activities around academy of finland project (micatox...

19
Activities around Academy of Finland Project (Micatox etc.) 1 Åbo Akademi Laboratory of Industrial Chemistry and Reaction Engineering Åbo, Finland University of Naples Federico II N.I.C.L.: Naples Industrial Chemistry Laboratory Naples, Italy Johan Gadolin PCC: Process Chemistry Centre Russo V., Kilpiö T., DiSerio M., Tesser R., Santacesaria E., Salmi T. Univ. Naples Federico II, Italy Abo Akademi,Turku, Finland

Upload: lamngoc

Post on 19-Apr-2018

232 views

Category:

Documents


5 download

TRANSCRIPT

Activities around Academy of Finland Project

(Micatox etc.)

1

Åbo Akademi Laboratory of Industrial Chemistry

and Reaction Engineering Åbo, Finland

University of Naples Federico II N.I.C.L.: Naples Industrial

Chemistry Laboratory Naples, Italy

Johan Gadolin PCC: Process Chemistry Centre

Russo V., Kilpiö T., DiSerio M., Tesser R.,

Santacesaria E., Salmi T.

Univ. Naples Federico II, Italy

Abo Akademi,Turku, Finland

gPROMS

2

”The World’s Leading Advanced Process

Modelling Platform”

OWN MODELS GENERATED by: gPROMS ModelBuilder

ProcessBuilder

2014

3

GENERIC TRICKLE BED REACTOR (TBR) MODEL Three phases (gas, liquid, particles)

• Simultaneous solution of mass and energy balances within reactor and particles

MICROREACTOR MODELS • Washcoated and solid wall • Two phases (gas, solid) • Simultaneous solution of mass balaces inside channels and washcoat or at wall

5.) MICROREACTOR MODELS Awarded one

Awarded article: Generated from TBR model

Energy balances away, liquid away, particles replaced by porous

wall, new kinetics etc..

Financial Support from Academy of Finland is gratefully acknowledged

1.) 2.) 3.) 4.)

Publications 2015 5, thanks to our professors Tapio Salmi and Dmitri Murzin

4

Runners-up! 2nd Prize:

(Around 200 academic institutions have license world-wide)

5

6

Simulation Input Values for the Parameter Estimation of Partial Oxidation of Ethanol Study

Table 2 Dimensions and operating conditions

L 0.8 cm G 0.6 - 0

GEtOH,C 2.3 mol/m3

Rrea 1 cm S 0.4 - 0

GH2O,C 0 mol/m3

Rp 0.0315 mm s 2 - 0

GAlde,C 0 mol/m3

wcat 0.16e-3 kg 0

Gu 0.03 m/s 0

GAcid,C 0 mol/m3

B 0.15 W/(mK) p 1 atm 0

GEtAce,C 0 mol/m3

PeG 10 - 0

G,O2C 7 mol/m3 TG,IN 125-250 °C

Au HY 80 Catalyst!

iGS

GiGi

rzGrG

Gi

GzG

GiGGi

G

Nr

rztC

rr

rztCD

z

rztCrzD

z

rztCrzu

t

rztC

,,

,

2

,

2

),(,

2

,

2

,

,,

),,(1),,(

),,(),(

)),,(),((),,(

)),()(,(/(),,,((

),,(

),(

),,(1

),(

),,(

),(

)),,(),((),,(

,,

2

2

,

,

,

,

,

,

2

2

,

,

,

rzcrzRrztrH

r

rztTD

crz

k

r

rztT

rD

crz

k

z

rztTD

crz

k

z

rztTrzu

t

rztT

BpBpjjr

BGr

BpB

GrBGr

BpB

Br

BGz

BpB

BzBGB

p

GpjiS

p

pSi

pp

psi

p

ieffpSirrztv

r

rrztC

r

s

r

rrztCD

t

rrztC

),,,((

),,,(),,,((

),.,(,

,

2

,

2

,,

Gas mass balance

Accumulation = convection+ axial& radial dispersion+flux to/from particles

Mass balance for particles (Reactions in particles!)

Accumulation = internal diffusion& reactions at active sites

Energy balance for the reactor bed (Bed instead of solid!)

Accumulation = convection+ (axial&radial conduction+dispersion)+flux to/from

particles

Physical model Partial Oxidation Ethanol in a Packed Bed Reactor using Golden Nanoparticles

8

0

10

20

30

40

50

60

70

80

90

100

125 175 225

Yie

ld, C

on

vers

ion

[%

]

Temperature [C°]

Ethanol sim.

Aldehyde sim.

Acid sim.

Ethylace calc.

Ethanol exp.

Aldehyde exp.

Acid exp.

Ethylacetate exp.

0

10

20

30

40

50

60

70

80

90

100

100 150 200 250 300

Yie

ld, C

on

vers

ion

[%

]

Temperature [°C]

Ethanol, sim.

Acetaldehyde sim.

Acetic acid sim.

Ethylacetate sim.

Ethanol exp.

Acetaldehyde exp.

Acetic acid exp.

Ethyl acetate exp.

Parameter Estimation Results, Partial Oxidation Ethanol

0

10

20

30

40

50

60

70

80

90

100

120 170 220

Yie

ld, C

on

vers

ion

[%

]

Temperature [C°C]

Ethanol sim.

Aldehyde sim.

Acetic acid sim.

Ethylacetate sim.

Ethanol sim.

Acetaldehyde sim.

Acetic acid sim.

Ethyl acetate sim.

Figure 1 O2/EtOH=1 Figure 2 O2/EtOH= 3

Figure 3 O2/EtOH=6

Parameter Value

Value Lower Upper

R101.Reactor.ActivationEnergy1 97663.8 50000 150000

R101.Reactor.ActivationEnergy2 59395.6 30000 150000

R101.Reactor.ActivationEnergy3 74400.7 30000 150000

R101.Reactor.k1ref 5.18E-6 1E-6 0.001

R101.Reactor.k2ref 3.34E-5 1E-6 0.001

R101.Reactor.k3ref 8.44E-006 1E-6 0.1

R101.Reactor.KEtOH 0.00671 0.001 0.05

R101.Reactor.KONSTO2 0.00128 0.0001 0.05

R101.Reactor.KW 0.00174 0.001 0.05

9

1 g catalyte

0.3 g cat

Water

O2

Aldehyde

Acid

EtOH

EtOH Aldehyde

Water

Acid

O2

10

Reaction Rates as a Function of Time and Axial Position Temperature run up 1°C/min

Figure 1 Ethanol-> Aldehyde Figure 2 Aldehyde-> Acid

Figure 3 Etanol+Acid-> Ethylacetate Figure 4 Temperature

Conclusions

11

1. One of the most promising Gold catalyst in Packed Bed:

screening tests modelled, Parameter estimation done,

article prepared for submission.

2. Model developed for Microreactor (washcoated or plate)

Model verified with ethylene oxidation.

12

Gratefully Acknowledged for Financial Support

12

ModelBuilder

13

1. Fast running!

2. No need to program details of numeric

strategies step-by-step! Just giving the

complete set of equations (in any order)

3. User friendly equation typing!

4. Reactor models solving local concentrations & temperatures simultaneously.

5. Process flow sheet modelling.

6. Everything can be written also as program code. So we did it!

7. Parameter estimation with statistical

analysis. Extensive in microreactors cases.

8. Steady-state and dynamic modelling.

Flowsheeting interface

About solvers…

14

PDEs: Numerical Method of Lines! Numerical method Keyword Order(s)

Centered finite difference method CFDM 2, 4, 6

Backward finite difference method BFDM 1, 2

Forward finite difference method FFDM 1, 2

Orthogonal collocation on finite elements method OCFEM 2, 3, 4

Type of integral Numerical method used Number of intervals

Implicit 5th order, six point Gaussian Quadrature

Integral solution

Simultaneous solution: ODEs, PDEs and Algebraic Systems

Solver Application

MA28, MA48 Algebraic system of equations

SRADAU,SPARSE Differential equations system

BDNLSOL Nonlinear systems

Maximum Likelihood Parameter estimation

CVP_SS, MINLPSolver Dynamic optimization

Select the proper ones!

Derivative Approximations:

Parameter estimation: Maximum likelihood method (allows to include uncertainties)

1) Partial oxidation of ethanol to acetaldehyde:

C2H5OH+0.5O2 CH3CHO+0.5H2O

2) Acetaldehyde oxidation to acetic acid:

CH3CHO+0.5O2 CH3COOH+0.5H2O

3) Ethyl acetate formation from ethanol

CH3CH2OH + CH3COOH → CH3COOCH2CH3 + H2O

Modified Arrhenius law:

refpSg

arefjj

TrrztTR

Ekk

1

),,,(

1exp,

(18)

Kinetic expression for the partial oxidation of ethanol to aldehyde:

2

1

1)1(

2222

2

OHOHOOEtOHEtOH

OEtOH

pKpKpK

ppkr

(19)

2

22

2

2)1(

22

2

OHOHOOEtOHEtOH

OAce

pKpKpK

ppkr

2

22

3

3)1(

22

3

OHOHOOEtOHEtOH

COOHCHEtOH

pKCKpK

ppkr

Reaction kinetics: Partial Oxidation of Ethanol

16

Reaction Sceme for Ethylene Oxidation

Reaction geometry

Desirable reaction

Total oxidation of ethylene

Total oxidation of ethyleneoxide

Reactor walls either washcoated or solid silver

0 R RW

Fluid Washcoat Fluid Silver wall

0 RW

17

r

rztC

rr

rztCD

z

rztCD

z

rztCu

t

rztC FiFi

Fr

Fi

Fz

Fi

F

Fi ),,(1),,(),,(),,(),,( ,

2

,

2

,2

,

2

,

,,

Accumulation Convection Axial dispersion Radial dispersion

),,(

1),,(),,(),,(,

,

2

,

2

,,

pjji

pp

psi

pp

psi

p

ieffpsirztr

r

rztC

r

s

r

rztCD

t

rztC

Accumulation Internal diffusion Reaction rates

IN

FizFi CrtC ,0, ),(

Entrance

IN

FizPSi CrtC ,0, ),(

0),(,

Lz

Fi

z

rtC

Outlet

0),(,

Lz

PSi

z

rtC

0),(

0

,

r

Fi

r

ztC

Center

0),(,

WP RrP

Si

r

ztC

Wall

WP RrP

Si

W

ieffFi

Rrz

Rr

Fi

Fr

ztC

RR

sD

z

ztCrzD

r

ztCu

),(),(),(

),( ,,

2

,

2

,

Catalyst surface

RrFiRrSipp

ztCztC

),(),( ,,

Mass balance of the fluid:

’ Mass balance within washcoat:

Boundary conditions:

Washcoated Microreactor Model

18

)),((

),,(1),,(),,(),,(),,(,

,

2

,

2

,2

,

2

,

,,

Rrjji

FiFi

Fr

Fi

Fz

Fi

F

Firzr

r

rztC

rr

rztCD

z

rztCD

z

rztCu

t

rztC

Accumulation Convection Axial dispersion Radial dispersion Reaction rates

IN

FizFi CrtC ,0, ),(

Entrance

0),(,

Lz

Fi

z

rtC

Outlet

0),(

0

,

r

Fi

r

ztC

Center

2

1

)1(22

2

j

OOEE

j

OE

jCKCK

CCkr

Silver wall microreactor

Mass balance of the fluid:

Boundary conditions:

Forms of kinetic expressions for ethylene oxidation :

refg

ja

refjjTTR

Ekk

11exp

,

,

19

0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.0

0.1

0.2

0.3

XE

EXP

YEO

EXP

Simulation

XE [

%],

YE

O [

%]

Fluid velocity [m/s]

Example results: Washcoated

microreactor model

480 500 520 540 560 580

0.00

0.05

0.10

0.15

0.20

0.25

0.30

XE

EXP

YEO

EXP

Simulation

XE [

%],

YE

O [

%]

Temperature [K]

Example Results: Silver wall

microreactor model

Fluid velocity effect on yield and conversion

Temperature effect on yield and conversion