromuscular Function

    ULoA: upper limit of agreement LLoA: lower limit of agreement

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 27

  • Tetragraph EMG Monitor

    Murphy GS et al. Anesthesiology. 2008; 109:389‐98.

    Intraoperative Acceleromyographic Monitoring• Reduces the risk of residual neuromuscular blockade and adverse respiratory events in the postanesthesia care unit

    Acceleromyography Group Conventional TOF Group

    *Degree of residual NMB classified as acceptable neuromuscular recovery=0 (TOF ratio > 0.90), mild to moderate NMB = 1 (TOF ratio 0.70‐0.90), Severe NMB=2 (TOF ratio 

  • Intraoperative Acceleromyographic Monitoring

    Murphy GS et al. Anesthesiology. 2008; 109:389‐98.

    Tests to Detect Residual ParalysisClinical Test Reliability/Relevance

    Tidal volume Not reliable

    Vital capacity Not sensitive

    End‐tidal CO2 Not reliable

    Maximum inspiratory pressure Not sensitive

    Head or leg lift test > 5 seconds Not sensitive

    Tongue depressor test Reliable but difficult to implement

    Plaud B et al. Anesthesiology. 2010;112:1013‐22.

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 29

  • Consensus Statement on Perioperative Use of Neuromuscular Monitoring

    • Quantitative (objective) NMB monitoring should be used whenever a nondepolarizing NMBA is administered

    The panel recognizes that replacing conventional PNS devices with quantitative monitoring equipment will take time and education. During this interim period, the use of a PNS in any patient receiving a NMBA is mandatory• Subjective or clinical tests of NMB are not predictive of adequate neuromuscular 

    recovery and are not sensitive to the presence of residual neuromuscular weakness; their use should be abandoned in favor of objective monitoring

    • Professional organizations should develop practice standards and guidelines detailing how best to monitor and manage perioperative administration of NMBAs.

    Naguib M et al. Anesth Analg. 2018; 127:71‐80.

    Always reverse the effects of NMBAs

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 30

  • • Propensity matched study at Vanderbilt University

    Design

    • 1320 surgical cases who received an NMBA and reversal with neostigmine compared to 1320 cases who did not receive reversal

    Method

    • The incidence of pneumonia in patients receiving a NMBA was 1.79 times that of propensity matched patients who did not receive a NMBA

    • The incidence of pneumonia in patients receiving a NMBA without reversal was 2.26 times that of propensity matched cases who received reversal with neostigmine

    Result

    Bulka C et al. Anesthesiology. 2016; 125:647‐55.

    No Reversal and Respiratory Complications

    Respiratory Complications without Reversal

    Bronsert MR et al. Anesth Analg. 2017; 124:1476‐83.

    • Retrospective study of 11,355 non‐cardiac patients from 5 VA hospitals– 8984 received NMBAs– 7047 reversed with 

    neostigmine• Respiratory complications

    – Failure to wean, reintubation, pneumonia

    • NO reversal was associated with a 70‐75% increase in odds of respiratory complications

    Analysis OR/HR (95% CI) p valueRespiratory complicationsUnadjusted 4.20 (3.51‐5.03)

  • Neostigmine Administration After a Spontaneous Recovery to a Train‐of‐Four Ratio of 0.9 to 1.0

    120 patients administered 1 X ED95 dose of rocuronium and given none thereafter (average dose 25 mg)

    Average duration of the cases was 163 minutes Results

    At the conclusion of surgery, 24 patients (21%) had not recovered to a TOF ratio of at least 0.9

    Murphy GS et al. Anesthesiology. 2018; 128:27‐37.

    Consider the use of sugammadex

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 32

  • Neostigmine Versus Sugammadex for Reversal of Neuromuscular Blockade and Effects on Reintubation for Respiratory Failure or Newly Initiated Noninvasive Ventilation: An Interrupted Time Series Design

    • Adult patients undergoing general anesthesia that included reversal of neuromuscular blockade and admission ≥1 night were enrolled (7316 patients)

    • Groups were determined by date of surgery: August 2015 to May 2016 (neostigmine/presugammadex), and August 2016 to May 2017 (postsugammadex)

    • The primary outcome was defined as a composite of reintubation for respiratory failure (RF) or new noninvasive ventilation (NIV)

    Krause M et al. Anesth Analg. 2020; 131:141‐51.

    Outcome Unadjusted RatesPresugammadex Group Postsugammadex Group

    Reintubation for RF or new NIV, no. (%)

    209 (6.1) 164 (4.2)

    Conclusions:  What was done wrong in this case?• Monitored at the facial nerve‐eye muscles:  The risk of PRNB can be up to 

    5 times higher when monitoring is conducted at the facial nerve vs. the ulnar nerve‐adductor pollicis

    • PNS used as monitor vs. quantitative monitor: The incidence of PRNB can be significantly reduced by the use of quantitative monitoring; particularly important in patients at high risk for PRNB

    • Not reversed:  Every patient should receive a reversal agent at the end of surgery unless a quantitative monitor has demonstrated spontaneous recovery to a TOF ratio > 0.9

    • Methods to reduce the risk of PRNB (quantitative monitoring, sugammadex) should always be considered in patients at risk for PRNB and subsequent complications associated with PRNB (advanced age, obesity, sleep apnea, COPD)

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 33

  • BT is now transported to the PACU for recovery

    Addressing Post‐operative Complications and Residual Blockade

    Deborah Wagner, Pharm.D., FASHPClinical Professor of Pharmacy

    University of Michigan College of PharmacyClinical Professor of Anesthesiology

    Michigan MedicineAnn Arbor, Michigan

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 34

  • Patient Arrival to PACU• Pain 9/10• Respiratory rate 

  • Let’s Start with Patient Risk Factors

    AGE

    The Aging Population• In the next 4 decades, people aged ≥ 60 years will account for 22% of 

    the world population• Approximately 50% will require anesthesia for surgical intervention• Patients will be sicker and at greater risk for postoperative 

    complications• Age‐related decrease in reserve capacity of organs can affect drug 

    clearance– Delayed recovery from neuromuscular blocking agents– Prolonged duration of action of neostigmine

    Bloom DE et al. Lancet. 2015; 385:649‐57; Sear JW. Curr Opin Anaesthesiol. 2003; 16:373‐8; McDonagh DL et al. Anesthesiology. 2011; 114:318‐29.

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 36

  • • Observational study of reversal practices• Significantly higher rate of PONV with neostigmine reversal than sugammadex reversal

    • No significant differences in PACU or hospital LOS• Pulmonary outcomes deteriorated significantly with advanced age– Not observed in the sugammadex group

    Ledowski T et al. Eur J Anaesthesiol. 2014; 31:423‐9.

    Association of Postoperative Outcomes with NMB Reversal Practice

    BMI / Weight

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 37

  • How Does Obesity Affect Drug Dosing of Reversal Agents

    • Neostigmine– 30, 40, and 50 mcg/kg dose based on total body weight– 40 and 50 mcg/kg dose achieved a faster time to a TOF >0.9

    • Sugammadex– Recommended dosing based on actual body weight– Use with ideal body weight

    • 120 bariatric surgery patients with moderate and deep block• 39.5% and 23.4% respectively required a second dose due to TOF 

  • Comparative Recovery Profile of Sugammadex

    https://www.anesthesiologynews.com/Multimedia/Article/05‐20/Using‐Actual‐Body‐Weight‐With‐Sugammadex‐Speeds‐Reversal‐in‐Morbidly‐Obese‐Patients/58393 

    Duration of Surgery

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 39

  • Neostigmine Compared with Sugammadex in Long Surgeries

    • 200 patients >70 yr undergoing surgery ≥3 hr• Neostigmine 70 mcg/kg vs. sugammadex 2 mg/kg• Primary endpoint PPCs, secondary endpoint PRNB with TOF

  • OSA and PACU Respiratory Complications• Pulmonary  atelectasis occurs in 85‐90% of adults• Surgery alters lung mechanics• Higher risk for upper airway collapse during theperioperative period

    • Hypoventilation in the PACU confounded byresidual effects of opioids, sedative hypnotics,and inhaled anesthetics

    Cammu G. Current Anesthesiology Reports. 2020; 10:131‐6.

    Pulmonary HistoryPneumonia/COVID‐19

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 41

  • Complications Associated with Residual NMB

    Type of Complication Source Key Points

    Death or permanent brain damage

    Tiret et al.Lunn et al.Cooper et al.Arbous et al.

    Postanesthetic respiratory depression;10 x increase in deaths when NMB reversal omitted

    Pulmonary complications Berg et al. 3 x increase in rate of atelectasis

    Upper airway obstruction, severe hypoxemia, or respiratory failure

    Murphy et al. RNMB contributes to development of adverse respiratory events

    Plaud B et al. Anesthesiology. 2010;112:1013‐22, Murphy GS. Anesth. 2008; 109:389‐98, Tiret L. Can J Anesth. 1986; 33:336‐44, Lunn JN Anaesthesia1983; 38: 1090‐6, Cooper Al.Anaesthesia 1989; 44: 953‐8, Arbous MS Anest. 2005; 102:257‐68, Berg H Acta Anaesth Scand 1997; 41:105‐103.

    RECITE Canada Study: Incidence of Postoperative Residual NMB

    Fortier L et al. Anesth Analg. 2015; 121:366‐72.

    Only 36% had TOF ratio ≥ 0.9 74% reversed with neostigmine

    Only 43% had TOF ratio ≥ 0.9 72% reversed with neostigmine

    63.5%residualNMB

    56.5% residual NMB

    22%

    12%11%19%

    36%

    NMB at Extubation

    TOF < 0.6 TOF 0.6 -

  • Postoperative Pulmonary Complications

    What is the Major Concern for BT (by the way)?

    Economic Burden of PPCs annually

    • Each case of bronchospasm– Adds 1 hospital day and $1,563– 1 in 14 cases results in ICU admission

    • Each case of respiratory failure– Adds 8 hospital days and $24,000– 1 in 2 cases results in ICU admission

    Thompson DA et al. Ann Surg. 2006;243:547‐52.Shander A et al. Crit Care Med. 2011; 39:2163‐72.

    A patient safety summit was convened in Washington, DC, on December 7, 2009, to address the substantial clinical and economic costs of PPCs

    92,200 additional ICU admissions584,300 additional ICU days$3.42 billion in additional costs

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 43

  • The Other Facts on PPCs• Rate after major surgery as high as 23%• Up to 1/3 die within first 30 days after surgery• Increased length of stay• Numerous modifiable and nonmodifiable riskfactors– Long operation times– Pancreatectomy, hepatectomy, esophagectomy,abdominal aortic aneurysm repair, lung resection

    Foster C et al. J Am Coll Surg. 2019; 229:355‐65.

    A Multicenter Study by the Perioperative Research Network  

    • PPCs can be broadly defined as conditions affectingthe respiratory tract that can adversely influence theclinical course of patients after surgery

    • At least 1 PPC occurred in 401 patients (33.4%)• Patients with 1 or more PPCs, even mild ones, had

    significantly increased early postoperative mortality,ICU admission, and hospital length of stay

    Fernandez‐Bustamante A et al. JAMA Surg. 2017; 152(2):157‐66.

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 44

  • Relationship between NMB Use and PPC• 21 teaching hospitals in Spain• Patients > 18 years old with intermediate to high risk for PPC• 64.6% of patients experienced a PPC within 30 days of surgery• Risk factors

    – High BMI– Low preop SpO2– High ASA status– Hypertension, diabetes mellitus, or COPD

    • Pharmacologic reversal associated with a lower incidence of PPC

    Garutti I et al. Eur J Anaesthesiol. 2020; 37:203‐11.

    • 22,803 adult patients from 211hospitals across 28 Europeancountries

    • Subsequent subgroup analysis– Extubating patients with TOF

    ratio >0.95 reduced theadjusted risk of PPC by 3.5%

    – Sugammadex had been given inhigher doses by 0.30 (0.13‐0.48) mg/kg in the sub‐cohortwith TOF ratio > 0.95

    Key Factor Does not Apply

    Key Factor Applies

    OR (95% CI)

    P value

    Use of any NMBA

    131/4001(3.3%)

    152/693(8.6%)

    1.86

  • The Stronger Study

    Kheterpal S et al. Anesthesiology. 2020; 132:1371‐81.

    • Matched‐cohort study from 12 MPOG hospitals• Exact matching criteria included institution, sex, age,

    comorbidities, obesity, surgical procedure type, andneuromuscular blocking agent (rocuronium vs.vecuronium)

    • In multivariable analysis, compared with neostigmine,sugammadex administration was associated with– 30% reduced risk of pulmonary complications

    • aOR = 0.70 (95% CI 0.63 to 0.77)– 47% reduced risk of pneumonia

    • aOR = 0.53 (95% CI 0.44 to 0.62)– 55% reduced risk of respiratory failure

    • aOR = 0.45 (95% CI 0.37 to 0.56)

    Reversal and PPCs

    Kheterpal S et al. Anesthesiology. 2020; 132:1371‐81.MPOG: Multicenter Perioperative Outcomes Group

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 46

  • Final Decision….

    Incidence of Postoperative Residual NMB

    Brueckmann B et al. Br J Anaesth. 2015; 115:743‐51.

    100%

    0% 0% 0% 0%

    57%

    21%12%

    4% 7%

    0%10%20%30%40%50%60%70%80%90%

    100%

    TOF  ≥0.9 TOF ≥ 0.8 to 

  • You Choose Neostigmine• Patients receiving NMBA but no reversal are at higher

    risk for PPCs• Multicenter retrospective study suggested reversal

    with neostigmine reduces risk of PPC• Not administering neostigmine associated with an

    increase in the odds of respiratory complications• Increased risk of PRNB in elderly and cardiovascular

    effects• Strategies to use

    Bulka CM et al. Anesthesiology. 2016; 125:647‐55. Bronsert MR et al. Anesth Analg. 2017;124:1476‐83. Luo J et al. Ther Clin Risk Manag. 2018; 14:2397‐406.

    • Quality improvement (QI) initiative to optimize the use ofneostigmine for reversal of neuromuscular blockade– Involved change in anesthesia clinician behaviors around intraoperative management of

    NMBA and emergence from anesthesia

    • Evaluation of change in postoperative pulmonarycomplications, costs, and duration of hospital stay

    Rudolph MI et al. Anaesthesia. 2018; 73:1067‐78.

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 48

  • Appropriate Reversal Can Be a TargetAppropriate Reversal Inappropriate Reversal

    NMBA Dose Quintiles  (x ED95 dose) 

    PRC rate Effect Size PRC rate Effect Size

    I (Lowest)  0.39%  n/a 0.43% n/aII  0.45%  1.04 (0.7‐1.6) 0.56% 1.03 (0.8‐1.3)III  0.60%  1.16 (0.8‐1.7) 0.65% 1.06 (0.8‐1.3)IV   0.63%  0.95 (0.6‐1.4) 0.89% 1.20 (1‐1.5)V (Highest)  0.91%  0.98 (0.6‐1.5) 1.49% 1.41 (1.1‐1.8)

    McLean DJ et al. Anesthesiology. 2015; 122:1201‐13.

    Appropriate reversal (neostigmine ≤ 0.06 mg/kg at TOF count of at least 2) Inappropriate reversal (no neostigmine administration, neostigmine administration not guided by TOF count or doses > 0.06 mg/kg)

    ED95 = effective dose to produce 95% depression in twitch heightPRC = postoperative respiratory complications

    Neostigmine Reversal Guide

    Rudolph MI et al. Anaesthesia. 2018; 73:1067‐78.

    Type of Monitoring  Neostigmine Dose Qualitative  Quantitative Weight‐Based 70‐kg patientNo twitch  No twitch WAIT WAIT 1 twitch  1 twitch WAIT WAIT 2‐3 twitches  2‐3 twitches ~50 mcg/kg 3‐4 mg 4 twitches with fade  TOF ratio 0.9 NONE NONE 

    Risk factors for Residual WeaknessHigh total dose of NMBA >1.5 mcg/kg rocuronium or >0.4 mg/kg cisatracurium 

    High dose neostigmine reversal >60 mcg/kgALWAYS DOSE NMBA AND REVERSAL ACCORDING TO MONITORING AND CLINICAL CONDITION

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 49

  • Clinical Outcomes 

    Rudolph et al. Anaesthesia. 2018; 73:1067‐78.

    OutcomePre ‐QI Intervention

    n= 2,937

    Post ‐QI Intervention

    n=9,088

    AdjustedOR (95% CI)IRR (95% CI)

    p‐value

    PPC 220 (7. 5%) 568 (6. 3%)0.73 

    (0.61 ‐0.88a)0.001

    Hospital  LOS b

    Mean ± SD5.3 ± 7.5 5.0 ± 7.2

    0.91b

    (0.87 ‐0.94)0.9 was 2.9 min withsugammadex 4 mg/kg and 48.8 min with neostigmine 0.07 mg/kg

    • Sugammadex is associated with fewer adverse events:– Residual NMB RR 0.40 (95% CI 0.28‐0.57), NNT 13– Bradycardia RR 0.16 (95% CI 0.07‐0.34), NNT 14– PONV RR 0.52 (95% CI 0.28‐0.97), NNT 16

    Hristovska AM et al. Anaesthesia. 2018; 73:631‐41.

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 50

  • MPOG Real‐world Utilization Patterns Of Perioperative NMB Reversal

    • Aim: to identify differences in NMB reversal agent use and factorsassociated with their use after FDA approval of sugammadex (SUG)in the United States, 2015

    • Retrospective observational study across 22 MPOG institutions• All adult cases between Jan 2014 and June 2018• Number of exclusions• 3 periods: pre‐SUG, 0‐6 months with SUG, > 6 months post‐SUG

    Dubovoy T et al. Anesth Analg. May 2019; 128(5):827‐830.

    MPOG Real‐world Utilization Patterns Of Perioperative NMB Reversal

    Dubovoy T et al. Anesth Analg. May 2019; 128(5): 827‐30.

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 51

  • Multivariable Analysis of Sugammadex Use• Patient age OR 1.74• Male sex   OR 1.34• ASA III or IV OR 1.13• Chronic pulmonary disease OR 1.11• Congestive heart failure OR 1.29• Major thoracic surgery OR 1.81• TOF 0‐1 OR 3.43• TOF 2 OR 2.59

    Dubovoy T et al. Anesth Analg. May 2019; 128(5):827‐30.

    In multivariate analysis, sugammadex was associated with:• 29% reduced risk of PPCs, ORadj 0.71, (0.63‐0.79, p

  • Michigan Medicine Outcomes : Rates of Reintubation and PPC

    Total Cases at Institution

    Neostigmine Cases with Composite Outcome

    N (%)

    Sugammadex Cases with Composite Outcome

    N (%)

    Unadjusted Odds Ratio

    95% Confidence Interval

    9,350 319 (6.8) 268 (5.7) 0.82 (0.69, 0.98)

    What about Other Postoperative Outcomes?

    • 584 propensity matched patients– 157 receiving sugammadex and 157 an acetylcholinesterase inhibitor– Looked at LOS, readmission, delayed discharge, oral intake, ICU

    admission, and pulmonary complications– Only significant difference between groups was lower incidence of

    delayed discharge with sugammadex• 1430 propensity matched comparison of sugammadex and

    neostigmine on hospital stay– No reduction in 30‐day unplanned admissions

    Chae YJ et al. J Clin Med. 2019; 8.pii.E97, Min B. BMC Anesth. 2020;20:178.

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 53

  • Conclusion

    • BT was a patient at high risk for postoperativepulmonary complications (PPCs)

    • Despite a TOF of 4/4 twitches patient stillneeded reversal based on his history

    • Although either neostigmine or sugammadexcould be used in BT, sugammadex would bethe better choice because of his risk for PPCs.

    Safe and effective neuromuscular blockade and reversal

    Collaborative Strategies

    Reversal StrategyDose Monitoring HandoffEducation

    PACU: Post anesthesia care unit

    Postop Outcomes

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 54

  • • Patient‐ and surgery‐specific risk factors (includingmedications and monitoring techniques) contribute to theincidence of postoperative complications

    • Collaborate and take initiative– Identify patients at risk– Select the most appropriate care path– Equip clinicians with the tools (e.g., education, medications,devices) needed to achieve the best possible outcomes

    Key Takeaways

    Which of these practice changes will you consider making? 

    • Increase awareness among postanesthesia care unit (PACU) personnel about signs andsymptoms of residual NMB.

    • Work with interprofessional team to develop standard handover process in PACU.

    • Review access to reversal agents for moderate/deep block and rapid sequence intubation.

    • Ensure appropriate use of sugammadex 16 mg/kg dose.

    • Initiate a drug‐use review as step in developing guidelines for use of NMB reversal agents.

    • Actively assess for risk factors associated with residual NMB in all patients who will bereceiving a neuromuscular blocking agent (NMBA).

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 55

  • ASHP CE Processing Deadline: February 1, 2021 elearning.ashp.org Code: ____________ Complete evaluation See instructions in handout

    Thank You for Joining Us

    www.ashpadvantage.com/nmbreversal

    Coming SoonLive WebinarAsk the Experts: Neuromuscular Blockade and Reversal 

    • April 8, 202112:00 – 1:00 pm ET

    On‐demand activity oftoday’s live symposiumcoming in January 2021

    © 2020 American Society of Health-System Pharmacists, Inc. All rights reserved. 56