activities around academy of finland project (micatox...
Embed Size (px)
TRANSCRIPT

Activities around Academy of Finland Project
(Micatox etc.)
1
Åbo Akademi Laboratory of Industrial Chemistry
and Reaction Engineering Åbo, Finland
University of Naples Federico II N.I.C.L.: Naples Industrial
Chemistry Laboratory Naples, Italy
Johan Gadolin PCC: Process Chemistry Centre
Russo V., Kilpiö T., DiSerio M., Tesser R.,
Santacesaria E., Salmi T.
Univ. Naples Federico II, Italy
Abo Akademi,Turku, Finland

gPROMS
2
”The World’s Leading Advanced Process
Modelling Platform”
OWN MODELS GENERATED by: gPROMS ModelBuilder
ProcessBuilder
2014

3
GENERIC TRICKLE BED REACTOR (TBR) MODEL Three phases (gas, liquid, particles)
• Simultaneous solution of mass and energy balances within reactor and particles
MICROREACTOR MODELS • Washcoated and solid wall • Two phases (gas, solid) • Simultaneous solution of mass balaces inside channels and washcoat or at wall
5.) MICROREACTOR MODELS Awarded one
Awarded article: Generated from TBR model
Energy balances away, liquid away, particles replaced by porous
wall, new kinetics etc..
Financial Support from Academy of Finland is gratefully acknowledged
1.) 2.) 3.) 4.)
Publications 2015 5, thanks to our professors Tapio Salmi and Dmitri Murzin

4
Runners-up! 2nd Prize:
(Around 200 academic institutions have license world-wide)

5

6
Simulation Input Values for the Parameter Estimation of Partial Oxidation of Ethanol Study
Table 2 Dimensions and operating conditions
L 0.8 cm G 0.6 - 0
GEtOH,C 2.3 mol/m3
Rrea 1 cm S 0.4 - 0
GH2O,C 0 mol/m3
Rp 0.0315 mm s 2 - 0
GAlde,C 0 mol/m3
wcat 0.16e-3 kg 0
Gu 0.03 m/s 0
GAcid,C 0 mol/m3
B 0.15 W/(mK) p 1 atm 0
GEtAce,C 0 mol/m3
PeG 10 - 0
G,O2C 7 mol/m3 TG,IN 125-250 °C
Au HY 80 Catalyst!

iGS
GiGi
rzGrG
Gi
GzG
GiGGi
G
Nr
rztC
rr
rztCD
z
rztCrzD
z
rztCrzu
t
rztC
,,
,
2
,
2
),(,
2
,
2
,
,,
),,(1),,(
),,(),(
)),,(),((),,(
)),()(,(/(),,,((
),,(
),(
),,(1
),(
),,(
),(
)),,(),((),,(
,,
2
2
,
,
,
,
,
,
2
2
,
,
,
rzcrzRrztrH
r
rztTD
crz
k
r
rztT
rD
crz
k
z
rztTD
crz
k
z
rztTrzu
t
rztT
BpBpjjr
BGr
BpB
GrBGr
BpB
Br
BGz
BpB
BzBGB
p
GpjiS
p
pSi
pp
psi
p
ieffpSirrztv
r
rrztC
r
s
r
rrztCD
t
rrztC
),,,((
),,,(),,,((
),.,(,
,
2
,
2
,,
Gas mass balance
Accumulation = convection+ axial& radial dispersion+flux to/from particles
Mass balance for particles (Reactions in particles!)
Accumulation = internal diffusion& reactions at active sites
Energy balance for the reactor bed (Bed instead of solid!)
Accumulation = convection+ (axial&radial conduction+dispersion)+flux to/from
particles
Physical model Partial Oxidation Ethanol in a Packed Bed Reactor using Golden Nanoparticles

8
0
10
20
30
40
50
60
70
80
90
100
125 175 225
Yie
ld, C
on
vers
ion
[%
]
Temperature [C°]
Ethanol sim.
Aldehyde sim.
Acid sim.
Ethylace calc.
Ethanol exp.
Aldehyde exp.
Acid exp.
Ethylacetate exp.
0
10
20
30
40
50
60
70
80
90
100
100 150 200 250 300
Yie
ld, C
on
vers
ion
[%
]
Temperature [°C]
Ethanol, sim.
Acetaldehyde sim.
Acetic acid sim.
Ethylacetate sim.
Ethanol exp.
Acetaldehyde exp.
Acetic acid exp.
Ethyl acetate exp.
Parameter Estimation Results, Partial Oxidation Ethanol
0
10
20
30
40
50
60
70
80
90
100
120 170 220
Yie
ld, C
on
vers
ion
[%
]
Temperature [C°C]
Ethanol sim.
Aldehyde sim.
Acetic acid sim.
Ethylacetate sim.
Ethanol sim.
Acetaldehyde sim.
Acetic acid sim.
Ethyl acetate sim.
Figure 1 O2/EtOH=1 Figure 2 O2/EtOH= 3
Figure 3 O2/EtOH=6
Parameter Value
Value Lower Upper
R101.Reactor.ActivationEnergy1 97663.8 50000 150000
R101.Reactor.ActivationEnergy2 59395.6 30000 150000
R101.Reactor.ActivationEnergy3 74400.7 30000 150000
R101.Reactor.k1ref 5.18E-6 1E-6 0.001
R101.Reactor.k2ref 3.34E-5 1E-6 0.001
R101.Reactor.k3ref 8.44E-006 1E-6 0.1
R101.Reactor.KEtOH 0.00671 0.001 0.05
R101.Reactor.KONSTO2 0.00128 0.0001 0.05
R101.Reactor.KW 0.00174 0.001 0.05

9
1 g catalyte
0.3 g cat
Water
O2
Aldehyde
Acid
EtOH
EtOH Aldehyde
Water
Acid
O2

10
Reaction Rates as a Function of Time and Axial Position Temperature run up 1°C/min
Figure 1 Ethanol-> Aldehyde Figure 2 Aldehyde-> Acid
Figure 3 Etanol+Acid-> Ethylacetate Figure 4 Temperature

Conclusions
11
1. One of the most promising Gold catalyst in Packed Bed:
screening tests modelled, Parameter estimation done,
article prepared for submission.
2. Model developed for Microreactor (washcoated or plate)
Model verified with ethylene oxidation.

12
Gratefully Acknowledged for Financial Support
12

ModelBuilder
13
1. Fast running!
2. No need to program details of numeric
strategies step-by-step! Just giving the
complete set of equations (in any order)
3. User friendly equation typing!
4. Reactor models solving local concentrations & temperatures simultaneously.
5. Process flow sheet modelling.
6. Everything can be written also as program code. So we did it!
7. Parameter estimation with statistical
analysis. Extensive in microreactors cases.
8. Steady-state and dynamic modelling.
Flowsheeting interface

About solvers…
14
PDEs: Numerical Method of Lines! Numerical method Keyword Order(s)
Centered finite difference method CFDM 2, 4, 6
Backward finite difference method BFDM 1, 2
Forward finite difference method FFDM 1, 2
Orthogonal collocation on finite elements method OCFEM 2, 3, 4
Type of integral Numerical method used Number of intervals
Implicit 5th order, six point Gaussian Quadrature
—
Integral solution
Simultaneous solution: ODEs, PDEs and Algebraic Systems
Solver Application
MA28, MA48 Algebraic system of equations
SRADAU,SPARSE Differential equations system
BDNLSOL Nonlinear systems
Maximum Likelihood Parameter estimation
CVP_SS, MINLPSolver Dynamic optimization
Select the proper ones!
Derivative Approximations:
Parameter estimation: Maximum likelihood method (allows to include uncertainties)

1) Partial oxidation of ethanol to acetaldehyde:
C2H5OH+0.5O2 CH3CHO+0.5H2O
2) Acetaldehyde oxidation to acetic acid:
CH3CHO+0.5O2 CH3COOH+0.5H2O
3) Ethyl acetate formation from ethanol
CH3CH2OH + CH3COOH → CH3COOCH2CH3 + H2O
Modified Arrhenius law:
refpSg
arefjj
TrrztTR
Ekk
1
),,,(
1exp,
(18)
Kinetic expression for the partial oxidation of ethanol to aldehyde:
2
1
1)1(
2222
2
OHOHOOEtOHEtOH
OEtOH
pKpKpK
ppkr
(19)
2
22
2
2)1(
22
2
OHOHOOEtOHEtOH
OAce
pKpKpK
ppkr
2
22
3
3)1(
22
3
OHOHOOEtOHEtOH
COOHCHEtOH
pKCKpK
ppkr
Reaction kinetics: Partial Oxidation of Ethanol

16
Reaction Sceme for Ethylene Oxidation
Reaction geometry
Desirable reaction
Total oxidation of ethylene
Total oxidation of ethyleneoxide
Reactor walls either washcoated or solid silver
0 R RW
Fluid Washcoat Fluid Silver wall
0 RW

17
r
rztC
rr
rztCD
z
rztCD
z
rztCu
t
rztC FiFi
Fr
Fi
Fz
Fi
F
Fi ),,(1),,(),,(),,(),,( ,
2
,
2
,2
,
2
,
,,
Accumulation Convection Axial dispersion Radial dispersion
),,(
1),,(),,(),,(,
,
2
,
2
,,
pjji
pp
psi
pp
psi
p
ieffpsirztr
r
rztC
r
s
r
rztCD
t
rztC
Accumulation Internal diffusion Reaction rates
IN
FizFi CrtC ,0, ),(
Entrance
IN
FizPSi CrtC ,0, ),(
0),(,
Lz
Fi
z
rtC
Outlet
0),(,
Lz
PSi
z
rtC
0),(
0
,
r
Fi
r
ztC
Center
0),(,
WP RrP
Si
r
ztC
Wall
WP RrP
Si
W
ieffFi
Rrz
Rr
Fi
Fr
ztC
RR
sD
z
ztCrzD
r
ztCu
),(),(),(
),( ,,
2
,
2
,
Catalyst surface
RrFiRrSipp
ztCztC
),(),( ,,
Mass balance of the fluid:
’ Mass balance within washcoat:
Boundary conditions:
Washcoated Microreactor Model

18
)),((
),,(1),,(),,(),,(),,(,
,
2
,
2
,2
,
2
,
,,
Rrjji
FiFi
Fr
Fi
Fz
Fi
F
Firzr
r
rztC
rr
rztCD
z
rztCD
z
rztCu
t
rztC
Accumulation Convection Axial dispersion Radial dispersion Reaction rates
IN
FizFi CrtC ,0, ),(
Entrance
0),(,
Lz
Fi
z
rtC
Outlet
0),(
0
,
r
Fi
r
ztC
Center
2
1
)1(22
2
j
OOEE
j
OE
jCKCK
CCkr
Silver wall microreactor
Mass balance of the fluid:
Boundary conditions:
Forms of kinetic expressions for ethylene oxidation :
refg
ja
refjjTTR
Ekk
11exp
,
,

19
0.08 0.10 0.12 0.14 0.16 0.18 0.20
0.0
0.1
0.2
0.3
XE
EXP
YEO
EXP
Simulation
XE [
%],
YE
O [
%]
Fluid velocity [m/s]
Example results: Washcoated
microreactor model
480 500 520 540 560 580
0.00
0.05
0.10
0.15
0.20
0.25
0.30
XE
EXP
YEO
EXP
Simulation
XE [
%],
YE
O [
%]
Temperature [K]
Example Results: Silver wall
microreactor model
Fluid velocity effect on yield and conversion
Temperature effect on yield and conversion