adaptive and higher-order bem for the wave equationadaptive and higher-order bem for the wave...

39
Adaptive and higher-order BEM for the wave equation Ernst P. Stephan 1 (joint with H. Gimperlein 2,3 C. ¨ Ozdemir 1 , D. Stark 2 ) 1: Leibniz Universit¨ at Hannover, Germany 2: Heriot–Watt University, Edinburgh, UK 3: Universit¨ at Paderborn, Germany Workshop in Honour of A. Bendali December 12-15, 2017, Universit´ e Pau, France Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 1 / 30

Upload: others

Post on 07-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Adaptive and higher-order BEM for the wave equation

    Ernst P. Stephan1

    (joint with H. Gimperlein2,3 C. Özdemir1, D. Stark2)

    1: Leibniz Universität Hannover, Germany2: Heriot–Watt University, Edinburgh, UK

    3: Universität Paderborn, Germany

    Workshop in Honour of A. BendaliDecember 12-15, 2017, Université Pau, France

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 1 / 30

  • What’s this talk about?

    Time domain BEM for wave scattering off a knife’s blade (screenproblems).

    convergence rates - theory and numerical experiments(in DOF on a 2d screen)

    0.5: h-version, uniform

    0.77: h-version, adaptive

    1.0: p-version, uniform

    β/2: h-version, β-graded, β ∈ [1, 3)

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 2 / 30

  • 3d wave equation

    u = u(t, x) sound pressure

    ∂2t u−∆u = 0 in Rt × R3x \ Ωu = 0 for t ≤ 0 .

    Simple: boundary conditions u = f on Γ = ∂Ω.

    Realistic: acoustic boundary conditions ∂νu− α∂tu = f on Γ = ∂Ω.

    Some motivations for space or space-time refinements + adaptivity:

    Edge/corner/geometric singularities.

    Sharp travelling wave crests.

    Variable ∆t: Sauter-Veit, Veit-Merta-Zapletal-Lukas, Sauter-Schanz, . . .Variable ∆x: Abboud

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 3 / 30

  • Screen problems: static graded meshes

    Ωc = R3 \ ([−1, 1]2 × {0}), Vφ(x) = sin(x)5 on [−1, 1]2 × {0}.solution near corner r−0.703..., near edge r−

    12

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 4 / 30

  • Contents

    u : Rt × Ωx → R sound pressure∂2t u−∆u = 0 in Rt × Ωcx, Ωc = Rd \ Ω

    u = 0 for t ≤ 0 .TDBEM: basics

    Screen problems:singular expansions / graded meshes for edges and corners / tires

    Space adaptivity / towards space-time adaptivity

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 5 / 30

  • BEM for the wave equation

    u : Rt × Ωx → R sound pressure∂2t u−∆u = 0 in Rt × Ωc

    u = 0 for t ≤ 0 .

    simple: Dirichlet boundary conditions u = f on Γ = ∂Ω:

    f(t, x) = Vφ(t, x) =∫

    Γ

    φ(y, t− |x− y|)4π|x− y| dsy

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 6 / 30

  • BEM for the wave equation

    u : Rt × Ωx → R sound pressure∂2t u−∆u = 0 in Rt × Ωc

    u = 0 for t ≤ 0 .

    simple: Dirichlet boundary conditions u = f on Γ = ∂Ω:

    f(t, x) = Vφ(t, x) =∫

    Γ

    φ(y, t− |x− y|)4π|x− y| dsy

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 6 / 30

  • Function spaces: space-time Sobolev spaces

    f = Vφ(t, x) =∫

    Γ

    φ(y, t− |x− y|)4π|x− y| dsy

    space–time anisotropic Sobolev spaces Hrσ(R+, Hs(Γ)), σ > 0:

    Hrσ(R+, Hs(R2)) defined using Fourier–Laplace transform

    {ψ : supp ψ ⊂ R+ × R2,

    ∫R+iσ dω

    ∫R2 dξ|ω|2r(|ω|2 + |ξ|2)s|Fψ(ω, ξ)|2

  • Function spaces: space-time Sobolev spaces

    f = Vφ(t, x) =∫

    Γ

    φ(y, t− |x− y|)4π|x− y| dsy

    space–time anisotropic Sobolev spaces Hrσ(R+, Hs(Γ)), σ > 0:

    Hrσ(R+, Hs(R2)) defined using Fourier–Laplace transform{ψ : supp ψ ⊂ R+ × R2,

    ∫R+iσ dω

    ∫R2 dξ|ω|2r(|ω|2 + |ξ|2)s|Fψ(ω, ξ)|2

  • Discretization

    Γ = ∪Mi=1Γi (quasi-uniform) triangulationV ph piecewise polynomial functions of degree p on Γ = ∪Mi=1Γi(continuous if p ≥ 1)[0, T ) = ∪Ln=1[tn−1, tn), tn = n(∆t)V q∆t piecewise polynomial functions of degree q in time (continuousand vanishing at t = 0 if q ≥ 1)tensor products in space-time: V p,qh,∆t = V

    ph ⊗ V

    q∆t

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 8 / 30

  • Discretization

    V ph piecewise polynomial functions of degree p on Γ = ∪Mi=1Γi(continuous if p ≥ 1)V q∆t piecewise polynomial functions of degree q in time (continuousand vanishing at t = 0 if q ≥ 1)tensor products in space-time: V p,qh,∆t = V

    ph ⊗ V

    q∆t

    Time domain BEM: Find φh,∆t ∈ V p,qh,∆t such that ∀ψh,∆t ∈ Vp,qh,∆t:

    〈V∂tφh,∆t, ψh,∆t〉 = 〈∂tf, ψh,∆t〉Sparse matrix, almost block lower triangular (causality).Solve by time stepping scheme (HG – Stark ’16).

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 8 / 30

  • Screen problems: Edge and corner singularities

    Ωc = R3 \ ([−1, 1]2 × {0}), Vφ(t, x) = sin(t)5 on [−1, 1]2 × {0}.solution near corner r−0.703..., near edge r−

    12

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 9 / 30

  • Screen problems: edge and corner singularities

    Helmholtz: (Kondratiev, Dauge, ...)Solution behaves like

    rγ−1 near corner, γ=0.29 for square screen

    r−12 near edge.

    von Petersdorff ’89, +Stephan ’90: precise tensor product decomposition,BEM on graded meshes=⇒ optimal approximation on graded meshes.

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 10 / 30

  • Screen problems: edge and corner singularities

    Theorem (rγ−1 in corner, r−12 at edges, coeffs depend on ω)

    Let Vωψω = fω ∈ H2(Γ). Then

    ψω = ψ0,ω + χω(r)rγ−1αω(θ) + χ̃ω(θ)b1,ω(r)r−1(sin(θ))−

    12

    + χ̃ω(π

    2− θ)b2,ω(r)r−1(cos(θ))−

    12

    where ψ0,ω ∈ H1−�(Γ), αω(θ) ∈ H1−�[0, π2 ], bi,ω = ci,ωrγ + di,ω(r),r−

    12di,ω(r) ∈ H1(R+), r−

    32di,ω(r) ∈ L2(R+), ci,ω ∈ R.

    (r, θ) polar coordinates around (0,0), χω, χ̃ω ∈ C∞c , = 1 near 0.

    γ eigenvalue: γ ≈ 0.2966 for square

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 10 / 30

  • Screen problems: edge and corner singularities

    Previous work on wave equation:

    Plamenevskii et al. since ’99:singular expansions near corners and edges of polygon

    Müller – Schwab ’15: 2d FEM on graded meshes

    Theorem

    a) Decomposition of solution in singular / regular parts with same singularexponents γ − 1,−12 as in elliptic case.

    b) Error of best approximation in H0σ(R+, H−12 (Γ)) = O(hmin{β2 , 32}−ε).

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 10 / 30

  • Screen problems: edge and corner singularities

    Theorem

    a) Decomposition of solution in singular / regular parts with same singularexponents γ − 1,−12 as in elliptic case.

    b) Error of best approximation in H0σ(R+, H−12 (Γ)) = O(hmin{β2 , 32}−ε).

    xj = 1−(jN

    )β, j = 1, . . . , N .

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 10 / 30

  • A priori estimate for Dirichlet, b(φ, ψ) = 〈Vφ̇, ψ〉 = 〈ḟ , ψ〉Theorem 2 (a priori estimate)

    If φ ∈ H1,−12

    σ (R+,Γ): ‖φ− φh,∆t‖0,− 12 . infψh,∆t(1 +

    1∆t

    )‖φ− ψh,∆t‖1,− 12 .

    Proof

    ‖φh,∆t − ψh,∆t‖20,−1/2 . b(φh,∆t − φ, φh,∆t − ψh,∆t) + b(φ− ψh,∆t, φh,∆t − ψh,∆t)b(φh,∆t − φ, φh,∆t − ψh,∆t) = 0 Galerkin orthogonality

    b(φ− ψh,∆t, φh,∆t − ψh,∆t) ≤ ‖V∂

    ∂t(φ− ψh,∆t)‖−1,+1/2 · ‖φh,∆t − ψh,∆t‖1,−1/2

    . ‖φ− ψh,∆t‖1,−1/2 · ‖φh,∆t − ψh,∆t‖1,−1/2

    . 1∆t‖φh,∆t − ψh,∆t‖0,−1/2‖φ− ψh,∆t‖1,−1/2

    =⇒ ‖φ− φh,∆t‖0,− 12 . ‖φ− ψh,∆t‖0,−1/2 + ‖φh,∆t − ψh,∆t‖0,−1/2

    .(

    1 +1

    ∆t

    )‖φ− ψh,∆t‖1,− 12

    E.P. Stephan TDBEM with mesh refinements 9 / 28

  • Screen problems: Corner exponents for waves

    Ωc = R3 \ ([−1, 1]2 × {0}), Vφ = sin(t)5 on [−1, 1]2 × {0}, 0 < t < 1.

    corner exponent: −0.78 ∼ γ − 1 = −0.703 as in elliptic casePlot: φ(t, r) as function of r along x = y

    10 -3 10 -2 10 -1 10 0

    distance to (1,1); y=x

    10 -1

    10 0

    10 1

    10 2

    dens

    ity

    T=0.5; = -0.78T=0.75; = -0.78T=1; = -0.79

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 11 / 30

  • Screen problems: Edge exponents for waves

    Ωc = R3 \ ([−1, 1]2 × {0}), Vφ = sin(t)5 on [−1, 1]2 × {0}, 0 < t < 1.

    edge exponent: −0.49 ∼ −12 as in elliptic casePlot: φ(t, x, y = 0) as function of x

    10 -3 10 -2 10 -1 10 0

    distance to (1,0); y=0

    10 -1

    10 0

    10 1

    10 2

    dens

    ity

    T=0.5; = -0.49T=0.75; = -0.50T=1; = -0.50

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 12 / 30

  • Screen problems: Convergence rates

    Ωc = R3 \ ([−1, 1]2 × {0}), Vφ = sin(t)5 on [−1, 1]2 × {0}, 0 < t < 1.

    Convergence for fixed ∆t = 0.01:Energy norm2 = 〈V∂t(φh − φ), φh − φ〉 ∼ h2 ' DOF (Γ)−1 (2-graded)

    ∼ h ' DOF (Γ)−1/2 (uniform)similar results for W and for Dirichlet-to-Neumann operator

    10 4 10 5 10 6 10 7

    Degrees of freedom

    10 -3

    10 -2

    10 -1

    Rela

    tive e

    nerg

    y e

    rror

    uniform

    -graded, =2

    O(DOF 0.5 )

    O(DOF)

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 13 / 30

  • Graded Meshes for Tyre (1)

    tyre

    receiversource

    1m

    80mm

    1mm

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 14 / 30

  • Graded Meshes for Tyre (2)

    Amplification due to horn effect:

    200 400 600 800 1000 1200 1400 1600 1800 2000−20

    −15

    −10

    −5

    0

    5

    10

    15

    20

    25

    30

    freq [Hz]

    ∆ L

    H [dB

    ]

    ∆t=0.04, graded

    ∆t=0.01, graded

    ∆t=0.005, uniform

    ∆t=0.005, graded

    Grading with various ∆t compared to uniform tire mesh.

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 15 / 30

  • Graded Meshes for Tyre (3)

    Left: As ∆t→ 0, difference between graded and uniform becomes larger.

    200 400 600 800 1000 1200 1400 1600 1800 2000

    freq [Hz]

    0

    1

    2

    3

    4

    5

    6

    7

    |gra

    ded -

    uniform

    |

    t=0.04

    t=0.01t=0.005

    200 400 600 800 1000 1200 1400 1600 1800 2000

    freq [Hz]

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    |gra

    ded

    t i

    - g

    raded

    t j

    |

    t=0.01, 0.005t=0.04, 0.01

    Right: Relative effect of grading increases for small time steps.

    Effects mostly seen in resonances.

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 16 / 30

  • Error Indicators

    Theorem

    Let φh,∆t ∈ H0σ(R+, H−12 (Γ)) such that

    R = ∂t f − V∂tφh,∆t ∈ H0σ(R+, H1(Γ)) =⇒

    ‖φ− φh,∆t‖20,− 12

    .∑

    i,∆

    max{∆t, h∆} ‖R‖20,1,[ti,ti+1)×∆

    max{∆t, h}‖R‖20,1−� . ‖φ− φh,∆t‖22,− 12

    The upper bound is independent of the approximation method: TDBEM,convolution quadrature, no assumption on mesh.

    The lower bound holds on quasi-uniform meshes.

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 17 / 30

  • Error Indicators

    Theorem

    Let φh,∆t ∈ H0σ(R+, H−12 (Γ)) such that

    R = ∂t f − V∂tφh,∆t ∈ H0σ(R+, H1(Γ)) =⇒

    ‖φ− φh,∆t‖20,− 12

    .∑

    i,∆

    max{∆t, h∆} ‖R‖20,1,[ti,ti+1)×∆

    max{∆t, h}‖R‖20,1−� . ‖φ− φh,∆t‖22,− 12

    Residual error indicators (RB):

    η2(∆, i) = max{∆t, h∆} ‖R‖20,1,[ti,ti+1)×∆

    =

    ∫ ti+1ti

    {∆t[∂tV̇ φ(t,x)− ∂tḟ(t,x)

    ]2+ h∆

    [∇ΓV̇ φ(t,x)−∇Γḟ(t,x)

    ]2}

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 17 / 30

  • Proof of upper bound

    b(φ, ψ) =∫∞

    0 e−2σt ∫

    Γ Vφ̇(t, x)ψ(t, x) dΓx dt

    ‖φ− φh,∆t‖20,− 12 ,Γ

    .∫ ∞

    0dt e−2σt

    ΓdΓ V(φ̇− φ̇h,∆t)(φ− φh,∆t)

    =

    ∫ ∞

    0dt e−2σt

    ΓdΓ (ḟ − Vφ̇h,∆t)(φ− ψh,∆t)

    . ‖R‖0, 12 ,Γ ‖φ− ψh,∆t‖0,− 12 ,Γ .

    interpolation inequality: ‖R‖20, 12 ,Γ

    . ‖R‖0,1,Γ‖R‖0,0,Γ .

    residual orthogonal: R ⊥ ψh,∆t in H0σ(R+,H0(Γ)) .interpolation h,∆t‖R‖0,0,Γ ≤ inf ‖R − ψh,∆t‖L2([0,T̃],L2(Γ)), ψh,∆t ∈ V

    p,qh,∆t

    E.P. Stephan TDBEM with mesh refinements 11 / 28

  • Adaptivity: Spherical Harmonic on the Uniform Sphere

    f(t,x) = sin5(t)z2 on Γ ={x, y, z | x2 + y2 + z2 = 1

    }, 0 < t < 2.5.

    Using a time step size ∆t = 0.1, we look at RB and ZZ indicators on auniform series of meshes.

    104

    105

    10−4

    10−3

    10−2

    10−1

    DOF (space x time)

    Energ

    y E

    rror

    Energy

    u

    RB indic

    ZZ indic

    104

    105

    10−2

    10−1

    DOF (space x time)

    Eff

    icie

    ncy I

    nd

    ex

    Indicators scale like actual error.

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 18 / 30

  • A First Adaptive Method: Singular Geometry

    1 Start with coarse space-time grid: (∆t)i ' (∆x)i ' h0 ∀∆i2 Solve discretisation of Vφ̇ = ḟ .3 Compute time-integrated error indicator η(∆i)

    4∑

    i η(∆i) < ε =⇒ STOP5 η(∆i) > δηmax =⇒ ∆i → ∆/4, (∆t)i → (∆t)i26 GO TO 2.

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 19 / 30

  • Adaptivity: Wave Scattering on the Screen (1)

    Vφ = sin5(t)x2 on Γ = [−0.5, 0.5]2 × {z = 0}, 0 < t < 2.5, ∆t = 0.1.Compare residual indicators, energy, and sound pressure for uniform /adaptive mesh refinements.

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    −0.5 0 0.5−0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    x

    φ

    t=1.0

    t=1.4

    Uniform method: Density φ at t = 1.0, 1.4

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 20 / 30

  • Adaptivity: Wave Scattering on the Screen (2)

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 21 / 30

  • Adaptivity: Wave Scattering on the Screen (3)

    Vφ = sin5(t)x2 on Γ = [−0.5, 0.5]2 × {z = 0}, 0 < t < 2.5, ∆t = 0.1.Compare residual indicators, energy, and sound pressure for uniform /adaptive mesh refinements.

    102

    103

    104

    105

    106

    10−6

    10−5

    10−4

    10−3

    10−2

    10−1

    100

    DOF (space x time)

    E − unif

    E − adap

    IND − unif

    IND − adap

    104

    105

    10−3

    10−2

    10−1

    DOF (space x time)

    u − uniform

    u − adaptive

    Convergence rate 0.5 (uniform), 0.77 adaptivereproduces rates for time-independent BEM.

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 22 / 30

  • Adaptivity: Wave Scattering on Triangular Screen (1)

    Vφ = sin5(t) on Γ = 30− 60− 90 Triangle, 0 < t < 2.5.Compare residual indicators, energy, and sound pressure for uniform /adaptive mesh refinements.

    102

    103

    104

    105

    106

    10−4

    10−3

    10−2

    10−1

    DOF (space x time)

    E − unif

    E − adap

    RB − unif

    RB − adap

    102

    103

    104

    105

    106

    10−4

    10−3

    10−2

    10−1

    DOF (space x time)

    RB − unif

    RB − adap

    u − unif

    u − adap

    Convergence rate 0.45 (uniform), 0.65 adaptive.

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 23 / 30

  • Adaptivity: Wave Scattering on Triangular Screen (2)

    Vφ = sin5(t) on Γ = 30− 60− 90 Triangle, 0 < t < 2.5.

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 24 / 30

  • Adaptivity on Screens

    Vφ = F on Γ = Polygonal Screen, 0 < t < 2.5.

    0.6 0.8 1 1.2 1.4 1.6

    0.45

    0.5

    0.55

    0.6

    0.65

    0.7

    0.75

    Sharpest Angle

    Converg

    ence R

    ate

    Uniform

    Adaptive

    Convergence rate dominated by edge singularity.Apparent rate decay for small angles due to preasymptotic regime?

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 25 / 30

  • p-version TDBEM

    0 0.5 1 1.5 2 2.5−0.005

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03Energy (t)

    t

    En

    erg

    y

    p=1

    p=2

    p=3

    BENCH

    p=4

    p=5

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 26 / 30

  • p-version TDBEM

    100

    101

    10−2

    10−1

    100

    p

    |E−

    E0|

    Convergence rate = 1, twice the rate of h-version.Expected from a priori analysis: Error of best approximation . h

    p2

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 27 / 30

  • Work in Progress

    p-version and hp-graded meshes:

    Space-time adaptivity:

    In 2d: picture by GlaefkeErnst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 28 / 30

  • Conclusions

    Analysis & numerics: convergence rates for screen problems(in DOF on a 2d screen)

    0.5: h-version, uniform0.77: h-version, adaptive (as for ∆)1.0: p-version, uniformβ/2: h-version, β-graded, β ∈ [1, 3)

    in particular:

    Singular expansions & (optimal) graded meshesfor edge and corner singularities.

    A posteriori estimate for numerical approximations withoutassumptions on mesh (TDBEM, CQ, . . . )

    H. Gimperlein, F. Meyer, C. Oezdemir, D. Stark, E. P. Stephan, Boundaryelements with mesh refinements for the wave equation. preprint.

    H. Gimperlein, C. Oezdemir, D. Stark, E. P. Stephan, A residual a posteriori errorestimate for the time domain boundary element method. preprint.

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 29 / 30

  • Thank you very much

    Ernst P. Stephan (Leibniz University Hannover) Adaptive and higher-order TD BEM Workshop Bendali 2017 30 / 30