acoustic emission and structural transitions

39
ACOUSTIC EMISSION AND STRUCTURAL TRANSITIONS Lluís Mañosa Departament d’Estructura i Constituents de la Matèria Facultat de Física [email protected] Erell Bonnot Francisco José Pérez-Reche Antoni Planes Eduard Vives

Upload: armand

Post on 12-Jan-2016

58 views

Category:

Documents


0 download

DESCRIPTION

ACOUSTIC EMISSION AND STRUCTURAL TRANSITIONS. Lluís Mañosa Departament d’Estructura i Constituents de la Matèria Facultat de Física [email protected]. Erell Bonnot Francisco José Pérez-Reche Antoni Planes Eduard Vives. Sources of AE: Propagation of dislocations Crack growth - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

ACOUSTIC EMISSION AND

STRUCTURAL TRANSITIONS

Lluís Mañosa

Departament d’Estructura i Constituents de la MatèriaFacultat de Fí[email protected]

Erell BonnotFrancisco José Pérez-RecheAntoni PlanesEduard Vives

Page 2: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

Acoustic Emission (AE):

“Transient elastic waves resulting from localized internal microdisplacements taking place in a solid” (American Society for Testing and Materials, ASTM) .

Technique to measure these elastic waves.

Sources of AE:

•Propagation of dislocations•Crack growth•Phase Changes•…..

First EA measurements: J. Kaiser (1950)

Page 3: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

AE Fundamentals

Equation of motion:

for a point force

The solution is the Green funcion:

along the “n” direction:

Uniqueness theorem

+

Reciprocity theorem

(Einstein notation)

Page 4: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

Displacement field for body forces f throughout V and to boundary conditions on S

Elastic constants

Page 5: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

Discontinuities across an internal surface

+-

V S

much smaller than x

Page 6: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

SEISMIC MOMENT

Usual assumption:

which yields:

No body forces

Page 7: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS
Page 8: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

DETECTION OF AE WAVES

Detectability

Typically: Dislocation propagating 10m at 3000m/s100m at 300m/s

Crack area (propagating at ~ 1000 m/s) ~ 10 m2

Phase change ~ 10 m3

Page 9: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

TRANSDUCERS

Displacement

Conical broad band

Damped piezoelectric

Piezoelectric

Optical (laser),Electromagnetic,Piezoelectric………

Acoustic coupling

Page 10: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

Transducer calibration

Breaking pencil lead(0.3mm thick)Predicted

Measured

S.P. Gross et al. PRL 71, 3162 (1993)

Dis

plac

emen

t 10-8

cm

Page 11: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

TYPES OF AE SIGNALS

Burst

Continuous

Page 12: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

AE Detection

Ring-down countingCount rate

Distributions: amplitude, duration, …

RMS Power and energy

Frequency spectrum

Source characterization

BR

OA

D B

AN

DR

ES

SO

NA

NT

0 50 100-0,4

-0,2

0,0

0,2

0,4

tava

t (s) V

(V

)

A

count number: I = 7acoustic activity: = 150 kHz

Page 13: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

SELECTED EXPERIMENTAL RESULTS

1. Broad band detection

2. Ressonant detection

Page 14: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

Application to martensitic transformations

Ll. Mañosa, et al Appl. Phys. Lett. 54, 2574 (1989)Ll. Mañosa, et al. Acta Metall. Mater. 38 1635 (1990)

Radiation pattern(spatial information)

Kinematics

Assumptions: No body forcesFar field approximation

plane (normal )

Page 15: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

RADIATION PATTERN

KINEMATICS

Longitudinal waves

Shear waves

perpendicular toand

Page 16: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

Thermoelastic martensitic transformation

Only longitudinal waves

Cubic single crystal (Cu-Zn-Al) with faces parallel to (111), (-102) and (2-31) planes

Trained activated martensite variant: (011)<0-1 1>

Shear mechanism: = (0,1,1) ; n=(0,-1,1)

Volume mechanism: = (0,1,1) ; n=(0,1,1)

Page 17: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

EXPERIMENT:Simultaneous detection onfour directions.

Predicted radiation pattern

Predominant mechanism: shear

Page 18: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

KINEMATICS

Model: Fault with unidirectional propagation

Time domain: Convolution with a box funcion of apparent duration

Fourier transform:

Nodes at:

Page 19: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

depends on the measurement direction

DOPPLER EFFECT

EXPERIMENT: Simultaneous detection at opposite faces

Source location (depth, z):

Fault length

Fault velocity

Page 20: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

Broad-band detection:

1.- Low sensitivity,2.- Complex experimental set-up3.- Difficult interpretation

Most studies use ressonant detection

Page 21: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

AE as a sensitive probe

“Bell” sounds Something happens!!

Monitoring large structures: oil plants, rock mines, tunnels, undergroundcaverns, etc…

Detection of phase transitions

Heat flow

Acoustic emission(count rate)

Martensitic transition in Cu-Zn-Al

A.Planes et al,Phys. Stat. Sol (a) 66, 717 (1981)

Page 22: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

NUCLEATION

Extreme sensitivity to small transforming volumes!!

Martensitic transformationIn Fe-30%Ni.J. Galligan, T. Garosshen,Nature 274, 674 (1978)

Page 23: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

MARTENSITIC TRANSFORMATIONIN Cu-BASED SHAPE-MEMORY ALLOYS

-2 0 2 4 6 8 10 12 14

0

400

800

1200

t(h)

(H

z)

241.0

241.5

242.0

T(K

)

0 2 4

0

400

800

1200

252

254

256

0.0 0.10

500

1000

254.0

254.2

254.4

t (h)

T(K

)

(H

z)

Cu-Zn-Al Cu-Al-NiStep like experiments T=0.2K t=4hours

ATHERMAL ISOTHERMALPerez-Reche et al, PRL 87, 195701 (2001)

Page 24: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

____________________________________________________________

EXPERIMENTS REVEALING THE ATHERMAL CHARACTEROF A PHASE TRANSITION

Driving rate dependence (cooling)

238 240 242 244 246

0.0

5.0x106

1.0x106

1.5x106

2.0x106

T (K)

230 235 240

0.1 K/min0.5 K/min

1 K/min 2 K/min

220 230 240 250 260

0.0

4.0x105

8.0x105

1.2x106

1.6x106

2.0x106

=0.1 K/min =0.5 K/min =1 K/min =2 K/min =5 K/min

(K

-1)

T (K)

0.0

2.0x104

4.0x104

6.0x104

(Hz)

248 2520.0

4.0x104

8.0x104

/T (

K-1)

(Hz)

Cu-Al-NiCu-Zn-Al

Perez-Reche et al, PRL 87, 195701 (2001)

Page 25: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

Source location

Creep deformation of ice (J. Weiss, D. Marsan, Science 299, 80 (2003))

Experiment: 5 piezoelectric transucers frozen on an ice crystal subjected to uniaxial load.

1.- Clustering of dislocation avalanches2.- Migration of dislocation avalanches

STATISTICAL ANALYSIS OF AE SIGNALS

Page 26: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

STATISTICAL ANALYSIS OF AE SIGNALS

Fracture by H precipitation in Nb

G. Cannelli et al. PRL 70, 3923 (1993) AE from paper fracture

L.I Salminen et al. PRL 89,185503 (2002)

AE from volcanic rocks

P.Diodati et al. PRL 67, 2239 (1991) Dislocation motion in ice.

MC Miguel et al. Nature 410, 667 (2001).

Page 27: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

PHASE TRANSISIONS

E. Vives et alPRL 72, 1694 (1994) Ll.Carrillo et al

PRL 81, 1889 1694 (1998)

Martensitic transition in Cu-based shape memory alloys

Magnetostructural transition in giant magnetocaloric Gd-Si-GePérez-Reche et al. PRB submitted.

Page 28: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

TYPICAL AE DETECTION SYSTEM

Peltier element

Preamp

.Amp. Dig. Osc.

T

Power

Cu block

Sample

Transducer

Electric signal

Piezoelectric transducer (PZT)

Acoustic source

Page 29: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

DETECTION OF A.E.: EXPERIMENTAL SET-UP

Page 30: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

RESULTS ON THE MARTENSITIC TRANSITIONIN Cu-BASED ALLOYS

1. Reproducibility of the transition (mesoscale): training.

220 230 240

n = 2 n = 4 n = 10 n = 22 n = 40

T (K)220 230 240

0.0

4x104

8x104

1.2x105 n = 150 n = 200 n = 300

T (K)

1.2x105

8x104

4x104

0.0

Cu-Zn-Al

Correlation function:

0 100 200 3000.90

0.92

0.94

0.96

0.98

1.00

n,n+

1

n

0 10 20 30 40 50 60

-10

-8

-6

n

ln(d

/dn)

Co

rre

latio

n

n cycles

Page 31: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

Cu-Al-Mn

Page 32: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

Cu-Al-Mn

Page 33: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

REPRODUCIBILITY(microscale

C. Picornell et al.Thermochim. Acta 113, 171 (1987)

Page 34: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

2. Effect of driving rate

F.J. Pérez-Reche et al. PRL 93, 195701 (2004)

Page 35: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

SUMMARY

AE: very sensitive and powerful technique for fast motion

Microscopic information: spatial and temporal

Adequate to follow nucleation and kinetics of phase (structural) transitions

Particularly suitable to study avalanche-mediated processes

Page 36: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

Selected references:

J.A. Hudson, The Excitation and propagation of elastic waves, Cambridge Univ. Press (1980).

K. Aki, P.G. Richards, Quantitative Seismology, W.H. Freeman and Company (1980).

C.B. Scruby, Quantitative Acoustic emission techniques, in Research Techniquesin Nondestructive Testing, Vol III, Ed. By R.S. Sharpe, Academic Press, 1985.

Acoustic emission – Beyond the Millennium, Ed. T. Kishi, M. Ohtsu, S. Yuyama, Elsevier (2000).

C.B. Scruby, J. Phys. E: Sci. Instrum. 20, 946 (1987).

Nondestructive testing techniques, Ed. D.E. Bray and D. McBride, John Wiley and Sons, INC (1992).

THANKS for the attention

Page 37: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS
Page 38: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

____________________________________________________________

____________________________________________________________

MULTIMAT. Kick-off Meeting. Introductory Courses. Leipzig, October 26-30 2004.

MICROSCOPIC MEASUREMENTS OF AVALANCHES

254 256

0

5x105

1x106

220 240 260

0

1x106

2x106

3x106

Aco

ustic

act

ivity

T (K)

Structural transition (martensitic)

BCC close packed

stress- or T- driven

Acoustic emission: pulse detection

counting

Vives et al., PRL, 72, 1694 (1994)

Carrillo et al. PRL, 81, 1889 (1998)

Page 39: ACOUSTIC EMISSION  AND  STRUCTURAL TRANSITIONS

Uniqueness theorem: The displacement u through the volume V with surface S is uniquelyDetermined after a time t0 by the initial values of displacment and particle velocity at t0, throughoutV; and by values at all times tt0 of (i) the body forces f and the heat supplied throughout V; (ii) the tractions T over any part S1 of S; and (iii) the displacement over the remainder S2 of S,with S1+S2=S