adissipative .julile-b.-aytull cyclemudel · 2008-06-30 · arc recovered. such asocurrs inreal gas...

5
ENSEr\:ANZ,\ REVISTA ~1EXIC¡\N¡\ DE FíSICA 44 (6) (¡19-623 D1C1EMHRE 199K A dissipative .JulIle-B.-aytull cycle mudel l.. Guzlllán- Vargas and F. Angulo-Brown f)cpartamcJlto de Física, !:'scflc!a S/lperior de F(\"l'ca y Milt('I1Wtic(ls. Instituto Politécnico Nacional frJUicio No. 9. (/nidad Prt~/('.üol/al '1.ilC(1{Cr/CO. 0773R México, /J. F., 1\1£'.\'i('o Recihido el el l-l (k noviemhre de 1997: ,Kl'ptado el 15de agosto dc 199~ In this papel' we preSCl1lan irreversible modcl of Ihe Joule-Brayton cyde. I\s is wel! ~nO\••. 'n, ¡he gas-Iurhines follo\.l,'approximJtcly this thcrmall.}'t"le. ()ur model reprodlKcs several characlcrislics of a real gas-Illrhine surh as COllVCX curves of powcr l'I'rS/U prcssurc ratio ami cfticiency 1'('rSIH prcssurc ratio. Typicalloop-shapcd curves nf p(lwcr l'ersl/.\ efticiclll.:yrOl"real heat cngincs are also recovercd. OUT model is hased in a lurnped friction-like tcrm and in a pararneter arising fmm lhe Clausills inequalilY. \Ve also suggest a proccdure ror improving the power and Ihe efliciency of Ihe cyele. ¡":l'YH'fm!.l".- Thl'l'mal cycle: endnrc\'crsibility: finite-time En esle artículo presentamos un modelo irrevcrsihle del ciclo de Joule-Brayton. Como es bien sahido. las turhinas dc gas siguen aproximada- mcnte estl,' rirlo térmico, ~ueslro modelo reproduce varias raracleríslicas de turhinas reales. C{lmoson curvas convexas de potencia contra ralón de presión y eficiencia contra razón de presión. Curvas en forma de rimo que son lípica.s de maquinas reales, lambién son obtenidas. Nuestro modelo está basado en UIl término tipo fricción glohal yen un parámetro que surge de la desigualdad de Clausis. Tamhién sugerimos un procedimicnto para mcjorar la potcncia y eficiencia del drlo. ¡kscriptrJl"l',\, Ciclo térmiClI: cndorrcversihilidad: tiempo tinito PACS: -l-lhO.+k: -I--I-.90.+c 2. Thc irrc\'crsihlc modcl (I) (for proccss 2 -+ 3) (rOl"process .1 -+ 1), = '''2' dI' di realislic fealmes 01"a gas-turhinc are ohtaincd. For cxample. loop-shaped (un'es nr po\Ver OUlplll (P) versus efliciency (IJ) arc recovered. such as ocurrs in real gas turhines [101. In lhe presenl papero we propose an alternalive irreversihle modcl rOl" ;l .loule-Braylol1 cycle. which also reproduces many rc- alislic fcaturcs 01"rcal gas-turhincs. Our model is very sim- ple and pedagogical. In Sect. 2. we prescnl lhe irreversib!l' model hy means 01'a friclion-likc IUlllped parallleler and \Ve obtain (Oll\'ex curves 01"pO\ver OUlpUI ami eftkiency versus SOIl1Cdcsign paral1lelers as is COlllIlH)flin real Joule-Braylon cngines ¡l!j). \Ve also ohlain P rs. ,¡Ioop-shaped curves. In Sec!. J. \Ve use a recenl procedurc for taking inlo accaunl inlernal losses lhrough lhe Clausills illcqualilY 11G-18], and \\'e oblain an excetlcnl agrcemclll with lypical eniciency val- lIes rOl"real gas-lurhincs. Finally \Ve suggesl a procedure for illlproving lhe power OlllPUl and lhe efficicncy of Ihe JOllle- Brayton cycle. and As il is dcpicted in Figs. 1 ami 2, the JOlllc.Brayton cyc1e ha\'(' four hranches: lwo isenlropic and 1\\"0isoharic ones. In our modcl \Ve take lhe l1eating proccss (2 -+ 3) al1l11he cool- ing process ("1 -+ 1) proceeding at lemporal constanl ratios, given hy [10], dI' - ~I"l' di lo Inlroduclion The dcvclopmcI1l of lhe s(H:alled f1nih.~.lime thermodynalll- ies (FIT) has hcen very important for heat-engine analy- sis [1-!j1. As is well knowll. within lhe eonlcxt of C!assical cquilihriulll 1l1crlllodynamies (CET) the models (lf Ihcl"lnal engines llsual1y lcad 10 Illllllerical vallles nI' lypical perfor- mance variahles such as efllciency, fa!"¡¡hove 01' the corre- sp{mding values 1'01' real engines. In raCI. lhe CET-IlH)deis for thermal cngilles are lhe reversihle limils (1l1ercforc wilh null po\Ver OUlpul) 01' real engincs. One 01' lhe ¡¡ims 01' ITT has heen w rwvide mOfe realislic models ror thermal cngincs (among lIlan)' other physical systcl11s). By means or FTf. Illelhods ha ..•heen possihle 10claborate models in good agrce- ment wilh experimental values nf several process variahles 01'heall'ngines [G-9]. Rel"ently. several aulhors [10-1.11 have presel1lcd FIT.lllodels 01"lile Joule-Braylon cycle. which is a thermall'yc!e approximalely follm ••.. ed hy gas lurhincs. In these lIlodels (as in COlllJ1lon engincering analysis). Ihe main irreversihility S(lurce is lhe fluid friclioll 01' gas againsl Ihe turhinc hlades ami lhesc losses are quanlificd hy means or a lumped parametcr rcfered lo as isenlropic cfficicnc!'. which I\lcasme., the degrce 01"deparlure of thc adihatic hranches rrom a Irlle reversihle isentmpic regime (see Fig. 1). In Fig. l. a lemperature (T)-entropy (8) diagram ror lhe Joule-Braylon ey'lcc is depieted. amI in Fig. 2. the L'olTcsponding pres- sme (jJ)-\"OlllIllC (\") diagram is prcscnled. For a c10sed gas- turhinc. its hasic compol1ents are showcd in Fig. 3. \Vhen lhe inlcrnal irrc\'ersihilities 01"lhe JOllle-Braytoll cycle are takell into account hy means 01'lhe isenlropic crticiencies nf lhe tur- hine and lhe compressor respectively (as in Re!". lO). lIlany

Upload: others

Post on 12-Apr-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Adissipative .JulIle-B.-aytull cyclemudel · 2008-06-30 · arc recovered. such asocurrs inreal gas turhines [101.Inlhe presenl papero we propose an alternalive irreversihle modcl

ENSEr\:ANZ,\ REVISTA ~1EXIC¡\N¡\ DE FíSICA 44 (6) (¡19-623 D1C1EMHRE 199K

A dissipative .JulIle-B.-aytull cycle mudel

l .. Guzlllán- Vargas and F. Angulo-Brownf)cpartamcJlto de Física, !:'scflc!a S/lperior de F(\"l'ca y Milt('I1Wtic(ls. Instituto Politécnico Nacional

frJUicio No. 9. (/nidad Prt~/('.üol/al '1.ilC(1{Cr/CO. 0773R México, /J. F., 1\1£'.\'i('o

Recihido el el l-l (k noviemhre de 1997: ,Kl'ptado el 15 de agosto dc 199~

In this papel' we preSCl1lan irreversible modcl of Ihe Joule-Brayton cyde. I\s is wel! ~nO\••.'n, ¡he gas-Iurhines follo\.l,' approximJtcly thisthcrmall.}'t"le. ()ur model reprodlKcs several characlcrislics of a real gas-Illrhine surh as COllVCXcurves of powcr l'I'rS/U prcssurc ratio amicfticiency 1'('rSIH prcssurc ratio. Typicalloop-shapcd curves nf p(lwcr l'ersl/.\ efticiclll.:y rOl"real heat cngincs are also recovercd. OUT model ishased in a lurnped friction-like tcrm and in a pararneter arising fmm lhe Clausills inequalilY. \Ve also suggest a proccdure ror improving thepower and Ihe efliciency of Ihe cyele.

¡":l'YH'fm!.l".- Thl'l'mal cycle: endnrc\'crsibility: finite-time

En esle artículo presentamos un modelo irrevcrsihle del ciclo de Joule-Brayton. Como es bien sahido. las turhinas dc gas siguen aproximada-mcnte estl,' rirlo térmico, ~ueslro modelo reproduce varias raracleríslicas de turhinas reales. C{lmo son curvas convexas de potencia contraralón de presión y eficiencia contra razón de presión. Curvas en forma de rimo que son lípica.s de maquinas reales, lambién son obtenidas.Nuestro modelo está basado en UIl término tipo fricción glohal yen un parámetro que surge de la desigualdad de Clausis. Tamhién sugerimosun procedimicnto para mcjorar la potcncia y eficiencia del drlo.

¡kscriptrJl"l',\, Ciclo térmiClI: cndorrcversihilidad: tiempo tinito

PACS: -l-lhO.+k: -I--I-.90.+c

2. Thc irrc\'crsihlc modcl

( I )

(for proccss 2 -+ 3)

(rOl"process .1 -+ 1),= '''2'dI'

di

realislic fealmes 01"a gas-turhinc are ohtaincd. For cxample.loop-shaped (un'es nr po\Ver OUlplll (P) versus efliciency (IJ)arc recovered. such as ocurrs in real gas turhines [101. In lhepresenl papero we propose an alternalive irreversihle modclrOl";l .loule-Braylol1 cycle. which also reproduces many rc-alislic fcaturcs 01"rcal gas-turhincs. Our model is very sim-ple and pedagogical. In Sect. 2. we prescnl lhe irreversib!l'model hy means 01' a friclion-likc IUlllped parallleler and \Veobtain (Oll\'ex curves 01"pO\ver OUlpUI ami eftkiency versusSOIl1Cdcsign paral1lelers as is COlllIlH)fl in real Joule-Brayloncngines ¡l!j). \Ve also ohlain P rs. ,¡Ioop-shaped curves. InSec!. J. \Ve use a recenl procedurc for taking inlo accaunlinlernal losses lhrough lhe Clausills illcqualilY 11G-18], and\\'e oblain an excetlcnl agrcemclll with lypical eniciency val-lIes rOl"real gas-lurhincs. Finally \Ve suggesl a procedure forilllproving lhe power OlllPUl and lhe efficicncy of Ihe JOllle-Brayton cycle.

and

As il is dcpicted in Figs. 1 ami 2, the JOlllc.Brayton cyc1eha\'(' four hranches: lwo isenlropic and 1\\"0 isoharic ones. Inour modcl \Ve take lhe l1eating proccss (2 -+ 3) al1l11he cool-ing process ("1 -+ 1) proceeding at lemporal constanl ratios,given hy [10],

dI'- ~I"l'di

lo Inlroduclion

The dcvclopmcI1l of lhe s(H:alled f1nih.~.lime thermodynalll-ies (FIT) has hcen very important for heat-engine analy-sis [1-!j1. As is well knowll. within lhe eonlcxt of C!assicalcquilihriulll 1l1crlllodynamies (CET) the models (lf Ihcl"lnalengines llsual1y lcad 10 Illllllerical vallles nI' lypical perfor-mance variahles such as efllciency, fa!" ¡¡hove 01' the corre-sp{mding values 1'01'real engines. In raCI. lhe CET-IlH)deis forthermal cngilles are lhe reversihle limils (1l1ercforc wilh nullpo\Ver OUlpul) 01' real engincs. One 01' lhe ¡¡ims 01' ITT hasheen w rwvide mOfe realislic models ror thermal cngincs(among lIlan)' other physical systcl11s). By means or FTf.Illelhods ha ..•heen possihle 10 claborate models in good agrce-ment wilh experimental values nf several process variahles01' heall'ngines [G-9]. Rel"ently. several aulhors [10-1.11 ha vepresel1lcd FIT.lllodels 01"lile Joule-Braylon cycle. which isa thermall'yc!e approximalely follm ••..ed hy gas lurhincs. Inthese lIlodels (as in COlllJ1lon engincering analysis). Ihe mainirreversihility S(lurce is lhe fluid friclioll 01' gas againsl Iheturhinc hlades ami lhesc losses are quanlificd hy means or alumped parametcr rcfered lo as isenlropic cfficicnc!'. whichI\lcasme., the degrce 01" deparlure of thc adihatic hranchesrrom a Irlle reversihle isentmpic regime (see Fig. 1). In Fig. l.a lemperature (T)-entropy (8) diagram ror lhe Joule-Brayloney'lcc is depieted. amI in Fig. 2. the L'olTcsponding pres-sme (jJ)-\"OlllIllC (\") diagram is prcscnled. For a c10sed gas-turhinc. its hasic compol1ents are showcd in Fig. 3. \Vhen lheinlcrnal irrc\'ersihilities 01"lhe JOllle-Braytoll cycle are takellinto account hy means 01' lhe isenlropic crticiencies nf lhe tur-hine and lhe compressor respectively (as in Re!". lO). lIlany

Page 2: Adissipative .JulIle-B.-aytull cyclemudel · 2008-06-30 · arc recovered. such asocurrs inreal gas turhines [101.Inlhe presenl papero we propose an alternalive irreversihle modcl

62U L GUZMÁ~-VARGAS Ar-.;J) F ANGUL().HROwr-.;

T3

2

14'

Compressor

Hcat Sourcc

Turbine

Heat exchanger

FIGURE J. B;¡~íc compnnCIlI" (JI" lhe closcJ !!:ls-lllrhinc.s4 3

FH;URE l. TClllpCralUre-enlropy JiagralTl 01"Ihe cyclc.Tlle nel w(lrk ul" lhe C)-Tk is given hy the Jirsl la\\" 01"thenno-dynamics

P

•(~)

Q,P,

4 I

v

lhe heal !luxes q] and ((:2 arL' indic~lled in Fig. 2, ami aregivcn by

anJ1)

whe1'e ("'11 ami e".\ are lile heat capacilics nf Ihc wnrkingSuhSt.lIH..Tal (1lL'i"oharic proccsses Pl/ and r \ respecti\"L'ly,By using Eq, (5) into Eq. (-tI. \Ve ohlain

F[(,URE 2. Prc~surc-\'oILlrnc dia!!ram af Ihe Joule-Braylon cyrk.\'; (i = 1,2,:L.1) corrcspond [o di~pl¡lCemCllls .1", (i:::: 1, 2, 3,1).The rcl<llion hclWl'Cll \'; ami.'" i... \', = .-\J', wl1l'n,' ..\ is Ihe crm~scclion.

II'-nJl = e/,,, ct:, - [,) - e/" ('1', - T¡J. (61

Dividing !:tI. (6) hy Eq. u). \\'C ohtain a "rcversihlc po\\'-e1''', lila! is

where T is Ihe ahsolute lemperillure, f the lillle ami J"I' J,':! areconstanls. Fqs. (1) lllay he laken as mean hcaling ami coolingratcs respeL'li\"ely, By integralion 01' Eqs. (1). \\"c ohtain thehealing and c(loling times f I and '"2 rcspecti\'cly.

(7)

Ir \\'e use nlle nf Ihe adiahalic rCbli(lIl ....gi\'en hy r }:jl,

and

T '" t, + t, = /,-,('1', - '1',) + /,-, ('1', - '1',). 1.'1

\\'here j\-I :::: 1/ J,'! and j\':2 :::: 1/','"2 are !le\\' cOllslants and 7~,(j = 1,2.:L.I) are the lemllL'raturcs nf the slatcs I 10"'¡ re-speclively. As it is usual in FTT-lIlodcls. \Ve lakc (he adiahatsI -4 '2 aml:~ -4 .1 as inslanlaneous processes, ¡.l'. Ihe internalrL'l:l\alioll lillles in the adiabalS are considerL'd to he negligi-hly sl10rt ullllpared lo Ihe duralioll nI" lhe process [201. Thu",llll' perillllllf lile L')'Cle is {hUllinalL'd hy the 11\llladiahatic li lIlesand is giWll hy

\\'ilh -1 :::: e,,/cI (e" and CI, are Ihe heal eapacities alpressure <lnd \,(llullle L'Ol1slalllS rcspcclin:lyL \\'C can rC\\TileEl], (7) in lhe following fmm:

(XI_ C" ..,r;,t-¡)h[" {I-¡-)jr ,

1\"1 + \ "2"}'

\\'he1'c- ,." = I'u/ JJA is Ihe so-callcd p1'cssure ralio [1'-)1. Ir\I/e ptnt Eq. (X). wc sce [hal po\\'cr Olltput IJ¡r is:t I1lnJ1nlOll-ically inLTeasing funL'lion nI' 1"1' ami Ibis Clllllradicls the ex-perimental fae! thal Fu is a UlI1\"C.\ fUIH.:lion (JI"I'p (I.jl, TheIUllClioll l' ::::fJ(I",,) can he cOIl\"crted in a ,:OI1\"C.\fUIlClioll

e)t, = [,-,('1', - '1',),

Page 3: Adissipative .JulIle-B.-aytull cyclemudel · 2008-06-30 · arc recovered. such asocurrs inreal gas turhines [101.Inlhe presenl papero we propose an alternalive irreversihle modcl

A I)JSSII'ATIVE HHJLE-BRAYT()N CYCLE 1\101>EL 621

whL'rL' l' is a gCllcralilcd frictioll cocfflcicnl Ihat ¡¡¡kes intoaccount (he glohal losses [G.91, ami ;1" is Ihe instanlaneollsdispbcelllenl 01' rhe \Vorking lluid. Thus, Ihe loss po\Ver bythis lllcchanislll is

"••(a)

5000

5100

6000

5<00(9)

( 10)

if \H~ lake into accounl dissipati\'c efreelS. This is aecom~plishL'd hy lIlL'ans 01' cOllsiJcring a gcncralil.L'tl friclioll IhatIUlIlps all losscs. \Ve proposc this rrictioll forcc proportionalto the \'clocil)' nf the powcr stroke fmm state 2 up lo slate 4(SL'CFig. 2). Thal is,

(JI IlHciency

Irwc take as an approximation Ihe mean \'elocity bClweenslales .2 ami -t, \Ve gel

whe!'e ~f.t'2 ::: T /2 (sincc \\'C lake adiahals as instantaneous)¡¡nd r = VI/\~ (sce f-ig. 2) is Ihe expansion ralio, \vhich canhe rewriucn in lenns 01' the prcssl1re ratio l'JI' by means 01' rheatliahatic rclalion P\') = eOllst. and the cqualion 01' state01' Ih!.: working 11l1id (I¡¡"en as a perfccl gas. rv = I/UT),ohlaining

Ih)

"

O.Ji

O.JI

0.11

forGURE -l. (a) POWl'r amI (h) cfllcicncy "t'f.un prCSSlIrl' ralio curve.

( 12)

(11 )(d.I')'P¡l = _1'

_ = -111''2.di

;, = ,r,l - ,f'2 = ~ (r _ 1) .~f,l'2 ~t.I'2

([ 5)

( 1.1)

\\Ilae H = fl/T1 is the quotienl helwcel1 the ma.ximlln lem-11L'ralure "fl and Ihe Illinimun one TI. By means nI' Eqs, (1 J)alHl ( 12l. I:q. (1 I ) hceollles

!' = -f¡ [H¡.('2-r}h _ 1]'1/ J' '

wlll'rl' f, = 1¡(.r'2/~t,1'2)'2 .. 1''1 is gi\'en by lhe minimulll \'01-ulIle \ 1. Oncc \Ve obtain Ihe dissipativc po\Ver, we can get the/lcl p()wer hy II1l'ans 01' I:qs. (14) amI (8),

The lcmperalure ralio () is dClcnnincd hy tcchnological COI1-strainlS [101. The Ihcnnal efflciency nI' lhe cyclc can beillllllcdiatcly ohtaincd as '1 = 1'1((2, Ir), with (JIe¡,,, Cf, - T.!). Then. hy llsing Eqs. (15) and (3) wc h,"'c

Ir in Eq. (16). CI'..1 = CI'fl anL! 11 = b = 0, \Ve iI11l1ll'di-atcly ohlain lhe Ihermal cfliciency 01' the ideal Joule-Braytnllcyde. which iSI} = 1- r;,t--y}h [211, ror the analysis orthe

behavior 01' fllncliolls P = P(rp) IEq. (15)J ¡¡ud '1 = '/(r,,)[Eq. (I())I, \Ve la"e Illltllcrical \'alues for Ihe il1volvcLl con-stanls rrolll Rcfs, (l. X. Y. and 15, which are: b = :12.5 \V, I =lA. H = I07:3/~.'8 = ;37. CPA = C"" = 0 ..118464 JK-I

and /\'1 = 8.128 X 10-(; sK-1, K'2 = IS.G7 X lO-6 sK-I,\Vith lhese valllcs, we ohrain lhe rigs, 4a anL! 4h which showa eOI1\'e\ hehavior 1'01" hoth rUIlCliol1s slIch as ocurrs in real-ily. ThL' \'alues ,.;, = 19.::; and r;; = IGA wich maximil.clhe po\\'er oulplll ami lhe eflieiency respectively are typicalpressure-ratio values ror real gas-Iurhines [lSI.

By means nI' Eqs. (15) and (16), \Ve ohlain the loop-.\haped curve depicled in Fig. S, \vhieh also is a charcclcrislicof real gas lurhillcs 112J.

'1= 1 3. Thlo Iltlllt'llllurt'\'t'rsihlt' mude!

Sinee II1L'r7fT~pi(H1Ccring work oí' Curzon and Ahlhorn [:.t2JIhe so-calk'd cndorevcrsibilily hypolhesis has played a veryimportant role in FTT-analysis. This approxilllalioncollsisls

Nel'....\ll'.I". I.ú. -l4 (6) (199Hl (,19-621

Page 4: Adissipative .JulIle-B.-aytull cyclemudel · 2008-06-30 · arc recovered. such asocurrs inreal gas turhines [101.Inlhe presenl papero we propose an alternalive irreversihle modcl

622 L. GUZ~1A~.VARGASAND F A~GULO.BRO\\'N

,.., 0.6£

O ••

U

c. ;'~

O. :

l.'. o,>

R-O.74

"

FIGURE 5. Loop-shaped curve for normalized powcr agaínst effi-clene)'. Po••er

(a)

in assuming thal aH irreversihililies in a Ihermal engine forcxamplc. can he ascrihcd (o lhe cOllplings helween lhe work-ing lluid and ils environmcnl ami is perTnilted Ihat the work-ing suhslam:e undergoes rcversihle lransforlllalions. As iswell known. lhe internal irreversihilitics are 01"majnr impor-lance, OnL' manller to include them in a thcnnodynamicalanalysis is by Illeans 01' Ihe Clausius ineqllalily. Ü¡:kaynak(" al. [191 and Chen [18J have recently proposed equivalenlapproachcs for a nonendorc\'ersihle FIT-Carnot cyclc, Thcseaulhors go heyonJ lhe endoreversihility hypolhesis hy meansof a rarallll'ler detined as 1191

)000

HOO

2000

1000

,,,

R-0.85

R-0.80

L =:s;,10 2Q le 40

( 17) FlCiUR[ 6. (a) EUicicllc)' amI (h) pown 1'('1'.\/1.\ pressurc ratio curves101'.•.c\'cral valul's !lf U.

Through Ihe l)uotilo'lll CPu /("'''1 \\'e can inlroduce the pa-rallleler R in Eq. (16) ror Ihe efficiency amI \Ve gel

'}S] !l'R= -.-,-,12>,'>,,,,1which has values in lhe interval () ~ R ~ 1: ,}SII1' isIhe change in (he internal entropy along lhe hOI isolher-lIlal hranch and ~S:!rt' is lhe entropy change correspond-ing lo lhe l'old isolhermal compn.'ssion. Evilknlly. in theelldorrcversihllo' limil Ir = l. By tIleans 01' parameter U.111l'Clausius incquality rOl' an internally irreversihlc cycle:.J.S] u' + .J.S:2rr ~ (J. hecoIl1es alll'l)ualily

/1 .••' /',,{1 - - /'(I-,)j¡H l'

(h)

Since the Joulc-Brayton is fonned hy tW() alliahals ami[\\'0 nOIl-adiabals (as iL is (he Camot cyclc), \Ve can define asin Iht: prcviolls v.'ay a non-endorcversible facLor given hy

(23 )

(22)

, [11 (I--,) -,](", - ~ r"1',""1-" = (1 _ f¡ [Ol"(:!-¡)j¡ - 1]

, " '" (I-"Ylh l' '\ l + \ "21"1'In Fig. 6h, Wl~ "L'I..'thal also POWL'foUlpUI is vcr)' ...•l.nsilive

lo H. 'Ve wish to remark fOI"example, (hat for n = O.7.¡ \vcoh(aill '/ = 0.17 which is a lypiL"al rL'al \'alul.' rOl' a gas lurbinc

This cl)uation reduccs lo the reversihle cflicil'ncy w!lenU ~ 1, n --+ I alld b = O. If \Ve lake a Iypical \'aluc for11= :1, (T, = 1100 K ami '1', = :\UO K) [1:;\ and the \'al-Ul...• rOl' lJ.!\"l, 1\"'2. ('/'\' C"n given in the pre\'iolls section.\Ve can see in hg. 6a, that thlo'cflicilo'ncy is very SL'llsitivc 10p¡¡ramclCr R. Thlo' S;llTllo'hch,\\"ior is ohscrved rOl' the powerout pUl which expressed in tcrlll" of !l. hecomes

(21 )

(20 )

( 19)

(1 ~)

1" ('l,,fT2) I< 1" (T,fTJl -

el'" 1" (T3/T~)el', 1" ('1';/'1',)

1" (T,fr;)1" (T;/TJ)"

ThllS, tlll' parallll..'tcr R can he I..'xpressed as

G/,uR = --{\ < 1.

(" •.1

where r; and '1~are depic(cd in Fig. l.It is ca ..•y lo ..•ho\\' Ih31

Rl'l'. Ml'.\'. Fís. -t-t (hl (1l)l)X) hI9-62~

Page 5: Adissipative .JulIle-B.-aytull cyclemudel · 2008-06-30 · arc recovered. such asocurrs inreal gas turhines [101.Inlhe presenl papero we propose an alternalive irreversihle modcl

A DISSII'ATIVE JOULE-BRAYTON CYC!.E MODE!. 62.1

dlicielley 12:q. In rael lhe paralIleler U lIla)' he manipulalcdlhrough its dclinilion IE'1. (19) 1 for illlproving hOlh cmcieneyami POWl'r outPlIt nf gas-turhines.

4. Cnllclusinns

As is \\'ell kllo\\'n lhe CET-llloJels of lhennal engines areIhe reversible lilllilS of lhe real ones. Thus, lhe CET~modelsan.' al' null power oUlpUl. due to reversihle proCCSSl.'S(as su.n.'ssion 01"c'1uilihriulll states ) require a Vl.'I")'long time loproeccd. ¡\ f1rsl eontrihlllion nf m \\'as lo providc 1l0-1l1111po\\'cr models. lhat is. thermal cycles U1H.lergoing finite-tillleprocesSL~S. Thl' F1T-llHH.lcls in general considcr dissipalivcIL'rms and so posith'c l'lllropy produclion, For this n.'¡ISon. theFTT-mmlels are more realislic than lhe CET ones, In stan-danl lhermodyn:unics lextbooks only CET~lllodcls rOl"ther-mal engincs are prcsel1led. For example in ReL 15, whellIhe .Joulc- Braylon cyclc ís disclIsscd only the reversible el'-

1icil'ncy '1 = 1 - ,.:,I-"))h is calclllated although the al].

A. lk Vm, /:'I/(IOI"{,\,(,,.übh' Tllermo<1Yllamics 01 S%r r:lI('r~."COIll'('rsitm. í(hford Univcrsily Pre.'\s. O.xford. 199::!),

2. B. AndresC'll. P. S;IJaIllOIl. :md R.S. Bcrry. Phys. Táday ,1.7(19X-l) 62.

:~. s. Sit.'lliutyCl and P. Salalllon (Editors). Fin;/l' 'fl'nu' T/I('rlllody-1U1I11;(".\'alUl Thamol'collomics. (Taylor and Francis. New York.11)1)0).

,1. A. Ikjan. Adl'(lll('(.d i:"llgl'l,tlNing TI/{'rlllod.\'IIalllics. (Wilcy.:"cw "orll:, I ,)9R): i:"ntrop." Gl'flemriofl Milllmi::.arioll. (CReI'ress. Boca R:ltón. 11)l)6).

,J. r\. Ikjall. 1. Al/pI. 11h.".\". 71) (1996) 1191.

(;. F. AnguJo-lhm\.-'Il. J. Fern;índa-Bcl<lllWS. and C.A. I>i:ll.-Pieo.EIIf: 1. I'hy.\. J 5 ( I Y9--t) 38.

7" A. Calvo-lIcrn:írHk/. A. ~kdina. J.jv1.~1.Roeo. amI S. Vcbsl'o,E/lf .1. l'hn. 1(, (1995) 73.

;:., S.J. \Vatowirh. K.JI. lIolTmann. and R,S. Rl'rry. 1. "1'/1/. Phy,\'.5X (Il)X5) 1X9~.

9. \1, \lolurkl'wich and R,S. Berr)'.1. AI'I". l'hy.\". 5.' (19X1) 3~

10 lt\1. (ionlon and \1. lIulcihil..I. AI'I//. ¡'hys. 72 (1991) X29.

11. R. Sahin. A Kodal and H. Yavuz. 1. I'hy.\". IJ: A"/,/. ¡Ihys. 2X(1l)(J5) ]JOt).

lhor rClllarks thal lhe tme thcrlllal erticicm:y has a convexhl'll:t\'ior with all 1I1li'1lle maxillllllll point at ccrtain pressureratio. In the prcselll paper \\'1..' propose a .Joulc-Braylon ey-c!L' 1110del Ihal rl'produces the rl';¡l hehavior nf the efiicieneydisCllSSl'd hy Hay\\'ond [15]. Our modcl considcrs Jissipa-live dTects Ihrollgh a l1ollendorevcrsihility parallleler. Gur re-sults are COllsistenls with typical values of 1'1' and '1 ror gas4

turhincs which are Ihe dcvices that follow in an approximatedlllallller Ihe .Joll1c-Braytoll cycle. Anothcr important featureof our Illot!e! is that il shows lhe grem sensilivity 01' powerand cffkiency lo lhe paral11etcr H. This result permits the sug-gcslinn nf a proú'dure rOl"improving pnwcr and eftkicncy nI"real gas-Iurhines.

Aknnwlcd~lI1cnts

This work was parlially supporlcd by COFFA-IPN. IMP andCONACyT

12. R. Sahin. A. Kodal. T. Yilma/ .. and H, Ya\'uz . .I. /'hys. /): Appl/'hy.\'. 21) (1996) 1162

}:3 A. Calvo-flcrn;índcL. A \lcJina. amI J.i\'1.\t. RoeD. J. Phys. /):A/lI'/. I'hys. lX (1995) 2020.

1,1. A. Calvo-Ilcrn:índez. A, Medina. and J.M.M. Roeo, J, 1'11-,".1'.D:AI'PI. I'hn. 21) (1996) 1--t62.

l;j. R,\\'. lIay\\/oo<l. Alllllysis (~f E"gineerillg CYc/l'S. (Pergamon.Oxford, 1980).

t(l. J. ChL'r1. 1. P"y.\. !J: '\¡II'/. Phy.\'. 27 (199-t) 11M.

17. S. O/kayna"'. S, Goklan. and 11. Yanll.. 1. PhYJ. /): App/. Ph.'"s.27 ([Y94) 1139

18. F. Angulo-Brown. J.I\ Roeha-f\-lartíncz. and T.D. Navarrclc-Gonl:iIcI..1. ¡'h.'".\". o. AI'Ilf.l'hy.\'. 29 (1996) 80.

t~J F. Angulo-Browll y (;, Ramos.Madrigal. HI'I'. M('.\", Fú .. '(1

(1990) 363.

20. M. Ruhin.l'hn'. Rl'1', A tI) (1979) 1272.

21. E. Pifia. TC1"I/wdinlÍmica. (TriIJas. \léxico. 197X),

22. F.L. CIll70n alld B. Ahlhorn. AIII . .I. Phy.\' .• H (1975) 22.

2:.~ E. Reynolds y J. PerJ..ins./flgmil'l"la TemlOdiámica. (Mc-Graw-lIill, t\kxico. 19X5).

Hel'. Al".\". Frs, ..•..•(6) í JlJ9X) 6ItJ.--61l