activity3 why cant insects be big aw - wordpress.com · microsoft word - activity3_why cant insects...

5
Activity 3: Why insects can’t be big? 50 points Model 1: Surface areatovolume ratios 1. The surface area of a cube is expressed by the equation: # of sides × length × width, or 6x 2 , where 6 = the number of sides and x = the length of any edge. What is the surface area of each of the three cubes shown above in Model 1? Show your work. (3 points) 1 mm cube surface area: 2 mm cube surface area: 4 mm cube surface area: 2. The volume of a cube is expressed by the equation: x 3 , where x = the length of any edge. What is the volume of each of the three cubes shown above? Show your work. (3 pts) 1 mm cube volume: 2 mm cube volume: 4 mm cube volume: 3. The surface areatovolume ratio of a cube is expressed by the equation: surface area ÷ volume. What is the surface areatovolume ratio of each of the three cubes shown above? Show your work. (3 points) 1 mm cube surface areatovolume ratio: 2 mm cube surface areatovolume ratio: 4 mm cube surface areatovolume ratio:

Upload: others

Post on 24-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Activity3 Why cant insects be big AW - WordPress.com · Microsoft Word - Activity3_Why cant insects be big_AW.docx Created Date: 6/30/2015 3:59:38 PM

Activity  3:  Why  insects  can’t  be  big?    50  points  

 Model  1:  Surface  area-­‐to-­‐volume  ratios  

   

1.     The  surface  area  of  a  cube  is  expressed  by  the  equation:  #  of  sides  ×  length  ×  width,  or  6x2,  where  6  =  the  number  of  sides  and  x  =  the  length  of  any  edge.  What  is  the  surface  area  of  each  of  the  three  cubes  shown  above  in  Model  1?  Show  your  work.  (3  points)  

    1  mm  cube  surface  area:       2  mm  cube  surface  area:       4  mm  cube  surface  area:      2.     The  volume  of  a  cube  is  expressed  by  the  equation:  x3,  where  x  =  the  length  of  any  edge.  

What  is  the  volume  of  each  of  the  three  cubes  shown  above?  Show  your  work.  (3  pts)       1  mm  cube  volume:       2  mm  cube  volume:       4  mm  cube  volume:      3.     The  surface  area-­‐to-­‐volume  ratio  of  a  cube  is  expressed  by  the  equation:  surface  area  ÷  

volume.  What  is  the  surface  area-­‐to-­‐volume  ratio  of  each  of  the  three  cubes  shown  above?  Show  your  work.  (3  points)  

    1  mm  cube  surface  area-­‐to-­‐volume  ratio:       2  mm  cube  surface  area-­‐to-­‐volume  ratio:       4  mm  cube  surface  area-­‐to-­‐volume  ratio:    

Page 2: Activity3 Why cant insects be big AW - WordPress.com · Microsoft Word - Activity3_Why cant insects be big_AW.docx Created Date: 6/30/2015 3:59:38 PM

4.   Using  the  information  you  just  derived  in  Question  3  about  surface  area-­‐to-­‐volume  ratio,  write  a  sentence  that  describes  what  happens  to  the  surface  area-­‐to-­‐volume  ratio  of  a  cube  as  it  gets  larger.  Be  VERY  precise  in  how  your  word  this  sentence.  (3  points)  

               5.     Now  consider  an  arthropod  such  as  a  terrestrial  insect.  A  key  feature  of  an  arthropod  is  

its  exoskeleton.  What  happens  to  the  exoskeleton  (i.e.  the  surface  area)  to  size  (volume)  ratio  as  the  insect  increases  in  size  (i.e.  volume)?  (4  points)  

                 6.     What  design  problem  is  inherent  in  having  an  exoskeleton  that  increases  at  a  slower  

rate  than  body  mass?  (Consider  the  functions  of  the  exoskeleton  for  respiration  and  structural  support,  as  well  as  your  answer  to  Questions  4  to  help  you  think  about  this  answer.)  (4  points)  

   

Page 3: Activity3 Why cant insects be big AW - WordPress.com · Microsoft Word - Activity3_Why cant insects be big_AW.docx Created Date: 6/30/2015 3:59:38 PM

Model  2:  Diffusion  of  molecules    

   

7.     Look  at  Model  2.  Over  time,  what  happens  to  the  molecules  of  dye  that  are  dropped  into  the  left  side  of  the  beaker?  (2  points)  

             8.     Is  external  energy  (e.g.  stirring  or  pumping)  needed  to  move  the  molecules  of  dye  

around?  (2  points)                9.     In  your  own  words,  write  a  complete  sentence  defining  diffusion.  (4  points)                10.  In  your  own  words,  write  a  complete  sentence  defining  equilibrium  as  seen  in  Model  2.  

(4  points)      

Page 4: Activity3 Why cant insects be big AW - WordPress.com · Microsoft Word - Activity3_Why cant insects be big_AW.docx Created Date: 6/30/2015 3:59:38 PM

Model  3:  An  insect’s  tracheal  system    

   11.  Now  that  you  understand  how  molecules  move  from  areas  of  high  concentration  to  

areas  of  low  concentration,  consider  an  insect’s  tracheal  system.  On  the  diagram  above,  draw  molecules  of  oxygen  (designated  as  “O2”)  to  indicate  its  diffusion  in  this  system.  Indicate  areas  of  high  O2  concentration,  low  O2  concentration,  and  draw  arrows  to  indicate  the  direction  of  O2  diffusion.  (2  points)  

   12.  On  the  diagram  above,  draw  molecules  of  carbon  dioxide  (designated  as  “CO2”)  to  

indicate  its  diffusion  in  this  system.  Indicate  areas  of  high  CO2  concentration,  low  CO2  concentration,  and  draw  arrows  to  indicate  the  direction  of  CO2  diffusion.  (2  points)  

   13.  If  an  insect’s  respiratory  system  relies  entirely  on  the  passive  diffusion  of  oxygen  from  

the  external  environment  to  individual  cells,  describe  how  this  might  become  a  problem  as  insects  increase  in  size.  (4  points)  

   

Page 5: Activity3 Why cant insects be big AW - WordPress.com · Microsoft Word - Activity3_Why cant insects be big_AW.docx Created Date: 6/30/2015 3:59:38 PM

Exceptions  to  the  rule    14.  Why  can  some  arthropods,  such  as  king  crabs,  get  so  large  in  the  ocean?  (Hint:  how  

might  living  in  a  cold  water  environment  help  to  overcome  both  of  the  size  restrictions  that  you  worked  through  above?)  (5  points)  

                 15.  Why  were  some  extinct  terrestrial  arthropods  able  to  get  so  much  larger  than  any  

extant  terrestrial  arthropods?  (Hint:  how  was  the  atmosphere  different  than  it  is  now?)  (5  points)  

                 16.  What  questions  do  you  still  have  about  why  insects  are  limited  to  being  fairly  small  

organisms?