adaptive control - pdfs.semanticscholar.org

73
Adaptive Control – Landau, Lozano, M’Saad, Karimi 1 Adaptive Control Chapter 9: Recursive plant model identification in closed loop

Upload: others

Post on 29-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi1

Adaptive Control

Chapter 9: Recursive plant model identification in closed loop

Page 2: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi2

Chapter 9:Recursive plant model identification in closed loop

Page 3: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi3

Outline

- Identification in closed loop. Why ?- An example (flexible transmission) and explanations- Objectives of identification in closed loop- Basic Schemes - The CLOE Algorithms (closed loop output error)- Properties of the algorithms- Properties of the estimated models- Validation of models identified in closed loop- Iterative identification in closed loop and controller re-design- Experimental results ( flexible transmission)- CLID – a toolbox for closed loop identification- Use of open loop identification alg.for identification in closed loop- Conclusions

Page 4: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi4

Plant Identification in Closed Loop

There are systems where open loop operationis not suitable ( instability, drift, .. )

A controller may already exist ( ex . : PID )

Iterative identification and controller redesign

May provide better « design » models

Re-tuning of the controllera) to improve achieved performancesb) controller maintenance

Why ?

Cannot be dissociated from thecontroller and robustness issues

Page 5: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi5

Φm

axismotor

d.c.motor

Positiontransducer

axisposition

Φref

load

Controlleru(t)

y(t)

DAC

R-S-Tcontroller

ADC+

+

Identification in Closed Loop

The flexible transmission

Page 6: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi6

What is the good model (for control design) ?

« closed loop identified » model« open loop identified » model

fs = 20Hz 0% load

Page 7: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi7

output

control

real system

controller design using theopen loop identified model

output

control

real system

computed polecl. loop syst. pole

Benefits of identification in closed loop (1)

The pattern of identified closed loop poles is different fromthe pattern of computed closed loop poles

Page 8: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi8

real system

output

control

controller computed using theclosed loop identified model

output

control

real system

computed polecl. loop syst. pole

Benefits of identification in closed loop (2)

The computed and the identified closed loop poles are very close

Page 9: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi9

Notations

K G

v(t) p(t)y

v(t)r u

-

)q(A)q(Bq)q(G 1

1d1

−−− =

)q(S)q(R)q(K 1

11

−− =

Sensitivity functions :

KG11)z(S 1

yp +=−

KG1K)z(S 1

up +−=−

KG1KG)z(S 1

yr +=−

KG1G)z(S 1

yv +=−

)z(R)z(Bz)z(S)z(A)z(P 11d111 −−−−−− +=

; ; ;

Closed loop poles :

True closed loop system :(K,G), P, SxyNominal simulated(estimated) closed loop : xyS,P),G,K(

Page 10: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi10

Identification in Closed Loop

Open loopinterpetation

- take advantage of the « improved » input spectrum- are insensitive to noise in closed loop operation

Objective : development of algorithms which:

ω

dB

Syp

= - MΔSyp max

0q-dBA

w

ASPru

yu +

+

ARP

+

+Syp

-Sup

noise

q-dBA

w

Plant++

T 1/S

R

+

-r=const.

u y

ru

+

+

Page 11: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi11

CLOE Algorithms

Objective of the Identification in Closed Loop

(identification for control)

Find the « plant model » which minimizes the discrepancybetween the « real » closed loop system and the « simulated »closed loop system.

noise

Controller Plant

Controller Model

r u y

û y

+-

++

ParametricAdaptationAlgorithm

Simulated System

Closed Loop Output Error

Page 12: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi12

closed loop system

R

1/S q-dBA

Model

+

-

-

εCL

T+

r

u y

yReferenceModel

ParameterAdaptationAlgorithm

adjustable system( closed loop predictor)

- M.R.A.S. point of view :

- Identification point of view :A re-parametrized adjustable predictor of the closed loop

Identification in Closed Loop

Page 13: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi13

Closed Loop Output Error Identification Algorithms(CLOE)

K

P.A.A.

G

uru

u y

y

CLε

+

+

+

K

G

Excitation added to controller output

K G

G

ru

uy

y+

+

+−

P.A.A.

CLε

K

+

+p

Excitation added to reference signal

Same algorithm but different properties of the estimated model!

rSRy

SRu +−= r

SRy

SRu +−= ˆˆ ury

SRu +−=

urySRu +−= ˆˆ

Page 14: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi14

R/S

ru u y

û y

R/S

q-d B/A

p

εCL+

+

+ ++

-

-

-q-d B/A

Closed Loop Output Error Algorithms (CLOE)

The closed loop system (for p = 0):

)()()(*)()(*)1( 11 tdtuqBtyqAty Tψθ=−+−=+ −−

[ ]nBn

T bbaaA

,...,,... 11=θ[ ])(),..(),1(),..()( BA

T ndtudtuntytyt −−−+−−−=ψ

urtySRtu +−= )()(

Excitationadded to theplant input

Page 15: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi15

CLOE

Adjustable predictor (closed loop)

urtySRtu +−= )(ˆ)(ˆ

[ ])(ˆ),..(ˆ),1(ˆ),..(ˆ)( BAT ndtudtuntytyt −−−+−−−=φ

[ ])(ˆ),...(ˆ),(ˆ),...(ˆ)(ˆ11 tbtbtatat

BA nnT =θ

)()1(ˆ)1(ˆ ttty T φθ +=+

Predicted output :

a posteriori)()(ˆ)(ˆ),(*ˆ)(ˆ),(*ˆ)1(ˆ 110 ttdtuqtBtyqtAty T φθ=−+−=+ −− a priori

Closed loop prediction (output) error

)1(ˆ)1()()1(ˆ)1()1(

)1(ˆ)1()()(ˆ)1()1( 00

+−+=+−+=+

+−+=−+=+

tytytttyt

tytytttytT

CL

T

CL

φθε

φθε a priori

a posteriori

Page 16: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi16

The Parameter Adaptation Algorithm

2)(0;1)(0;)()()()()()1()1()()1()(ˆ)1(ˆ

)1(ˆ)1()()(ˆ)1()1(

2121

11

0

00

<≤≤<ΦΦ+=+

+Φ++=+

+−+=−+=+

−− ttttttFttFtttFtt

tytytttyt

T

CL

TCL

λλλλεθθ

φθε

)()( tt φ=Φ

CLOE

⎥⎥⎥⎥

⎢⎢⎢⎢

ΦΦ+

ΦΦ−=+

)()()()()(

)()()()()()(

1)1(

2

11 ttFttt

tFtttFtFt

tFT

T

λλλ

Updating F(t):

Page 17: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi17

)1(ˆ)1()()(ˆ)1()1(

)()()(1)1()1(

2)(0;1)(0;)()()()()()1()1()()()(ˆ)1(ˆ

00

0

212

1

1

1

+−+=−+=+

ΦΦ++

=+

<≤≤<ΦΦ+=++Φ+=+

−−

tytytttyt

ttFttt

ttttttFttFtttFtt

T

CL

TCL

CL

T

CL

φθε

εε

λλλλεθθ

The Parameter Adaptation Algorithm (alternative form)

Mostly used for analysis purposes

CLOE

Page 18: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi18

)()( tt φ=Φ

)()(ˆ)()(ˆˆ)()(ˆ)()( 1111

1

1−−−−−

+==Φ qRqBqqSqAPtqPqSt dφ

RtqBqStqAtqPttqP

qSt d ),(ˆ),(ˆ),(ˆ)(),(ˆ

)()( 111

1

1−−−−

+==Φ φ

CLOE Algorithms

CLOE

F-CLOE

AF-CLOE

[ ])(ˆ),..(ˆ),1(ˆ),..(ˆ)( BAT ndtudtuntytyt −−−+−−−=φ

Remarks :• F-CLOE needs an « estimated model » for filtering. This can be an «open loop model»or a model identified with CLOE or AF-CLOE• For AF-CLOE « inital estimation » for filtering can be 0ˆ,1ˆ == BA

Page 19: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi19

CLOE Properties

Case 1: The plant model is in the model set(i.e. the estimated model has the good order)

Asymptotic unbiased estimates in the presence of noisesubject to a (mild) sufficient passivity condition

2// λ−PS

2//ˆ λ−PPnone (local)

•CLOE:

•F-CLOE:•AF-CLOE:

2)(max 2 <≤ λλ tt

Strictly positive real transfer fct.

• The controller is constant• An external excitation is applied• Measurement noise independent w.r.t. the external excitation

Page 20: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi20

2)(0;1)(0;)()()()()()1()1()()()(ˆ)1(ˆ

212

1

1

1 <≤≤<ΦΦ+=++Φ+=+

−− ttttttFttFtttFtt

T

CL

λλλλεθθ

Consider the PAA

Assume that the a posteriori prediction error satisfies:

[ ] )()1(ˆ)()1( 1 ttqHtT

CL Φ+−=+ − θθε

Then:

tt

tt CLtCLt

∀∞<Φ

=+=+∞→∞→

;)(

0)1()1( 0limlim εε

2)(.;..2

)( 2

1 max <≤=−− λλλ

tRPSzHt

If:

for any initial conditions

A basic result – deterministic environment

Page 21: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi21

CLOE analysis –Deterministic environment

(a posteriori prediction error equations)

[ ] )()1(ˆ)1( ttPSt

T

CL φθθε +−=+

[ ] )(ˆ)1(ˆˆ

)1( tPSt

PPt

T

CL φθθε +−≈+

[ ] )()(ˆ)1(ˆ)(ˆ

)1( ttP

StPtPt

T

CL φθθε +−≈+

Φ(t)

CLOE

F-CLOE

AF-CLOE

To have in addition « parameter convergence » one needsa persistent excitation (i.e.: rich input like P.R.B.S.)

S.P.R. conditions for prediction error convergence

Page 22: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi22

A basic result – stochastic environment

Assume that for any along the trajectories of the algorithm:θ

[ ] )1(')ˆ,(ˆ)()ˆ,1( 1 ++Φ−=+ − twtqHtT

CL θθθθε

{ } 0)1(')ˆ,( =+Φ twtE θ (regressor and noise are uncorrelated)and:

0)(,2)(.;..2

)( 22

1 max ><≤=−− ttRPSzHt

λλλλ

If:

Decreasingadaptation gain{ } 1)(ˆlim =∈

∞→C

tDtrobP θ

[ ]{ }0)ˆ,(ˆ:ˆ =Φ−= θθθθ tDT

C

Then:

where:

Remark : With « persistent excitation » θ=CD

)1)(lim(1 11 ==∞→t

tor λλ

Page 23: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi23

R/S

ru u y

û y

R/S

q-d B/A

p

εCL+

+

+ ++

-

-

-q-d B/A

The closed loop system:

)1()()(*)()(*)1( 11 ++−+−=+ −− tApdtuqBtyqAty

0≠w

Noisy case

[ ] )1()()1(ˆ)1( +++−=+ tpP

ASttPSt

T

CL φθθε

CLOE analysis – Stochastic environment

The a posteriori prediction error equation:

Page 24: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi24

CLOE analysis – Stochastic environment

[ ] )1()()1(ˆ)1( +++−=+ tpP

ASttPSt

T

CL φθθε

The « frozen » error equation:

[ ] )1()(ˆ)ˆ,1( ++−=+ tpP

AStPSt

T

CL φθθθε

H 'w

The a posteriori prediction error equation:

=− 2// λPS 2)(max 2 <≤ λλ tt

{ } 0)1(')ˆ,( =+twtE θφ

S.P.R

(the input and output of the estimated model do not depend on the noise for fixed estimated parameters)

Convergence condition:

Page 25: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi25

Case 2: The plant model is not in the model set(ex.: the estimated model has a lower order)

See the next slides

CLOE Properties

Basic idea for analysis of identification algorithms(Ljung) :Convert time domain minimization criterion in frequency

domain criterion using Parseval th. and Fourrier transforms

Page 26: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi26

Analysis of identification algorithms in the frequency domain

(properties of the estimated model)

Identification criterion (time domain)

{ })ˆ,(minarg)ˆ,(minarg*ˆ 2

ˆ1

2

ˆ

1lim θεθεθ

θθtEt

D

N

D Nt ∈∈≈= ∑

∞→

Assumption: ∞<∑∞→

Nt

Nt 1

2 )ˆ,(1lim θε

domain of admissible parameters

Identification criterion (frequency domain)

ωθφπ

θ ωπ

πεθ

de j

D)ˆ,(

21minarg*ˆ

ˆ∫

−∈=

Spectral density of prediction error

Page 27: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi27

A recursive identification algorithm minimizes a criterion of the form:

∑∞→∈

N

Dt

Nt 1

2

ˆ)ˆ,(min 1

lim θεθif:

⎥⎦⎤

⎢⎣⎡ +−+=+Φ+=+ )1(

21)()(ˆ)1()()()(ˆ)1(ˆ 2 tgradtFttttFtt εθεθθ

[ ] )()1(ˆ)1( ttPSt

T

CL φθθε +−=+

(+)

For CLOE algorithms:

AF-CLOE minimizes a criterion of the form (+)(CLOE and F-CLOE achieve approximatively the same optimization)

Criterion minimized by CLOE algorithms

)1()1(ˆ)1()1(

21 2 +

+∂+∂

=+ ttttgrad ε

θεε

CLOEAFtPS

tt

−Φ−≈−=+∂+∂ )(

)1(ˆ)1( φ

θε

Page 28: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi28

R/S

ru u y

û y

R/S

q-d B/A

p

εCL+

+

+ ++

-

-

-q-d B/A

yvu

yvu

Syr

Syrˆˆ =→

=→

=

=

)()(

ωφ

ωφ

p

ruSpectral density of external excitation

Spectral density of the measurement noiseru and p are independent )0)(( =ωφ

upr

CLOE – (excitation added to controller output)

pSrSS ypuyvyvCL +−= ]ˆ[ε

GKGS

KGGS

yv

yv

ˆ1ˆˆ

1

+=

+=

Page 29: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi29

ωωφωφ

ωωφωφθπ

πθ

π

πθ

dSGGS

dSSS

prypyp

pypryvyv

u

u

)]()(ˆˆ[minarg

)]()(ˆ[minargˆ

222

22*

+−=

+−=

Properties of the Estimated Model (1)

Excitation added to controller output

- will minimize the 2 norm between the true sensitivityfunction and the sensitivity function of the closed loopestimator when r(t) is a white noise (PRBS)

G

-The noise does not affect the asymptotic estimation

-Plant -model error heavily weighted by the sensitivity functions

Page 30: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi30

ωωφωφ

ωωφωφθπ

πθ

π

πθ

dSGGS

dSSS

prupyp

pyprypyp

)]()(ˆˆ[minarg

)]()(ˆ[minargˆ

222

22*

+−=

+−=

Excitation added to reference signal

Properties of the Estimated Model (2)

- will minimize the 2 norm between the true sensitivityfunction and the sensitivity function of the closed loopestimator when r(t) is a white noise (PRBS)

G

-The noise does not affect the asymptotic estimation

-Plant -model error heavily weighted by the sensitivity functions

Page 31: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi31

Excitation added to reference signal

Properties of the Estimated Model (3)

yryrypyp SSSS ˆˆ −=−One has:

Therefore one has also :

ωωφωφ

ωωφωφθπ

πθ

π

πθ

dSSS

dSSS

pyprypyp

pypryryr

)]()(ˆ[minarg

)]()(ˆ[minargˆ

22

22*

+−=

+−=

The differences with respect to the output sensitivity function and the complimentary sensitivity function are minimized

Page 32: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi32

- The quality of the identified model is enhanced in the criticalfrequency regions for control (compare with open loop id.)

OLOE

-Identification in closed loop can be used for model reduction. The approximation will be good in the critical frequencyregions for control.

Identification in closed loop - Some remarks

ωωφωφθπ

πθdSGGS prypyp )]()(ˆˆ[minargˆ 222

* +−= ∫−

ωωφωφθπ

πθdGG pr )]()(ˆ[minargˆ 2* +−= ∫

CLOE

Page 33: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi33

T 1/S

R

q-dBA

p

Plant

R

1/S q-dBA

Model

++

+

+

+

-

-

- ε CLr

u y

u y

+q-dB

A

1/S R

R1/S

T

εCL+

-

q-dBA

+

+

+

-

-+

+

Plant p

+

+

ruu y

yu

r

u = -RS y + TS r u = -RS y + TS r u = -RS y+ru u = -RS y +ru

Excitation added to controller output

Excitation added to reference signal

Closed Loop Output Error Identification Algorithms(CLOE)

R-S-T Controller

Page 34: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi34

[ ]

[ ]yvyv

yryr

SSST

RBSASB

BRASBS

ST

SSRT

RBSARB

BRASBR

RT

RBSATB

BRASBT

ˆˆˆ

ˆ

ˆˆˆ

ˆˆˆ

ˆ

−=⎥⎦

⎤⎢⎣

⎡+

−+

=

−=⎥⎦

⎤⎢⎣

⎡+

−+

=+

−+

ωωφωφ

ωωφωφθ

π

πθ

π

πθ

dSSTSS

dSRTSS

pypryvyv

pypryryr

)]()(ˆ[minarg

)]()(ˆ[minargˆ

22

2

22

2*

+−=

+−=

RTST

== Excitation added to the plant input

Use of the prefilter T (R-S-T controller )

Difference between closed loop transfer functions (excitation through T)

Properties of the estimated model:

Excitation added to the controller input (measure)

r T 1/S

R

q-dBA

p

Plant

R

1/S q-dBA

Model

++

+

+

+

-

-

- εCL

u y

u y

Page 35: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi35

R/S

ru u y

y

R/S

B/A

εCL

CA

e

+

-

1/S

++

-+

+

û+

+

-

-B

q-1H*

q-1A*

Identification in Closed Loop of ARMAX Models

Extended Closed Loop Output ErrorX-CLOE

nPnHHqHRBSASCH ≅+=−−= − *;1;**** 1

)1()(*)()(*)()(*)1( 11 +++−+−=+ −− teteCdtuqBtyqAty

)(*1)( 111 −−− += qCqqC

CCBBAA === ˆ;ˆ;ˆ

Optimal predictorfor the closed loopwhen :

Page 36: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi36

X-CLOE – the algorithm

urtySRtu +−= )(ˆ)(ˆ

[ ])1(),.(),(ˆ),.(ˆ),1(ˆ),.(ˆ)( +−−−−+−−−= HCLfCLfBA

T nttndtudtuntytyt εεφ

[ ])(ˆ),...(ˆ),(ˆ),...(ˆ),(ˆ),...(ˆ)(ˆ111 ththtbtbtatat

HBA nnn

T

e =θ

)()(ˆ)1(ˆ ttty e

T

e φθ=+°Predicted output :

a priori

Closed loop prediction (output) error

)1(ˆ)1()()(ˆ)1()1( 00 +−+=−+=+ tytytttyt e

T

eCL φθε a priori

)(1)( tS

t CLCLf εε =

Page 37: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi37

The Parameter Adaptation Algorithm

2)(0;1)(0;)()()()()()1()1()()1()(ˆ)1(ˆ

)1(ˆ)1()()(ˆ)1()1(

212

1

1

1

0

00

<≤≤<ΦΦ+=++Φ++=+

+−+=−+=+

−− ttttttFttFtttFtt

tytytttyt

T

CL

e

T

eCL

λλλλεθθ

φθε

)()( tt eφ=Φ

X-CLOE – the algorithm

Page 38: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi38

X-CLOE Properties

Case 1: The plant model is in the model set

Deterministic case:• Global convergence does not require any S.P.R. condition(works allways)

Stochastic case (noise)• Asymptotic unbiased estimates• Convergence condition: 1/C – λ/2= S.P.R

(like in open loop for ELS and OEEPM)

Case 2: The plant model is not in the model set

• Slightly less good « approximation » properties than CLOE• Provides better results than « open loop » identification alg.

Page 39: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi39

Validation of Models Identified in Closed Loop

Controller dependent validation !

1) Statistical Model Validation

2) Pole Closeness Validation

4) Time Domain Validation

3) Sensitivity Functions ClosenessValidation

Page 40: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi40

Identification in Closed Loop

Statistical Model Validation

UncorrelationTestR/S

ru u y

û y

R/S

Plant

εCL

+

+

+

-

-

-B/A

1;17.2)( ≥≤ iN

iRN

normalizedcrosscorelations

numberof data

1N2.17

N

97%

136.0)(256 ≤→= iRNN15.0)( ≤iRNpratical value :

Controller dependent validation !

Page 41: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi41

« Uncorrelation » Test

: centered sequence of residual closed loop prediction errorsOne computes:

max1,...,2,1,0;)(ˆ)(1)( iiityt

NiR

N

t CL =−= ∑=ε

max2/1

1

2

1

2

,...,2,1,0;)(1)(ˆ1

)()( iit

Nty

N

iRiRNN

t CL

N

t

=

⎥⎦⎤

⎢⎣⎡

⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛

=∑∑==ε

),max(max dnni BA +=;

Remark: 1)0( ≠RN

Theoretical values: RN(i) =0; i = 1, 2…imax

• Finite number of data • Residual structural errors ( orders, nonlinearities, noise)• Objective: to obtain « good » simple models

Real situation:

Validation criterion (N = number of data):

1;17.2)( ≥≤ iN

iRN max,...,1;15.0)( iiiRN =≤or:

{ })(tCLε

Page 42: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi42

Controller Plant

Controller

r u ynoise

û y

+

-

++

EstimatedModel

Identification in Closed Loop

Pole Closeness Validation

true

If the estimated model is good, the poles of the « true » loopand of the « simulated » loop should be close

simulated

•The poles of the « simulated » system can be computed

•The poles of the « true » system should be estimated

Page 43: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi43

Identification in Closed Loop

Sensitivity Function Closeness Validation

If the estimated model is good, the sensitivity functions of the « true » loop and of the « simulated » loop should be close

Controller Plant

Controller

r u ynoise

û y

+

-

++

EstimatedModel

true

simulated

•The sensitivity fct. of the « simulated » system can be computed

•The sensitivity fct. of the « true » system should be estimated

Page 44: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi44

Closed loop poles/Sensitivity functions Estimation

+

-

1S

R

+-

P.A.A.

u y

q-dBP

PLANT

q-dBA

Estimatedmodel of theclosed loop

- use of open loop identification algorithms- same signals as those used for the identification of theplant model in closed loop operation

- attention to the selection of the order !

Rem:

Page 45: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi45

How to asses the poles/sensitivity fct. closeness ?

Poles:• Patterns of the poles map• Closeness of and

computed polecl. loop syst. pole (estimated)

P/1 P/1

Sensitivity functions:• Closeness of and

xyS xyS

Τhe closeness of two transfer functions can be measured by the« Vinnicombe distance » (ν gap) (min = 0, max = 1)(will be discussed later)

XX

: Closed loop transfer function computed with the estimated plant model

: Estimated closed loop transfer function

Page 46: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi46

)()()( GnGnGwnoii pz −=

Unstable zeros Unstable poles

)(Gwno = number of encirclements of the origin (winding number)(+ : counter clock wise , - : clock wise)

0)()()()1( 2211

*

2 1=−−++ GnGnGnGGwno Ppp ii

One can compares transfer functions satisfying :

G* = complex conjugate of G )( 21GnP = number of poles on the unit circle

Normalized distance between two transfer functions(Vinnicombe distance or ν−gap)

),( 21 GG

{w}

wno(G)>0 wno(G)<0

The winding number:

Page 47: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi47

1),(0 21 <≤ GGνδ

One assumes that {w} is satisfied.

[ ] ( ) ( ) 2/122

2/121

2121

)(1)(1

)()()(),(

ωω

ωωωω

jGjG

jGjGjGjG

++

−=Ψ

Normalized difference :

[ ] [ ]∞

Ψ=Ψ= )(),( )(),( ),( 21max2121 ωωωωδω

ν jGjGjGjGGGsf

Normalized distance (Vinnicombe distance or ν-gap) :

πω to0for =

If {w} is not satisfied : 1),( 21 =GGνδ

Normalized distance between two transfer functions(Vinnicombe distance or ν−gap)

),( 21 GG

Page 48: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi48

Identification in Closed Loop

- not enough accuracy in many cases- difficult interpretation of the results in some cases

Rem.:

Time Domain ValidationComparison of « achieved » and « simulated » performancein the time domain

Controller Plant

Controller

r u ynoise

û y

+

-

++

EstimatedModel

AchievedPerformance(true system)

Design system(simulation)

Page 49: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi49

OPEN LOOP IDENTIFICATION

OPEN LOOPMODEL VALIDATION

OPEN LOOP BASEDCONTROLLER

PLANT IDENTIFICATIONIN CLOSED LOOP

(OLBC)

IDENTIFICATION OFTHE CLOSED LOOP

COMPARATIVECLOSED LOOP VALIDATION

BEST PLANT MODEL

CLOSED LOOP BASEDCONTROLLER

(CLBC)

Methodologyof Plant ModelIdentification

in Closed Loop

Page 50: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi50

Two possibilities for error generation:-output error (CLOE)-input error (CLIE)

Two possibilities for applying the external excitation:-added to the controller input (reference)-added to the plant input

What is in fact important ?The nominal sensitivity function we would like to approximateby the closed loop predictor (the identification criterion)

Closed loop identification schemes

Remark:Once a scheme is selected, to process the data one can use all the versionsof the algorithms (choice of the regressor vector)

Page 51: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi51

Excitation added to controller input (reference)

Closed loop input error (CLIE)

Landau I.D., Karimi A., (2002) : « A unified approach to closed-loop plant identificationand direct controller reduction », European Journal of Control, vol.8, no.6

For details, see:

K

P.A.A.

G

ru

u

y

yCLε

+

+

+

K

G+

+

c

cp

Page 52: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi52

CLOE with external excitationadded to the controller input

equivalent toCLIE with external excitation

added to the plant input

CLIE with external excitationadded to the controller input

CLOE with external excitationadded to the controller outputyvyv SS ˆmin −

upup SS ˆmin −

ypyp SS ˆmin −

yryr SS ˆmin −

or

Closed loop identification schemeIdentificationcriterion

Selection of closed loop identification schemes

Page 53: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi53

Iterative Identification in Closed Loop and Controller Re-Design

Repeat 1, 2, 1, 2, 1, 2,…εCL

εCL

Step 1 : Identification in Closed Loop-Keep controller constant-Identify a new model such that

Step 2 : Controller Re – Design- Compute a new controller such that

p1/S

RPlant

R

1/S

Model

++

+

+

+

-

-

- εCL

r u y

u y

T q-d B/A

q-d B/A

Page 54: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi54

T 1/S

R

q-dBA

w

Plant

R

1/S q-dBA

Model

++

+

+

+

-

-

- ε CLr

u y

u y

Use R=0, S=T=1 and you get the open loop identification algorithms

An interesting connection CL/OL

Open loop identification algorithms are particular cases of closed loop identification algorithms

CLOE (OL)OEX-CLOE X(OL)OE

Page 55: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi55

Experimental Results

Identification in closed loop and controller re-design for

a flexible transmission

Page 56: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi56

Φm

axismotor

d.c.motor

Positiontransducer

axisposition

Φref

load

Controlleru(t)

y(t)

DAC

R-S-Tcontroller

ADC+

+

Identification in Closed Loop

The flexible transmission

Page 57: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi57

Flexible TranmissionFrequency Characteristics of the Identified Models

CL model OL model

OL model

Flexible Transmission

f/fs

f/fs (fs = 20 Hz)

Page 58: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi58

Model Validation in Closed LoopPoles Closeness Validation

Model identified in open loop Model identified in closed loopThe model identified in closed loop provides « computed » polescloser to the « real » poles than the model identified open loop

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1x identified CL poles o computed CL poles

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1x identified CL poleso computed CL poles

Controller computed using open loop identified controller (OLBC)

Page 59: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi59

Model Validation in Closed Loop

Time Domain Validation

29 30 31 32 33 34 35 36

0

0.2

0.4

0.6

0.8

1

temps (s)

posi

tion

(V)

29 29.5 30 30.5 31 31.5 32 32.5 33 33.5 34

0

0.2

0.4

0.6

0.8

1

temps (s)po

sitio

n (V

)

Model identified in open loop Model identified in closed loopThe simulation using the model identified in C.L. is closer to the real response than the simulation using the O.L.identified model

O.L.B.C.

Page 60: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi60

29 29.5 30 30.5 31 31.5 32 32.5 33 33.5 34

0

0.2

0.4

0.6

0.8

1

temps (s)

posi

tion

(V)

29 30 31 32 33 34 35 36

0

0.2

0.4

0.6

0.8

1

temps (s)po

sitio

n (V

)

Re-designed controller (CLBC) Initial controller (OLBC)

Controller Re-design Based on the Model Identified in Closed Loop(on-site controller re-tuning)

The CLBC controller provides performance which is closer to thedesigned performance than that provided by the OLBC controller

Page 61: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi61

CLIDTM

(Matlab) Toolbox for Closed Loop Identification

To be downloaded from the web site:http//:landau-bookic.lag.ensieg.inpg.fr

• files(.p and.m)• examples (type :democlid)• help.htm files (condensed manual)

Page 62: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi62

>> help clid

CLOSED LOOP IDENTIFICATION MODULEby :ADAPTECH4 rue du Tour de l'Eau, 38400 Saint Martin d'Heres, [email protected] by Adaptech, 1997-1999

List of functions

cloe - Closed Loop Output Error Identification

fcloe - Filtered Closed Loop Output Error Identification

afcloe - Adaptive Filtered Closed Loop Output Error Identification

xcloe - Extended Closed Output Error Identification

clvalid - Validation of Models Identified in Closed Loop using also Vinnicombe gap

clie - Closed Loop Input Error Identification

CLID Toolbox

Page 63: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi63

>> help cloe

CLOE is used to identify a discrete time model of a plant operating in closed-loop with an RST controller based on the CLOE method.

[B,A]=cloe(y,r,na,nb,d,R,S,T,Fin,lam1,lam0)

y and r are the column vectors containing respectively the output and the excitation signal.

na, nb are the order of the polynomials A,B and d is the pure time delay

R, S and T are the column vectors containing the parameters of a twodegree of freedom controller. S*u(t)=-R*y(t)+T*r(t)Remark: when the excitation signal is added to the measured output (i.e. the controller is in feedforward with unit feedback) we have T=R and when the excitation signal is added to the control input (i.e. the controlleris in feedback) we have T=S.

Fin is the initial gain F0=Fin*(na+nb)*eye(na+nb) (Fin=1000 by default)

lam1 and lam0 make different adaptation algoritms as follows:

lam1=1;lam0=1 :decreasing gain (default algorithm)0.95<lam1<1;lam0=1 :decreasing gain with fixed forgetting factor0.95<lam1,lam0<1 :decreasing gain with variable forgetting factor

See also FCLOE, AFCLOE, XCLOE and CLVALID.Copyright by Adaptech, 1997-1999

Page 64: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi64

>> help cloe

lam1=1;lam0=1 : decreasing gain (default algorithm)0.95<lam1<1; lam0=1 : decreasing gain with fixed forgetting factor 0.95<lam1,lam0<1 : decreasing gain with variable forgetting factor

[B,A]=cloe(y,r,na,nb,d,R,S,T,Fin,lam1,lam0)

Measuredoutput

Excitation

Modelorders

ControllerPolynomials

Initial adaption gain(Fin=1000 by default)

1λ 0λ

ModelPolynomials(identified)

{•Excitation superposed to the reference: Need to specify R, S and T

• Excitation superposed to the controller output (i.e. plant input): Need to take T=S

S 1/S

R

ruu yPlant

+

-1/S

R

ruu yPlant

+

+-

CLOE – closed loop output error identification function

Page 65: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi65

[lossf,gap,Pcal,Piden,yhat]=clvalid(B,A,R,S,T,y,r,pcl)

lossf :

gap : Vinnicombe gap metric between identified and computed closed loop transfer function

Pcal : Computed closed loop poles by given model and controller

Piden : Identified closed loop poles from [y r] data

yhat : Closed loop estimated output

>> help clvalid

[ ]2

1)(ˆ)(1

∑ −N

tytyN

pcl = 1 : performs pole closeness validation (poles map display)pcl =0; default

ModelPolynomials(identified)

ControllerPolynomials

{ {

CLVALID – closed loop model validation function

)/( PBT

Display also the normalized crosscorelationsPlots : cross correlations, autocorrelations (validation of the closed loop identified model),identified and computed closed loop transfer function, identified and computed poles

)ˆ,( yr

Page 66: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi66

DEMOCLID –demo function>> democlid

Load excitation( r ) (PRBS), output data (y) controller and values for Fin (=1000), lam1(= 1), lam0(= 0)

211

211211

9.06.11)(

0 ; 5.0)( ; 7.05.11)(−−−

−−−−−−

++=

=+=+−=

qqqC

dqqqBqqqA

Plant modelfor data generation

)()()()()()( 111 teqCtuqBqtyqA d −−−− +=

Data are generated in closed loop with a RST controllerThe external excitation is superposed to the reference

T 1/S

R

r u yPlant+

-

11.0)(

3717.06283.01)(

5204.02763.18659.0)(

1

211

211

=

−−=

+−=

−−−

−−−

qT

qqqS

qqqRControllerfor data generation

(simubf4.mat)(r,y,u)

(simubf_rst.mat)

Page 67: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi67

100 200 300 400 500 600 700 800 900 1000

-1

-0.5

0

0.5

1

Output

100 200 300 400 500 600 700 800 900 1000

-0.2

0

0.2

Input

100 200 300 400 500 600 700 800 900 1000-1

-0.5

0

0.5

1

Excitation

Output (y)

Plant input(u)

Externalexcitation

(r)

File SIMUBF

Excitation superposed to the reference

Page 68: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi68

>> [B,A]=cloe(y,r,na,nb,d,R,S,T,Fin,lam1,lam0)

B =

0 0.9527 0.4900

A =

1.0000 -1.4808 0.6716

>> [B,A]=afcloe(y,r,na,nb,d,R,S,T,Fin,lam1,lam0)

B =

0 0.9684 0.4722

A =

1.0000 -1.4844 0.6821

CLOE

AF-CLOE

Identification results

Page 69: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi69

Model of the plant identified in closed loop with AF-CLOE

Statistical Validation of the model identified in closed loop

1;0678.01024

17.217.2)( ≥==≤ iN

iRNIs OK.

Page 70: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi70

Stochactic validation of the identified model of the closed loopIs OK. Can be used for poles closeness validation and ν-gap validation

Poles closeness validation and ν-gap validation

Poles mapo identifed poles of the true CL systemx computed poles of the simulated CL systemIs OK

ν−gap = 0.0105 (min = 0, max =1)

Page 71: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi71

1a 2a 1b 2b

0.08430.03230.5080.9750.6034-1.3991OL type

identification (RLS.)

0.02370.03120.37750.96680.6822-1.49X-CLOE

0.00850.031750.51520.95910.6704-1.4692F-CLOE

0.02840.031810.48620.95920.6674-1.476CLOE

0.00920.031760.52760.9910.6699-1.4689AF-CLOE

0.510.7-1.5NominalModel

NormalizedIntercorrelations

(validation bound 0.068) |RN(max)|.

CLError

VarainceR(0)

Méthod

File SIMUBF – comparison of identified models

Closed Loop Statisitical Validation

Best results

Open loop type identification(between u and y ignoring the controller)

Page 72: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi72

Concluding Remarks

- Methods are available for efficient identification in closed loop- CLOE algorithms provide unbiased parameter estimates- CLOE provides “control oriented “reduced order” models(precision enhanced in the critical frequency regions for control)

-The knowledge of the controller is necessary (for CLOE and FOL)-In many cases the models identified in closed loop allow toimprove the closed loop performance-For controller re-tuning, opening the loop is no more necessary-Identification in closed loop can be used for “model reduction”-By duality arguments one can use the algorithms for controllerreduction- Successful use in practice - A MATLAB Toolbox is available (CLID- see website))-A stand alone software is available (WinPIM/Adaptech)

Page 73: Adaptive Control - pdfs.semanticscholar.org

Adaptive Control – Landau, Lozano, M’Saad, Karimi73

A.A.P.

+

+

+

AB/

SR/

ur

111

−−q 1ˆ/ˆ AB

)1( 1−−qSR

'u 'y

CLε

yu

A.A.P.

+

+

+

AB/

SR/

ur

1ˆ/ˆ AB

)1( 1−−qSR

'u 'y

11 −− qy′yu

CLε

Appendix

How to identify in closed loop systems with integrators ?

Replace the input of the closed looppredicor by its integral

Replace the measured outputby its variations

Attention :• the controller in the predictor has to be modified• one identifies the plant model without integrator