adomian decomposition method to find the approximate

8
Adomian decomposition method to find the approximate solutions for the fractional PDEs Khaled A. Gepreel Mathematics Department Faculty of Science, Zagazig University Zagazig, Egypt Also Taif University Mathematics Department, Faculty of Science, El-Taif, El-Hawiyah, P.O. Box 888, Kingdom of Saudi Arabia [email protected] Abstract: By introducing the fractional derivatives in the sense of caputo, we use the Adomian decomposition method to construct the approximate solutions for some fractional partial differential equations with time and space fractional derivatives via the time and space fractional derivatives wave equation, the time and space fractional derivatives reduced wave equation and the (1+1)-dimensional Burger’s equation . The result of this problems reveal that the Adomian decomposition method is very powerful, effective, convenient and quite accurate to systems of nonlinear fractional equation. Key–Words: Adomian decomposition method, Fractional calculus, The fractional nonlinear partial differential equations. 1 Introduction In recent years, there has been a great deal of interest in fractional differential equations. First there were almost no practical applications of fractional calculus, and it was considered by many as an abstract area con- taining only mathematical manipulations of little or no use. Nearly 30 years ago, the paradigm began to shift from pure mathematical formulations to application- s in various fields. During the last decade Fractional Calculus has been applied to almost every field of sci- ence, engineering, and mathematics. Several fields of application of fractional differentiation and fractional integration are already well established, some others have just started. Many applications of fractional cal- culus can be found in turbulence and fluid dynamics, stochastic dynamical system, plasma physics and con- trolled thermonuclear fusion, nonlinear control the- ory, image processing, nonlinear biological system- s, astrophysics [1]–[11]. Historical summaries of the developments of fractional calculus can be found in [1]-[3]. There has been some attempt to solve lin- ear problems with multiple fractional derivatives (the so-called multi-term equations) [2, 12]. Not much work has been done for nonlinear problems and on- ly a few numerical schemes have been proposed to solve nonlinear fractional differential equations. More recently, applications have included classes of nonlin- ear equation with multi-order fractional derivative and this motivates us to develop a numerical scheme for their solutions [13]. Numerical and analytical meth- ods have included Adomian decomposition method (ADM) [14]-[16], variational iteration method (VIM) [17], and homotopy perturbation method [19]-[20]. The main objective of the present paper is to use the Adomian decomposition method [14]-[16] to cal- culate the approximate solutions of the following frac- tional partial differential equations of the form: (i) The time and space fractional wave equation with the variable coefficient [21]: 2α u ∂t 2α = G(x) 2β u ∂x 2β , t> 0, 0 < α, β 6 1, (1) where G(x) is an arbitrary function of x . (ii) The time and space fractional reduced wave equation with the variable coefficient [22]: 2α u ∂t 2α = 1 2 y 2 2β u ∂x 2β + 1 2 x 2 2γ u ∂y 2γ , t> 0, 0 < α, β, γ 6 1. (2) (iii) The time and space fractional nonlinear WSEAS TRANSACTIONS on MATHEMATICS Khaled A. Gepreel E-ISSN: 2224-2880 652 Issue 7, Volume 11, July 2012

Upload: others

Post on 26-Mar-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Adomian decomposition method to find the approximate
Page 2: Adomian decomposition method to find the approximate

Burger’s equation [23]:

∂αu

∂tα= µ

∂2βu

∂x2β − λu∂βu

∂xβ, t > 0, 0 < α, β 6 1,

(3)where µ and λ are arbitrary constants.

The function u(x, t) is assumed to be a causalfunction of time and space, i.e. vanishing for t < 0and x < 0. The fractional derivatives are consideredin the Caputo sense. The general response expressioncontains a parameter describing the order of the frac-tional derivative that can be varied to obtain variousresponses.

2 Preliminaries and notations

We give some basic definitions and properties of thefractional calculus theory which are used further in[2, 3, 24, 25].

Definition 1 A real function f(x), x > 0, is said to bein the space Cµ, µ ∈ R, if there exists a real number(p > µ), such that f(x) = xpf1(x), where f1(x) ∈C(0,∞), and it is said to be in the space Cm

µ if fm ∈Cµ,m ∈ N.

Definition 2 The Riemann-Liouville fractional inte-gral operator of order α ≥ 0, of a function f ∈Cµ,µ ≥ −1, is defined as

Jαf(x) = 1Γ(α)

x∫0

(x− t)α−1f(t) dt,

α > 0, x > 0,J0f(x) = f(x).

(4)

Properties of the operator Jα can be found in [2,3, 24, 25], we mention only the following:

For f ∈ Cµ, µ ≥ −1, α, β ≥ 0 and γ > −1:(1) JαJβf(x) = Jα+βf(x),(2) JαJβf(x) = JβJαf(x),

(3) Jαxγ = Γ(γ+1)Γ(α+γ+1)x

α+γ .

The Riemann-Liouville derivative has certain dis-advantages when trying to model real-world phenom-ena with fractional differential equations. Therefore,we shall introduce a modified fractional differentialoperator Dα proposed by M. Caputo in his work onthe theory of viscoelasticity [2, 3, 24, 25].

Definition 3 The fractional derivative of f(x) in theCaputo sense is defined as

Dαt u(x, t) =

1

Γ(m−α)

t∫0

(t− τ)m−α−1 ∂mu(x,τ)∂τm dτ,

for m− 1 < α < m∂mu(x,t)

∂tm , for α = m ∈ N(5)

For more information on the mathematical prop-erties of fractional derivatives and integrals one canconsult the mentioned references.

3 Basic idea of the Adomain decom-position method (ADM)

In this section, we illustrate the idea of the Adomaindecomposition method [14]-[16]. Let us consider thenonlinear differential equation

L(u) +R(u) +N(u)− g(r) = 0, (6)

where L is the highest order derivative which assumedto be invertible, R is a linear differentiable operatorof order less than L, N is a nonlinear differentiableoperator. Applying the inverse operator L−1 to bothsides of (6) and using the given condition

u = f − L−1[R(u) +N(u)] (7)

where the function f represents the terms arisingfrom the integrating the source term g and by us-ing the given condition. Adomain’s decompositionmethod [14]-[16] defines the solution u(x) by the se-ries:

u(x, t) =

∞∑k=0

uk(x, t) (8)

where the components uk(x, t) are usually deter-mined recurrently by using the relation:

u0(x, t) = fuk+1(x, t) = −L−1[R(uk) +N(uk)], k ≥ 0.

(9)The nonlinear operator N(u) can be decomposed intoan infinite series of a polynomials given by

N(u) =

∞∑k=0

Ak (10)

where Ak are so called the Adomains polynomialswhich given by

Ak =1

k!

[dk

dλk

{N

( ∞∑k=o

λiui(x, t)

)}]λ=0

(11)

4 ADM for time and space fraction-al wave equation with the constantcoefficient

In this section, we use the Adomain decompositionmethod to calculate the approximate solution of the

WSEAS TRANSACTIONS on MATHEMATICS Khaled A. Gepreel

E-ISSN: 2224-2880 637

Page 3: Adomian decomposition method to find the approximate

time and space fractional wave equation in the follow-ing form:

∂2αu

∂t2α= C2∂

2βu

∂x2β, t > 0, 0 < α, β ≤ 1. (12)

with the initial conditions

u(x, 0) = e−x,∂αu

∂tα(x, 0) = 0, (13)

where C is an arbitrary constant. By using the inverseoperator of Dα

t to both sides of Eq.(12), we have

u(x, t) = u(x, 0) + tα

Γ(α+1)∂αu∂tα (x, 0)

+C2J2α[Dβx(D

βxu(x, t))],

(14)

where Dβx = ∂β

∂xβ , Dαt = ∂α

∂tα and Jα is the inverseoperator of Dα

t .The Adomain decomposition method leads to

u0(x, t) = u(x, 0) +tα

Γ(α+ 1)

∂αu

∂tα(x, 0) (15)

uk+1(x, t) = C2J2α[Dβx(D

βxuk(x, t))], k ≥ 0.

(16)Applying the recursive relation (16) and the initialconditions (13), we get the following results:

u0(x, t) = e−x,

u1(x, t) =C2t2α

Γ(2α+ 1)

∞∑n=1

(−1)nxn−2β

Γ(n+ 1− 2β),

u2(x, t) =C4t4α

Γ(4α+ 1)

∞∑n=1

(−1)nxn−4β

Γ(n+ 1− 4β),

u3(x, t) =C6t6α

Γ(6α+ 1)

∞∑n=1

(−1)nxn−6β

Γ(n+ 1− 6β),

........

uk(x, t) =C2kt2kα

Γ(2kα+ 1)

∞∑n=1

(−1)nxn−2kβ

Γ(n+ 1− 2kβ), (17)

Thus the approximate solution of Eq.(12) in a seriesform is given by

u(x, t) = u0 + u1 + u2 + ....+ uk + ...

u(x, t) = e−x +∞∑n=1

(−1)n{

C2t2αxn−2β

Γ(2α+1)Γ(n+1−2β)

+ C4t4αxn−4β

Γ(4α+1)Γ(n+1−4β)

+ C6t6αxn−6β

Γ(6α+1)Γ(n+1−6β) + ....

+ C2kt2kαxn−2kβ

Γ(2kα+1)Γ(n+1−2kβ) + ....

(18)Figure 1 and Table 1 illustrate the behavior of the

analytic approximate solutions (18).

x/t 0.1 0.2 0.30.1 0.904457 0.903508 0.9020710.2 0.818103 0.81654 0.8141730.3 0.739995 0.737946 0.7348440.4 0.669336 0.666889 0.6631860.5 0.605414 0.602636 0.5984320.6 0.547583 0.544528 0.5399060.7 0.495263 0.544528 0.4870010.8 0.447928 0.491975 0.3959360.9 0.405102 0.444444 0.4391741 0.366356 0.401454 0.395936

x/t 0.4 0.5 0.60.1 0.900177 0.897839 0.8950640.2 0.811054 0.807211 0.8026580.3 0.730759 0.725729 0.7197720.4 0.658311 0.652309 0.6452070.5 0.5929 0.586093 0.5780390.6 0.533824 0.526342 0.5174940.7 0.480458 0.47241 0.4628940.8 0.432243 0.423719 0.4136430.9 0.388678 0.379754 0.3692081 0.349313 0.340055 0.329115

x/t 0.7 0.8 0.90.1 0.891855 0.888206 0.8841120.2 0.797397 0.791429 0.7847450.3 0.712898 0.705106 0.6963890.4 0.637015 0.627735 0.6173610.5 0.568754 0.558242 0.5464970.6 0.507296 0.495754 0.4828650.7 0.45193 0.439526 0.4256790.8 0.402036 0.388909 0.3742590.9 0.357063 0.34333 0.3280081 0.316519 0.30228 0.286397

Table 1.show the approximate solution for thedifferent values of 0 < x ≤ 1 and 0 < t < 1 whenβ = 0.1, α = 0.9, k = 0.5, N = 100, 0 < x < 3.

5 ADM for time and space fraction-al wave equation with the variablecoefficient

In this section, we use the Adomain decompositionmethod to calculate the approximate solution of thetime and space fractional wave equation with the vari-able coefficient in the following form:

∂2αu

∂t2α= x2

∂2βu

∂x2β, t > 0, 0 < α, β ≤ 1, (19)

WSEAS TRANSACTIONS on MATHEMATICS Khaled A. Gepreel

E-ISSN: 2224-2880 638 Issue 7, Volume 11, July 2012

Page 4: Adomian decomposition method to find the approximate

0

5

10

x

0

1

2

3

t

-0.5

0.0

0.5

1.0

u

2 4 6 8 10

0.05

0.10

0.15

0.20

0.25

0.30

Fig 1 The surface shows the approximate solutionu(x, t) for Eq (18) :

(a) β = 0.1, α = 0.9, k = 0.5, N = 100, 0 < t <3, 0 < x < 3,

(b) The projection of the surface when β = 0.1, α =0.9, k = 0.5, N = 100, 0 < x < 3, t = 0.5,

with the initial conditions

u(x, 0) = cos(x),∂αu

∂tα(x, 0) = 0, (20)

By using the inverse operator of Dαt to bath sides of

Eq.(19), we have

u(x, t) = u(x, 0) + tα

Γ(α+1)∂αu∂tα (x, 0)

+J2α[x2Dβx(D

βx(x, t))], k ≥ 0.

(21)The Adomain decomposition method leads to obtain

u0(x, t) = u(x, 0) +tα

Γ(α+ 1)

∂αu

∂tα(x, 0), (22)

uk+1(x, t) = J2α[x2Dβx(D

βxuk(x, t))], k ≥ 0.

(23)

Applying the recursive relation (23) and the initialconditions (20), we get the following results:

u0(x, t) = cos(x),

u1(x, t) =t2α

Γ(2α+1)

∞∑n=1

(−1)nC0nx2n+2−2β

Γ(2n+1−2β) ,

u2(x, t) =t4α

Γ(4α+1)

∞∑n=1

(−1)nC1nx2n+4−4β

Γ(2n+3−4β) ,

u3(x, t) =t6α

Γ(6α+1)

∞∑n=1

(−1)nC2nx2n+6−6β

Γ(2n+5−6β) ,

....

uk(x, t) =t2kα

Γ(2kα+1)

∞∑n=1

(−1)nCknx2n+2k−2kβ

Γ(2n+2k−1−2kβ) ,

(24)where

C0n = 1,C1n = (2n− 2β + 1)(2n− 2β + 2)C0n,C2n = (2n− 4β + 3)(2n− 4β + 4)C1n,C3n = (2n− 6β + 5)(2n− 6β + 6)C2n,.....Ckn = (2n− 2kβ + 2k − 1)(2n− 2kβ + 2k)Ck−1n

(25)Thus the approximate solution of (19) in a series formis given by:

u(x, t) = cos(x) +∞∑n=1

(−1)n{

C0nt2αx2n+2−2β

Γ(2α+1)Γ(2n+1−2β)

+ C1nt4αx2n+4−4β

Γ(4α+1)Γ(2n+3−4β) ,

+ C2nt6αx2n+6−6β

Γ(2n+5−6β)Γ(6α+1) + ...

+ Cknt2kαx2n+2k−2kβ

Γ(2kα+1)Γ(2n+2k−1−2kβ) + · · ·(26)

Figure 2 and Table 2 illustrate the behavior of theanalytic approximate solutions (26).

Table 2x/t 0.1 0.2 0.30.1 0.904457 0.903508 0.9020710.2 0.818103 0.81654 0.8141730.3 0.739995 0.737946 0.7348440.4 0.669336 0.666889 0.6631860.5 0.605414 0.602636 0.5984320.6 0.547583 0.544528 0.5399060.7 0.495263 0.544528 0.4870010.8 0.447928 0.491975 0.3959360.9 0.405102 0.444444 0.4391741 0.366356 0.401454 0.395936

WSEAS TRANSACTIONS on MATHEMATICS Khaled A. Gepreel

E-ISSN: 2224-2880 639 Issue 7, Volume 11, July 2012

Page 5: Adomian decomposition method to find the approximate

x/t 0.4 0.5 0.60.1 0.900177 0.897839 0.8950640.2 0.811054 0.807211 0.8026580.3 0.730759 0.725729 0.7197720.4 0.658311 0.652309 0.6452070.5 0.5929 0.586093 0.5780390.6 0.533824 0.526342 0.5174940.7 0.480458 0.47241 0.4628940.8 0.432243 0.423719 0.4136430.9 0.388678 0.379754 0.3692081 0.349313 0.340055 0.329115

x/t 0.7 0.8 0.90.1 0.891855 0.888206 0.8841120.2 0.797397 0.791429 0.7847450.3 0.712898 0.705106 0.6963890.4 0.637015 0.627735 0.6173610.5 0.568754 0.558242 0.5464970.6 0.507296 0.495754 0.4828650.7 0.45193 0.439526 0.4256790.8 0.402036 0.388909 0.3742590.9 0.357063 0.34333 0.3280081 0.316519 0.30228 0.286397

Table 2.show the approximate solution for thedifferent values of 0 < x ≤ 1 and 0 < t < 1 whenβ = 0.1, α = 0.9, k = 0.5, N = 100, 0 < x < 3.

6 ADM for time and space fraction-al reduced wave equation with thevariable coefficients

In this section, we use the Adomain decompositionmethod to calculate the approximate solution of thetime and space fractional reduced wave equation withthe variable coefficient in the following form:

∂2αu

∂t2α=

1

2y2

∂2βu

∂x2β+1

2x2

∂2γu

∂y2γ, t > 0, 0 < α, β, γ ≤ 1,

(27)with the initial conditions

u(x, y, 0) = x2 + y2,∂αu

∂tα(x, y, 0) = 0. (28)

By using the inverse operator of Dαt to bath sides of

Eq.(27), we have

u(x, y, t) = u(x, y, 0) + tα

Γ(α+1)∂αu∂tα (x, y, 0)

+J2α[12y2Dβ

x(Dβxu(x, y, t)) +

12x

2Dγy (D

γyu(x, y, t))],

(29)

0

2

4

x

0.0

0.5

1.0

1.5

2.0

t

-100-50

050

u

1 2 3 4 5x

-5

-4

-3

-2

-1

1

u

Fig 2 The surface shows the approximate solutionu(x, t) for Eq (26):

(a)β = 0.1, α = 0.9, , N = 10, 0 < t < 2, 0 < x < 5,

(b) The projection of the surface whenβ = 0.1, α = 0.9, N = 10, 0 < x < 5, t = 0.5.

where Dβx = ∂β

∂xβ , Dγy = ∂γ

∂yγ , Dαt = ∂α

∂tα and Jα isthe inverse operator of Dα

t . The Adomain decomposi-tion method leads to get

u0(x, y, t) = u(x, y, 0) + tα

Γ(α+1)∂αu∂tα (x, y, 0)

(30)

uk+1(x, y, t) = J2α[12y2Dβ

x(Dβxuk(x, y, t))

+12x

2Dγy (D

γyuk(x, y, t))], k ≥ 0,

(31)Applying the recursive relation (31) and the initialconditions (28), we get the following results:

u0(x, y, t) = x2 + y2,

u1(x, y, t) =t2α

2Γ(2α+1)

[Γ(3)y2x2−2β

Γ(3−2β) + Γ(3)x2y2−2γ

Γ(3−2γ)

],

u2(x, y, t) =t4α

22Γ(4α+1)

[Γ(3)y2x2−4β

Γ(3−4β)

+2Γ2(3)y2−2γx2−2β

Γ(3−2β)Γ(3−2γ) + Γ(3)x2y2−4γ

Γ(3−4γ)

],

WSEAS TRANSACTIONS on MATHEMATICS Khaled A. Gepreel

E-ISSN: 2224-2880 640 Issue 7, Volume 11, July 2012

Page 6: Adomian decomposition method to find the approximate

u3(x, y, t) =t6α

23Γ(6α+1)

[Γ(3)y2x2−6β

Γ(3−6β)

+3Γ2(3)y2−2γx2−4β

Γ(3−4β)Γ(3−2γ) + 3Γ2(3)y2−4γx2−2β

Γ(3−2β)Γ(3−4γ)

+Γ(3)x2y2−6γ

Γ(3−6γ)

],

· · ·

(32)

and

uk(x, y, t)

= t2kα

2kΓ(2kα+1)

[Γ(3)y2x2−2kβ

Γ(3−2kβ)

+kΓ2(3)y2−2γx2−2(k−1)β

Γ(3−2(k−1)β)Γ(3−2γ)

+k(k−1)Γ2(3)y2−4γx2−2(k−2)β

2Γ(3−4γ)Γ(3−2(k−2)β) + ....

+kΓ2(3)y2−2(k−1)γx2−2β

Γ(3−2(k−1)γ)Γ(3−2β) + Γ(3)x2y2−2kγ

Γ(3−2kγ)

].

(33)

Thus the approximate solution of Eq.(27) in a seriesform is given by

u(x, y, t) = x2 + y2

+ t2α

2Γ(2α+1)

[Γ(3)y2x2−2β

Γ(3−2β) + Γ(3)x2y2−2γ

Γ(3−2γ)

]+ t4α

22Γ(4α+1)

[Γ(3)y2x2−4β

Γ(3−4β) + 2Γ2(3)y2−2γx2−2β

Γ(3−2β)Γ(3−2γ)

+Γ(3)x2y2−4γ

Γ(3−4γ)

]+ t6α

23Γ(6α+1)

[Γ(3)y2x2−6β

Γ(3−6β)

+3Γ2(3)y2−2γx2−4β

Γ(3−4β)Γ(3−2γ) + 3Γ2(3)y2−4γx2−2β

Γ(3−2β)Γ(3−4γ)

+Γ(3)x2y2−6γ

Γ(3−6γ)

]+ ...+ t2kα

2kΓ(2kα+1)

[Γ(3)y2x2−2kβ

Γ(3−2kβ)

+kΓ2(3)y2−2γx2−2(k−1)β

Γ(3−2(k−1)β)Γ(3−2γ)

+k(k−1)Γ2(3)y2−4γx2−2(k−2)β

2Γ(3−4γ)Γ(3−2(k−2)β) + ....

+kΓ2(3)y2−2(k−1)γx2−2β

Γ(3−2(k−1)γ)Γ(3−2β) + Γ(3)x2y2−2kγ

Γ(3−2kγ)

]+ · · ·

(34)Figure 3 illustrate the behavior of the analytic ap-

proximate solutions (34).

7 ADM for time and space fractionalnonlinear Burger’s equation

In this section, we use the Adomain decompositionmethod to calculate the approximate solution of thetime and space fractional nonlinear Burger’s equationin the following form:

Dαt u = υDβ

x(Dβxu)− λu (Dβ

xu),t > 0, 0 < α, β 6 1,

(35)

with the initial condition

u(x, 0) = x2, (36)

Applying the inverse operator to both sides of the sys-tem (35) , we get

u(x, t) = x2 + Jα[υDβx(D

βxu)− λG(u)],

t > 0, 0 < α, β 6 1,(37)

0.0

0.5

1.0

x

0.0

0.5

1.0

t

0

1

2

3u

0.2 0.4 0.6 0.8 1.0x

0.5

1.0

1.5

2.0

u

Fig 3 The surface shows the approximate solutionu(x, t) for Eq (34) when β = 0.1, α = 0.2, γ =

0.3, y = 0.5, 0 < t < 1, 0 < x < 1, and theprojection of the surface when t = 0.5.

where Jα is the inverse operator of Dαt and G(u) =

u (Dβxu) is the nonlinear term in (37). According to

the Adomain decomposition method, we assume thata series solution of the function u(x, t) is given by

u(x, t) =

∞∑n=0

un(x, t). (38)

The nonlinear term G(u) can be decomposed into aninfinite series of polynomials given by

G(x, t) =∞∑n=0

An, (39)

where the component un(x, t) will be determined re-cursively while An’s are the so called Adomian poly-nomials of un’s respectively.

Specific algorithms have been set in [14]-[16] forcalculating Adomian’s polynomials for nonlinear termG(u)

An =1

n!

{dn

dλn

[(n∑

k=0

λkuk

)Dβ

x

(n∑

k=0

λkuk

)]}λ=0

,

(40)

WSEAS TRANSACTIONS on MATHEMATICS Khaled A. Gepreel

E-ISSN: 2224-2880 641 Issue 7, Volume 11, July 2012

Page 7: Adomian decomposition method to find the approximate

Thus, we obtain

A0 = u0Dβxu0,

A1 = u1Dβxu0 + u0D

βxu1,

A2 = u2Dβxu0 + u1D

βxu1 + u0D

βxu2

... (41)

and so on.The components un for n ≥ 0 are given by the

following recursive relationships:

u0 = u(x, 0) = x2,

u1 = Jα[υDβx(D

βxu0)− λA0],

u2 = Jα[υDβx(D

βxu1)− λA1],

u3 = Jα[υDβx(D

βxu2)− λA2],

:

un+1 = Jα[υDβx(D

βxun)− λAn], n ≥ 0,(42)

Using the above recursive relationships, we obtain thefollowing results:

u0 = x2,

u1 =tα

Γ(α+1)

{υΓ(3)

Γ(3−2β)x2−2β − λΓ(3)

Γ(3−β)x4−β},

u2 =t2α+1

Γ(2α+1)

{f11x

2−4β + f12x4−3β + f13x

4−4β

+f14x6−3β + f15x

6−2β},

u3 =t3α+1

Γ(3α+1)

{f21x

2−6β + f22x4−5β + f23x

4−6β

+f24x6−5β + f25x

6−4β + f26x8−4β

+f27x8−3β

},

...(43)

where

f11 =υ2Γ(3)Γ(3−4β) , f13 = − υλΓ(3)

Γ(3−4β) ,

f14 =λ2Γ(3)Γ(5−β)Γ(3−β)Γ(5−3β) , f15 =

λ2Γ2(3)Γ2(3−β)

,

f12 = − υλΓ(3)Γ(5−β)Γ(3−β)Γ(5−3β) −

υλΓ2(3)Γ(3−2β)Γ(3−β) ,

f21 =υf11Γ(3−4β)

Γ(3−6β) , f23 =υf13Γ(5−4β)

Γ(5−6β) ,

f22 =υf12Γ(5−3β)

Γ(5−5β) − λΓ(3)f11Γ(3−β) −

λΓ(3−4β)f11Γ(3−5β)

− υ2λΓ(2α+1)Γ2(3)Γ2(α+1)Γ(3−2β)Γ(3−3β)

,

f24 =υf14Γ(7−3β)

Γ(7−5β) − λf13Γ(3)Γ(3−β) −

λf13Γ(5−4β)Γ(5−5β) ,

f25 =υf15Γ(7−2β)

Γ(7−4β) − λf12Γ(3)Γ(3−β)

+ λ2υΓ(2α+1)Γ2(3)Γ(5−β)Γ2(α+1)Γ(3−2β)Γ(3−β)Γ(5−2β)

−λf12Γ(5−3β)Γ(5−4β) + λ2υΓ(2α+1)Γ2(3)

Γ2(α+1)Γ(3−3β)Γ(3−β),

f26 = −λf14Γ(3)Γ(3−β) −

λf14Γ(7−3β)Γ(7−4β) ,

f27 = −λf15Γ(3)Γ(3−β) −

λf15Γ(7−2β)Γ(7−3β)

− λ3Γ(2α+1)Γ2(3)Γ(5−β)Γ2(α+1)Γ2(3−β)Γ(5−2β)

.

(44)

Thus the approximate solution of (35) in a series formis given by:

u(x, t) = x2 + tα

Γ(α+1)

{υΓ(3)

Γ(3−2β)x2−2β

− λΓ(3)Γ(3−β)x

4−β}+ t2α+1

Γ(2α+1)

{f11x

2−4β

+f12x4−3β + f13x

4−4β + f14x6−3β + f15x

6−2β}

+ t3α+1

Γ(3α+1){f21x2−6β + f22x

4−5β + f23x4−6β

+f24x6−5β + f25x

6−4β + f26x8−4β + f27x

8−3β}+· · ·

(45)Figure 4 illustrate the behavior of the analytic approx-imate solutions (45).

0.0

0.5

1.0

x

0.0

0.5

1.0

t

-10-505

10

u

0.2 0.4 0.6 0.8 1.0x

-0.5

0.5

1.0

1.5

2.0

2.5

3.0

u

Fig 4 The surface shows the approximate solutionu(x, t) for Eq (45) when β = 0.3, α = 0.4, λ =

1, ν = 2, 0 < t < 1, 0 < x < 1, and the projection ofthe surface when t = 0.5.

8 Conclusions

In this paper, the application of Adomain decompo-sition method was extended to explicit the numericalsolutions of the time- and space-fractional partial dif-ferential equations in mathematical physics with ini-tial conditions . The Adomain decomposition methodwas clearly very efficient and powerful technique infinding the approximate solutions of the proposed e-quations. The obtained results demonstrate the reli-

WSEAS TRANSACTIONS on MATHEMATICS Khaled A. Gepreel

E-ISSN: 2224-2880 642 Issue 7, Volume 11, July 2012

Page 8: Adomian decomposition method to find the approximate

ability of the algorithm and its wider applicability tofractional nonlinear evolution equations.

References:

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo,Theory and Applications of Fractional Differen-tial Equations, North-Holland Mathematical S-tudies, Vol. 204, Elsevier, Amsterdam, 2006.

[2] I. Podlubny, Fractional Differential Equation,Acad. Press, San Diego-New York-London,1999.

[3] S. G. Samko, A.A. Kilbas, and O.I. Marichev,Fractional Integrals and Derivatives: The-ory and Applications, Gordon and Breach,Langhorne, 1993.

[4] A. M. A. El-Sayed, Fractional-order diffusion-wave equation, Int. J. Theor. Phys., vol.35,(1996), pp. 311–322.

[5] M. A. E. Herzallah, A. M.A. El-Sayed andD. Baleanu, On the fractional-order Diffusion-Wave process, Rom. Journ. Phys., vol. 55(2010), pp. 274–284.

[6] M. A. E. Herzallah, Sami I. Muslih, D. Baleanuand Eqab M. Rabei, Hamilton-Jacobi and frac-tional like action with time scaling, NonlinearDyn., vol.66, 2011, no.4, pp.549–555.

[7] R. L. Magin, Fractional Calculus in Bioengi-neering, Begell House Publisher, Inc. Connecti-cut, 2006.

[8] B. J. West, M. Bologna, and P. Grigolini, Physicsof Fractal operators, New York, Springer, 2003.

[9] I. S. Jesus, and J. A. Tenreiro Machado, Frac-tional control of heat diffusion systems, Nonlin.Dyn., vol.54, (2008), pp. 263-282.

[10] O.P. Agrawal, and D. Baleanu, Hamiltonian for-mulation and a direct numerical scheme forFractional Optimal Control Problems, J. Vibr.Contr., vol.13, (2007), pp. 1269-1281.

[11] V. E. Tarasov, Fractional vector calculus andfractional Maxwell’s equations, Annals ofPhysics, vol.323, (2008), pp. 2756-2778.

[12] J. H. He, Some applications of nonlinear frac-tional differential equations and their applica-tions, Bull. Sci. Technol., vol.15, (1999), pp. 86-90.

[13] V. S. Erturk, Sh. Momani, Z. Odibat, Applica-tion of generalized differential transform methodto multi-order fractional differential equation-s, Commun. Nonlinear Sci. Numer. Simulat.,vol.13, (2008), pp. 1642-1654.

[14] V. Daftardar-Gejji, S. Bhalekar, Solving multi-term linear and non-linear diffusion wave equa-tions of fractional order by adomian decompo-sition method, Appl. Math. Comput., vol. 202,(2008), pp. 113-120.

[15] V. Daftardar-Gejji, H. Jafari, Solving a multi-order fractional differential equation using ado-mian decomposition, Appl. Math. Comput.,vol.189, (2007) , pp. 541-548.

[16] E. M. E. Zayed, T. A. Nofal and K. A.Gepreel,Homotopy perturbation and Adomain decom-position methods for solving nonlinear Boussi-nesq equations, Commu. Appl. Nonlinear Anal.,vol.15, (2008) , pp. 57-70.

[17] N. H. Sweilam, M. M. Khader, R. F. Al-Bar, Nu-merical studies for a multi-order fractional dif-ferential equation, Phys. Lett. A, vol.371, (2007),pp. 26-33.

[18] A. Golbabai, K. Sayevand, Fractional calcu-lus - A new approach to the analysis of gen-eralized fourth-order diffusion–wave equation-s, Comput. Math. Application, vol.61, (2011),No.8, pp. 2227–2231.

[19] A. Golbabai, K. Sayevand, The homotopy per-turbation method for multi-order time fractionaldifferential equations, Nonlinear Science LettersA, vol.1,(2010), pp. 147-154.

[20] Khaled A. Gepreel, The homotopy perturbationmethod to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations, Applied Math.Letters, vol.24, (2011), pp. 1428-1434.

[21] S. Momani, Analytical approximate solution forfractional heat-like and wave-like equations withvariable coefficients using the decompositionmethod, Applied Mathematics and Computation,vol.165, ( 2005), pp. 459-472.

[22] M. A. Noor and S. T. Mohyud-Din, Variation-al Iteration Decomposition Method for Solv-ing Higher Dimensional Initial Boundary ValueProblems, Inter. J. Nonlinear Sci., vol.7, (2009),pp. 39- 49.

[23] A. A. Soliman, The Modified Extended DirectAlgebraic Method for Solving Nonlinear PartialDifferential Equations, Inter. J. Nonlinear Sci.,vol.6, (2008), pp. 136-144.

[24] K. Diethelm, Y. Luchko, Numerical solutionof linear multi-term differential equations offractional order, J. Comput. Anal. Appl., vol.6,(2004), pp. 243-263.

[25] S. Z. Rida, Approximate analytical solution-s of generalized linear and nonlinear reaction–diffusion equations in an infinite domain,Physics Letters A, vol.374, (2010),pp. 829-835.

WSEAS TRANSACTIONS on MATHEMATICS Khaled A. Gepreel

E-ISSN: 2224-2880 643 Issue 7, Volume 11, July 2012