acorne *, uk

25
ACoRNE*, UK The calibration and experiment of transmitter array for the acoustic neutrino detection W. Ooppakaew*, S. Danaher*, R. Lahmann**, K. Graf** ARENA 2012 ECAP**, Germany

Upload: zeke

Post on 23-Feb-2016

29 views

Category:

Documents


0 download

DESCRIPTION

ARENA 2012. The calibration and experiment of transmitter array for the acoustic neutrino detection. W. Ooppakaew *, S. Danaher*, R. Lahmann **, K. Graf**. ACoRNE *, UK. ECAP**, Germany. Outline. 1. Introduction. 2. Aims . 3. Single Hydrophone. 4. Hydrophone Array Simulation. Outline. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ACoRNE *, UK

 ACoRNE*, UK

 The calibration and experiment of transmitter array for the acoustic neutrino detection

 W. Ooppakaew*, S. Danaher*, R. Lahmann**, K. Graf**

ARENA 2012

 ECAP**, Germany

Page 2: ACoRNE *, UK

22

7. Deployment at ANTARES site

5. Hardware Design and Build

3. Single Hydrophone

Outline

Outline

4. Hydrophone Array Simulation

1. Introduction

2. Aims

6. Laboratory Experiment

8. Data analysis

9.Conclusion & Future work

Page 3: ACoRNE *, UK

3

Introduction: Acoustic Detection1

neutrino

neutrino

neutrino

muon

Optical Cerenkov

Radio Cerenkov

Acoustic Pressure Waves

PMT Array

Antenna Array

Hydrophone Array

Cascade

Optical Cerenkov-Works well in water, ice-Attenuation lengths 50m to 100m-Sensitive to low energy

Radio CerenkovLong (order km) attenuation

lengths in ice and salt

Acoustic DetectionVery long attenuation lengths in water (order 10km), ice and

salt

Cascade

Collaborations-AMANDA-ANTARES (FR)-NEMO-IceCube-KM3NeT

Collaborations-ANITA-FORTE-GLUE-RICE

Collaborations-SAUND (USA)-ACoRNE (UK)

Source: Dr.Lee Thompson (ARENA 2008)

33

"pancake" propagates to shower direction

Neutrino detection methods

Page 4: ACoRNE *, UK

4

Aims 2

1. Simulation and study of acoustic transmitter array for neutrino detection

2. Design and construction of the acoustic transmitter array.

3. Calibration and experiment of acoustic transmitter array at the laboratory

4. Deployment of acoustic transmitter array at ANTARES site, France

Page 5: ACoRNE *, UK

55

-0.2 0 0.2 0.4 0.6-1

0

1

2

3

4

5

6Step input

Time (ms)

Am

plitu

de (V

)

-0.2 0 0.2 0.4 0.6-2

-1.5

-1

-0.5

0

0.5

1

1.5Hydrophone step response

Time (ms)

Am

plitu

de (V

)

0.8 0.9 1 1.1 1.2-1.5

-1

-0.5

0

0.5

1

1.5Bipolar acoustic pulse 10kHz

time (ms)

Vol

tage

(V)

0 1 2 3 4 5 6-2

-1.5

-1

-0.5

0

0.5

1Hydrophone driving pulse for bipolar 10 kHz

Time (ms)

Vol

tage

(V)

Single Hydrophone Calibration 3

0 5 10 15-2

-1

0

1

2

Time (us)

Vol

tage

(V)

Fitted responseActual response

Page 6: ACoRNE *, UK

6

0.8 0.9 1 1.1 1.2-1.5

-1

-0.5

0

0.5

1

1.5Bipolar acoustic pulse 10kHz

time (ms)

Vol

tage

(V)

0 1 2 3 4 5 6-2

-1.5

-1

-0.5

0

0.5

1Hydrophone driving pulse for bipolar 10 kHz

Time (ms)

Vol

tage

(V)

Bruel & Kyaer (B&K) 8106Tx hydrophoneNeeded signalInput driving

PIC modulePIC18F4585-I/P

NI USB-6211

Sampling Rate : 250 kS/sNumber of samples: 1500 samplesResolution of Analog output : 12 bits

Sampling Rate : 250 kS/sNumber of samples:1500 samplesResolution of Analog output : 16 bits

Hydrophone Calibration (Contd)3

Page 7: ACoRNE *, UK

7

Hydrophone Array Calibration :Simulation4

Simulation of 8 hydrophone array TX

Page 8: ACoRNE *, UK

8

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Angle(degrees)

Ener

gy(R

elat

ive)

10 meters cylinder length10 meters array length8 meters array length6 meters array length

-0.05 0 0.05-0.05

0

0.05

Time(ms)

Pres

sure

(Pa)

0O

0.2O

0.4O

0.6O

0.8O

1O

Hydrophone Array Calibration :Simulation4

Energy per angle at 2475 metres from GeV of thermal energy shower deposition, under Mediterranean sea condition

Amplitude in time of the acoustic bipolar pulse generated from GeV thermal energy shower deposition at 2475metres under Mediterranean sea condition .

Page 9: ACoRNE *, UK

99

Simulation of attenuation in sea water

ACoRNE parameterisations Attenuation parameters: 3 components1. Boric Acid 2. magnesium sulphate 3. pure water.

Hydrophone Array Calibration :Simulation4

Page 10: ACoRNE *, UK

10

-0.4 -0.2 0 0.2 0.4-1

-0.5

0

0.5

1Original pulse

Time (ms)

Pre

ssur

e

Dis

tanc

e

-0.4 -0.2 0 0.2 0.4-1

-0.5

0

0.5

1Attenuation of 23 kHz bipolar pulse :Distance 0.1 km

Time (ms)

Pre

ssur

e

Dis

tanc

e

-0.4 -0.2 0 0.2 0.4-1

-0.5

0

0.5

1Attenuation of 23 kHz bipolar pulse :Distance 1 km

Time (ms)

Pre

ssur

e

Dis

tanc

e

-0.4 -0.2 0 0.2 0.4-1

-0.5

0

0.5

1Attenuation of 23 kHz bipolar pulse :Distance 2.5 km

Time (ms)

Pre

ssur

e

Dis

tanc

e

Hydrophone Array Calibration :Simulation4

Simulation of attenuation in sea water for 23KHz

-0.4 -0.2 0 0.2 0.4-1

-0.5

0

0.5

1Attenuation of 23 kHz bipolar pulse

Time (ms)

Pre

ssur

e

Dis

tanc

e

original pulse100 m500 m1 km2.5 km

-0.4 -0.2 0 0.2 0.4-1

-0.5

0

0.5

1Attenuation of 23 kHz bipolar pulse :Distance 0.5 km

Time (ms)

Pre

ssur

e

Dis

tanc

e

Page 11: ACoRNE *, UK

11

Hardware Design and Implementation5

8 channel arbitrary wave form generator module- dsPIC33FJ256MC710-I/P Digital signal Controllers- One master , Eight Slave Controllers- I2C Interface, Interrupt trigger- DAC8822 16-bit Digital to Analog Converter- Maximum Sampling rate 1MS/s ( Experiment used:

500KS/s)

8 channel power amplifier module- APEX PA94- High voltage power operational amplifier 900V (+/-

450V) (Experiment used : +/-100V)- High Slew Rate 500V/us- High Output current 100mA- Adjustable Output voltage gain

+12Vdc to +/-100V dc-to-dc converter Module- Convert +12Vdc to +/- 100Vdc for Power Amplifier- Battery supported

Page 12: ACoRNE *, UK

1212

25

5 for each hydrophone

50 25

60

150

55 10

*All dimensions in centimeter

Water level

Laboratory at Northumbria University

Laboratory Experiment6

Page 13: ACoRNE *, UK

13

Laboratory Experiment6

Ch1

Ch2

Ch3

Ch4

Ch5

Ch6

Ch7

Ch8

8 Channels hydrophone Tx

Bipolar pulse output from Channel 1

Page 14: ACoRNE *, UK

1414

0.01 0.02 0.03 0.04 0.05 0.06 0.07

-1

-0.5

0

0.5

1

Time (ms)

Am

plitu

de (

Vpea

k)

Received signal from H1-8 (PXI-6713)

H1 H8

0 0.02 0.04 0.06-8

-6

-4

-2

0

2

4

6

8

Time (ms)

Am

plitu

de (

Vpea

k)

Received signal from Hydrophones

H1-2

H1-8

H1-8

H1-7

H1-6

H1-5

H1-4

H1-3

H1-2

-0.05 0 0.05 0.1 0.15-8

-6

-4

-2

0

2

4

6

8

Time (ms)

Am

plitu

de (

Vpea

k)

Comparision between dsPIC and PXI-6713 modules

dsPICPXI-6713

0.01 0.02 0.03 0.04 0.05 0.06 0.07

-1

-0.5

0

0.5

1

Time (ms)

Am

plitu

de (

Vpea

k)Received signal from H1-8 (dsPIC)

H1 H8

Laboratory Experiment6

Page 15: ACoRNE *, UK

15

1 1.2 1.4 1.6 1.80.5

0.6

0.7

0.8

0.9

1

Relative Distance

Rel

ativ

e So

und

Pre

ssur

e

Theory PXI-6713 dsPIC

No of Hydro phone

PXI-6713 module dsPIC module

Centre Left bottom Centre Left bottom

H1 1.54 1.46 1.56 1.68 1.54 1.58H2 1.64 1.60 1.66 1.76 1.62 1.60H3 1.84 1.76 1.74 1.86 1.74 1.72H4 1.98 1.84 1.80 1.96 1.92 1.86H5 2.30 2.06 2.08 2.30 2.04 2.10H6 2.46 2.24 2.30 2.48 2.22 2.30H7 2.56 2.28 2.36 2.58 2.30 2.32H8 2.86 2.64 2.78 2.88 2.70 2.74

Calculation H1+...H8 17.18 15.88 16.28 17.50 16.08 16.22

Measurement H1-8 16.4 15.0 15.8 16.6 14.8 16.00

*All units are in Vp-p

Laboratory Experiment (Result)6

The measurement of bipolar signal Using NI and dsPIC modules

Page 16: ACoRNE *, UK

16

Orthogonal Set6

0 0.5 1 1.5 2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Time (ms)

Am

plitu

de (V

)

Orthogonal Signals

0 0.5 1 1.5 2-0.100.1

Time(ms)

(V)

1st Orthogonal Signal

0 0.5 1 1.5 2-0.100.1

Time(ms)

(V)

2nd Orthogonal Signal

0 0.5 1 1.5 2-0.1

00.1

Time(ms)

(V)

3rd Orthogonal Signal

0 0.5 1 1.5 2-0.1

00.1

Time(ms)

(V)

4th Orthogonal Signal

0 0.5 1 1.5 2-0.2

00.2

Time(ms)

(V)

5th Orthogonal Signal

0 0.5 1 1.5 2-0.2

00.2

Time(ms)

(V)

6th Orthogonal Signal

0 0.5 1 1.5 2-0.2

00.2

Time(ms)

(V)

7th Orthogonal Signal

0 0.5 1 1.5 2-0.1

00.1

Time(ms)

(V)

8th Orthogonal Signal

0 0.5 1 1.5 2-0.2

00.2

Time(ms)

(V)

9th Orthogonal Signal

0 0.5 1 1.5 2-0.1

00.1

Time(ms)

(V)

10th Orthogonal Signal

Orthogonal Signals

Seawater has a limited bandwidthInterested in set of mutually orthogonal signals for comms, positioning etc

Page 17: ACoRNE *, UK

17

Orthogonal set II6

Orthogonal Signals

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

10002000

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

10002000

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

10002000

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

10002000

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

10002000

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

10002000

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

10002000

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

10002000

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

10002000

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

10002000

Output of Matched Filter bankShould get a score of one for signal you wantIdeally a score of zero for other signalsIn practice score is c 0.3 but this is Works fine in simulation but will it work in practice?Very confident it will work under lab conditions – but over long distances in sea water?Does Dispersion agree with theory?

Page 18: ACoRNE *, UK

18

Deployment at ANTARES, France7

Deployment at ANTARES (France)8 channel transmitter module

Deployment at ANTARES17 September 2011

Page 19: ACoRNE *, UK

19

Deployment at ANTARES, France7

Page 20: ACoRNE *, UK

20

420

2080

1400 2200 0 1852

L12

Planed position

*All units in metre(s)

S21-23

Sea bed

1 m

1 m

1 m

1 m

1 m

1 m

1 m

t=0

1Δt

2Δt

3Δt

4Δt

5Δt

6Δt

7Δt

H1

H2

H3

H4

H5

H6

H7

H8

Acoustic hydrophone array

Deployment at ANTARES, France7

Signal injecting time18:25 UTC,20.25 (local) : Arrive site, set up array frame to stern A frame18:45 UTC,20.45 (local) : Set up electronics19:00 UTC,21.00 (local) : Start measurement with dsPIC module: for 5KHz, 10KHz,15KHz19.10 UTC,21.10 (local) : Bipolar pulse, and Orthogonal pulses19.35 UTC,21.35 (local) : Start Labview measurements: 5KHz,10KHz,15KHz and bipolar pulse.20.00 UTC,22.00 (local) : Finish measurements

Page 21: ACoRNE *, UK

21

Data Analysis8

1. Data was recorded from Line 12 (Three storey: No. 21,22,23) but only No. 22,23 (Storey 21 is untypical as it contains so called acoustic modules, neglect it.

2. Storey 22: Sensor number 18,19,20,21,22,233. Storey 23: Sensor number 30,31,32,33,34,35

420

2080

1400 2200 0 1852 636 1007 m2488

2859 371

L12

764 1564

Planed position

Started position

Endedposition

393 1193

*All units in metre(s)

S21-23

-Planed 1NM (≈ 1.852 km)-Started ≈ 2.488 km-Ended ≈ 2.859 km

-Beamforming to cover the distance at AMADEUS from1400m to 2200m in 20m.

Page 22: ACoRNE *, UK

22

Data Analysis8

-The example of recorded data from the deployment

-Data dropped after one minute or so for each file

Page 23: ACoRNE *, UK

23

Data Analysis (Sine Waves) 8

Simulation of received signal at the ANTARES detector for 5khz, 10khz,15khz sine signal

350 400 450 500 550 600 650 7000

5

10

15

20

25

30

35

Delta t (s)

Pre

ssur

e (m

Pa)

Simulation of 5 KHz Sine Signal

400 450 500 5500

5

10

15

20

25

30

35

Delta t (s)

Pre

ssur

e (m

Pa)

Simulation of 10 KHz Sine Signal

460 480 500 520 540 560 580 6000

5

10

15

20

25

30

35

Delta t (s)

Pre

ssur

e (m

Pa)

Simulation of 15 KHz Sine Signal

Page 24: ACoRNE *, UK

24

3000 3001 3002 3003 3004

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Received Sine:sampling rate 250KHz

Time (ms)

Pre

ssur

e (P

a)

0 1000 2000 3000 4000 5000-0.04

-0.02

0

0.02

0.04Received Sine:sampling rate 250KHz

Time (ms)

Pre

ssur

e (P

a)

0 1000 2000 3000 4000 5000-0.5

0

0.5ANTARES DATA

Time (ms)

Pre

ssur

e (P

a)

0 1000 2000 3000 4000 5000-0.5

0

0.5ANTARES DATA + SINE

Time (ms)

Pre

ssur

e (P

a)

0 1000 2000 3000 4000 5000-0.05

0

0.05Bandpass filter

Time (ms)

0 1000 2000 3000 4000 5000-1

0

1Match filter

Time (ms)

Pre

ssur

e

0 1000 2000 3000 4000 50000

0.5

1Hilbert TF

Time (ms)

Pre

ssur

e

Data Analysis8

Page 25: ACoRNE *, UK

25

Acknowledgement

Conclusion & Future work 91. The simulation Hydrophone array transmitter for acoustic

neutrino detection has been done.2. Design and construction of hydrophone array transmitter have

been built.3. The experiment of Hydrophone array transmitter at laboratory

has been tested.4. The deployment of hydrophone array transmitter at ANTARES

site has been operated on 17 September 20115. Data analysis has been running using signal processing

techniques

1. ACoRNE collaboration, UK.2. ECAP Collaboration, Germany.3. Dominique Lefevre of INSU, : Sea water operation organizer.4. School of CEIS Northumbria University,3. Ministry of Science and Technology, Thai government: Sponsorship for my full time PhD.

Be kind! It’s my Birthday!