adoption and compliance with energy codes: ashrae 90.1 and necb

38
Lessons Learned from Bri.sh Columbia Adop%on and Compliance with Energy Codes: ASHRAE 90.1 and NECB Graham Finch, MASc, P.Eng Principal, Building Science Research Engineer RDH Building Engineering Ltd. Vancouver, BC RCIC 2013 Edmonton – May 1, 2013

Upload: rdh

Post on 02-Jul-2015

186 views

Category:

Engineering


3 download

DESCRIPTION

Presentation Outline: - Energy Efficiency Requirements for Part 3 Buildings in BC - Enforcement & Compliance - ASHRAE 90.1 Overview & Lessons Learned - NECB 2011 Similarities & Differences

TRANSCRIPT

Page 1: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

Lessons  Learned  from  Bri.sh  Columbia  

Adop%on  and  Compliance  with  Energy  Codes:  ASHRAE  90.1  and  NECB  

!   Graham  Finch,  MASc,  P.Eng  Principal,  Building  Science  Research  Engineer    RDH  Building  Engineering  Ltd.  Vancouver,  BC    

RCIC  2013  Edmonton  –  May  1,  2013  

Page 2: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

Presenta%on  Outline  

!   Energy  Efficiency  Requirements  for  Part  3  Buildings  in  BC  

!   Enforcement  &  Compliance  !   ASHRAE  90.1  Overview  &  Lessons  Learned  !   NECB  2011  Similari.es  &  Differences  

Page 3: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   In  the  Past:  !  City  of  Vancouver  (VBBL  2007),  ASHRAE  90.1-­‐2007  

•  ASHRAE  in  code  for  more  than  a  decade  •  Enforcement  boosted  in  past  few  years  (checklists)  

!  Rest  of  BC  (BCBC  2006),  ASHRAE  90.1-­‐2004  •  ASHRAE  added  in  2008  •  Enforcement  up  to  the  authority  having  jurisdic.on  (AHJ)  

!  Window  Performance  –  BC  Energy  Efficiency  Act  (2009)  !   LEED  –  ASHRAE  90.1-­‐2007  PRM  or  MNECB  1997  

!   Upcoming:  !  City  of  Vancouver  (VBBL  2013),  ASHRAE  90.1-­‐2010  or  NECB  2011  !  Rest  of  BC  (BCBC  2012+),  ASHRAE  90.1-­‐2010  or  NECB  2011  !  Window  Performance  –  BC  Energy  Efficiency  Act  &  Within  Code  

Overview  of  Energy  Efficiency  Requirements  in  BC  

Page 4: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   City  of  Vancouver  released  new  building  permit  &  occupancy  documenta.on  process  to  improve  compliance  with  ASHRAE  90.1  

!   Checklists  signed  off  by  each  registered  professional  (mechanical,  electrical,  enclosure/architect)  and  coordina.ng  professional  

!   Effec.ve  R-­‐values  on  drawings/  “Insula.on  schedules”  

!   Energy  model  outputs  

Enforcement  &  Compliance  

Page 5: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   ASHRAE  90.1  “Energy  Standard  for  Buildings  Except  Low-­‐Rise  Residen.al  Buildings”    

!   Compliance  involves  mee.ng  energy  efficiency  requirements  in  all  sec.ons:  !   5  –  Building  Envelope  (Enclosure)  !   6  –  Hea.ng,  Ven.la.ng,  and  Air  

Condi.oning  !   7  –  Service  Water  Hea.ng  !   8  –  Power  !   9  –  Ligh.ng  !   10  –  Other  Equipment  

ASHRAE  90.1  Overview  

Page 6: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Alternate  compliance  op.ons  within  each  sec.on  !  Prescrip.ve  !   Trade-­‐offs    !   Energy  Simula.on  

!   Involves  several  disciplines  with  professional  engineers  coordina.ng  their  efforts  plus  one  coordina.ng  professional  taking  overall  responsibility  

!   Chosen  compliance  path  has  implica.ons  for  building  design  

ASHRAE  90.1  Overview  

Page 7: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!  Mandatory  Provisions  (Sec.on  5.4)  !   Insula.on  

•  Protec.on,  Ra.ng,  Labeling,  Installa.on    !   Fenestra.on  &  Doors  

•  NFRC  cer.fica.on,  air.ghtness,  labels  !  Air  Leakage  

•  “con.nuous  air  barrier”,  prescrip.ve  sealing,  Ves.bules,  weather  seals  

!   Prescrip.ve  Compliance  Path  (Sec.on  5.5)  !  All  components  must  meet  prescrip.ve  tables,  maximum  40%  

glazing  area  

!   Building  Envelope  Trade-­‐off  Compliance  Path  (Sec.on  5.6)  !   Trade-­‐off  enclosure  components  using  ASHRAE  ENVStd  somware  

!   Energy  Cost  Budget  (ECB)  Path  (Sec.on  11)  !  Whole  building  energy  cost  simula.on  &  tradeoffs  ($  not  kWh)  

ASHRAE  90.1  Building  Enclosure  Compliance  

Page 8: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Compliance  pathway  is  heavily  influenced  by  building  enclosure  design  :  !  Window  to  wall  ra.o  

•  Maximum  40%  for  Prescrip.ve  Op.on  •  No  limit  for  BE  Trade-­‐off  op.on  or  ECB  

!  Minimum  assembly  and  component  R-­‐values  •  Prescrip.ve  Op.on  -­‐  difficult  to  comply  with  thermal  bridging  •  BE  Trade-­‐off  Op.on  –  detailed  area  weighted  U-­‐value  calcula.ons  input  into  ENVStd  somware  

•  Energy  Cost  Budget  (ECB)  -­‐  detailed  area  weighted  U-­‐value  calcula.ons  input  into  energy  model  

!  Changes  to  design  during  tendering  and  construc.on  can  erode  final  compliance  –  need  for  “factor  of  safety”  

ASHRAE  90.1  Building  Enclosure  Compliance    

Page 9: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   All  building  envelope  assemblies  (including  details)  must  meet  Table  5.5  thermal  requirements  (by  climate  zone)  !   Opaque  Walls/Roof:  Assembly  Maximum  U-­‐value  (Minimum  

effec.ve  R-­‐value)  or  Insula%on  Minimum  R-­‐value  (nominal  insula.on)  

!  Windows/Doors/Skylights:  Maximum  U-­‐value  and  SHGC  restric.ons  

!  Maximum  of  40%  window  to  wall  ra.o  !  Maximum  of  5%  skylight  to  roof  ra.o  !   Basic  area  take-­‐offs  only  necessary  to  verify  window-­‐wall  

ra.o  (and  skylight  to  roof  ra.o)  !   Can  be  difficult  to  comply  with  for  many  common  building  

designs  

Prescrip%ve  Building  Envelope  Op%on  

Page 10: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Two  alternate  ways  to  meet  prescrip.ve  requirements  !   Assembly  Maximum  U-­‐value  (Minimum  R-­‐value)  

•  Accounts  for  all  materials  in  assembly  including  air-­‐films  •  Easiest  method  to  comply  with  and  greatest  flexibility  in  design  

!   Insula.on  Minimum  R-­‐value  •  Prescrip.ve  rated  R-­‐value  of  installed  insula.on  (nominal  minimum)  •  Many  assemblies  prescrip.vely  require  con.nuous  insula.on  (ci)  

Prescrip%ve  Building  Envelope  R-­‐value  Tables  

Page 11: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Only  screws/nails  are  considered  “fasteners”  (or  adhesives)  !  Where  any  con.nuous  or  discon.nuous  framing  (girts,  

studs,  clips,  brick  .es,  shelf  angles,  slab  edges)  penetrate  through  the  insula.on  –  it  is  not  considered  c.i.  

!   Note:  Con.nuous  insula.on  is  not  necessarily  a  mandatory  requirement  for  prescrip.ve  compliance  (high  enough  R-­‐values  can  be  achieved  without  true  ci)  

Con%nuous  Insula%on  (ci)  

Page 12: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Nominal  R-­‐values  =  Rated  R-­‐values  of  insula.on  which  do  not  include  impacts  of  how  they  are  installed    !   For  example  R-­‐20  baq  insula.on  or    

R-­‐10  foam  insula.on  !   Effec.ve  R-­‐values  or  Real  R-­‐values  =  

Calculated  R-­‐values  of  assemblies/details  which  include  impacts  of  installa.on  and  thermal  bridges  !   For  example  nominal  R-­‐20  baqs  

within  steel  studs  becoming  ~R-­‐9  effec.ve,  or  in  wood  studs  ~R-­‐15  

Nominal  vs  Effec%ve  R-­‐values  

Page 13: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Thermal  bridging  occurs  when  a  more  conduc.ve  material  (e.g.  aluminum,  steel,  concrete,  wood  etc.)  provides  a  path  for  heat  to  flow  such  that  it  bypasses  a  less  conduc.ve  material  (insula.on)  

!   The  bypassing  “bridging”  of  the  less  conduc.ve  material  significantly  reduces  its  effec.veness  as  an  insulator  

!   Examples:  !   Wood  framing  (studs,  plates)  in  insulated  wall  !   Steel  framing  in  insulated  wall  !   Conduc.ve  cladding  aqachments  through  insula.on  

(metal  girts,  clips,  anchors,  screws  etc)  !   Concrete  slab  edge  (balcony,  exposed  slab  edge)  

through  a  wall  !   Window  frames  and  windows  themselves  

Thermal  Bridging  

Page 14: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Effec.ve  R-­‐values  account  for  thermal  bridges  and  represent  actual  heat  flow  through  enclosure  assemblies  and  details  !   Heat  flow  finds  the  path  of  least  resistance  !   Dispropor.onate  amount  of  heat  flow  

occurs  through  thermal  bridges  !   Omen  adding  more/thicker  insula.on  can’t  

help  !   Required  for  almost  all  energy  and  building  

code  calcula.ons    !   Energy  code  compliance  has  historically  

focused  on  assembly  R-­‐values  –  however  more  importance  is  being  placed  on  details  and  interfaces  &  whole  building  impacts  of  thermal  bridges  

Why  Thermal  Bridging  is  Important    

Page 15: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

ASHRAE/NECB/NBC  Climate  Zone  Divisions  

•  >7000 HDD

•  6000 to 6999 HDD

•  5000 to 5999 HDD

•  4000 to 4999 HDD

•  3000 to 3999 HDD

•  < 3000 HDD

Page 16: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

Wall,  Roof  &  Window  Requirements  for  Alberta  (Part  3)  

Climate  Zone  

Wall  –  Above  Grade:  Minimum    R-­‐value  (IP)  

Roof  –  Flat  or  Sloped:  Minimum  R-­‐value  (IP)  

Window:  Max.  U-­‐value  (IP)    

8   31.0   40.0   0.28  

7B   27.0   35.0   0.39  

7A   27.0   35.0   0.39  

6   23.0   31.0   0.39  

NEC

B  2011  

ASHR

AE  90.1-­‐2010  –  

Reside

n%al  Building   Climate  

Zone  Wall  (Mass,  Wood,  Steel):  Min  R-­‐value  

Roof  (A]c,  Cathedral/Flat):  Min  R-­‐value  

Window  (Alum,  PVC/FG):Max.  U-­‐value  

8   19.2,  27.8,  27.0   47.6,  20.8   0.45,  0.35  

7B   14.1,  19.6,  23.8   37.0,  20.8   0.45,  0.35  

7A   14.1,  19.6,  23.8   37.0,  20.8   0.45,  0.35  

6   12.5,  19.6,  15.6   37,0,  20.8   0.55,  0.35  

*7A/7B  combined  in  ASHRAE  90.1  

Page 17: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

Wall,  Roof  &  Window  Requirements  for  Alberta  (Part  9)  

Climate  Zone  

Wall  -­‐  Above  Grade:  Minimum    R-­‐value  (IP)  

Roof  –  Flat/Cathedral:  Minimum  R-­‐value  (IP)  

Roof  –  A]c:  Minimum  R-­‐value  (IP)  

Window:  Max.  U-­‐value  (IP)  /  Min.  ER    

8   21.9   28.5   59.2   0.25  /  29  

7B   21.9   28.5   59.2   0.25  /  29  

7A   17.5   28.5   59.2   0.28  /  25  

6   17.5   26.5   49.2   0.28  /  25  

With

out  a

 HRV

 

Climate  Zone  

Wall  -­‐  Above  Grade:  Minimum    R-­‐value  (IP)  

Roof  –  Flat/Cathedral:  Minimum  R-­‐value  (IP)  

Roof  –  A]c:  Minimum  R-­‐value  (IP)  

Window:  Max.  U-­‐value  (IP)  /  Min.  ER    

8   17.5   28.5   59.2   0.25  /  29  

7B   17.5   28.5   59.2   0.25  /  29  

7A   16.9   28.5   49.2   0.28  /  25  

6   16.9   26.5   49.2   0.28  /  25  

With

 a  HRV

 

For  Comparison  to  NBC  2010  (2012  Update)  Sec.on  9.36  

Page 18: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

Excerpt  from  90.1-­‐2010  Table  5.5-­‐7  (Edmonton,  AB)  

Building  Enclosure  Component  

Climate  Zone  7  –  Residen%al  Buildings  Minimum  Assembly    

R-­‐value    c2  ⋅°F⋅  h/Btu  

Minimum  Insula%on  R-­‐value    

c2  ⋅°F⋅  h/Btu  Roof  –  Insula.on  Above  Deck   R-­‐20.8     R-­‐20  c.i.  Roof  –  Avc   R-­‐37.0     R-­‐38  Above  Grade  Wall  –  Wood-­‐Frame   R-­‐19.6   R-­‐13  +  7.5  c.i.  Above  Grade  Wall  –  Steel  Frame   R-­‐23.8   R-­‐13  +  15.6  c.i.  Above  Grade  Wall  –  Mass   R-­‐14.1   R-­‐15.2  c.i.  Below  Grade  Wall  –  Concrete   R-­‐10.9   R-­‐10.0  c.i.  Windows   Maximum  Window  U-­‐value    Btu/h·∙m2·∙°F  Non  Metal  Frame  (Vinyl,  Fibreglass  and  Wood)  

U-­‐0.35  (no  SHGC  requirement)  

Metal  Framed  Windows  (Aluminum,  Window  Wall)  

U-­‐0.45  (no  SHGC  requirement)  

Metal  frames  (Curtainwall  &  Storefront)  

U-­‐0.40  (no  SHGC  requirement)  

*  c.i.  =  con)nuous  insula)on  

Page 19: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!  Window-­‐wall  ra.os  >40%  !   Curtain-­‐wall  or  window-­‐wall  

spandrel  panels  !   Balconies  &  exposed  slab  

edge  projec.ons  !  Mass  concrete  walls  with  

interior  insula.on  !   Roof  parapet,  overhang  

details,  canopies  !   Insula.on  placed  between  

steel  studs  or  z-­‐girts  !   Best  suited  for  simple  

buildings  

Common  Difficul%es  in  Mee%ng  Prescrip%ve  Compliance  

Page 20: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Structural  Stud  Framing  in  Taller  Mul.-­‐Unit  Residen.al  Buildings  

Common  Difficul%es  in  Mee%ng  Prescrip%ve  Compliance  

Page 21: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Spandrel  Panels  

Common  Difficul%es  in  Mee%ng  Prescrip%ve  Compliance  

ver.cals  

Page 22: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Cladding  Aqachment  through  Exterior  Insula.on  –  Minimize  Thermal  Bridging  

Solu%ons  for  Mee%ng  Prescrip%ve  Compliance  

Page 23: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

Alternate  Cladding  Support  Comparison  

Page 24: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Cast-­‐in-­‐Place  Concrete  Balcony  &  Slab  Edge  Thermal  Breaks  

Solu%ons  for  Mee%ng  Prescrip%ve  Compliance  

Page 25: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Allows  for  greater  flexibility  in  architectural  design  !  Common  path  for  Mul.-­‐Unit  Residen.al  Buildings  where  more  

complex  enclosure  designs  are  u.lized  

!   Necessary  where  window-­‐wall  ra.os  exceed  40%  and  enclosure  assemblies/details  may  not  meet  minimum  prescrip.ve  requirements    

!   Requires  determina.on  of  effec.ve  thermal  performance  of  all  enclosure  assemblies,  details,  and  components  

!   Trade-­‐offs  made  between  any  enclosure  component  (i.e.  between  walls  and  windows,  or  walls  and  roofs  etc.)  

Building  Envelope  Trade-­‐off  Op%on  

Page 26: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Compliance  is  assessed  by  calcula.on  of  Envelope  Performance  Factor  (EPF)  calculated  using  ASHRAE  EnvStd  somware    !   EPF  approximates  the  total  hea.ng  and  cooling  energy  associated  

with  a  single  square  foot  of  surface.  A  lower  EPF  is  beqer  than  a  high  EPF  

!   Overall  U-­‐value  of  building  enclosure  driving  factor  in  EPF  plus  day-­‐ligh.ng  and  solar-­‐heat  gain  through  windows    

!   Proposed  building  enclosure  is  compared  to  a  minimally  prescrip.vely  compliant  baseline  building  enclosure  !   Baseline  building  construc.on  is  iden.cal  except  that  all  building  

enclosure  assemblies  meet  maximum  U-­‐value  (minimum  R-­‐value)  requirements  within  each  class  of  construc.on  and  a  40%    window-­‐wall  ra.o  is  assumed  

Building  Envelope  Trade-­‐off  Op%on  

Page 27: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Step  1:  Iden.fy  Building  “Spaces”  !   Step  2:  Define  “Surfaces”  within  each  Space  !   Step  3:  Coordinate  Surfaces  &  Assemblies  !   Step  4:  Summarize  Windows/Doors  for  each  surface  !   Step  5:  Summarize  Data  and  Calculate  Areas  !   Step  6:  Enter  Data  and  run  EnvStd  Program  

Building  Envelope  Trade-­‐off  Op%on  Process  

Page 28: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!  Wall  and  Roof  Areas  and  U-­‐values  input  into  ENVStd  Somware  by  construc.on  type,  orienta.on  and  occupancy  

!  Window/door  areas  entered  within  each  of  the  assemblies  

!   Output  from  ENVStd  shows  Pass/Fail  &  No.  of  EPF  Points  

Building  Envelope  Trade-­‐off  Op%on  

Page 29: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

Assessing  Reasons  for  Non-­‐Compliance  

Lower  EPF  is  beqer  

Current  DesignProposed Base Margin %  Difference

Roof 981 1011 30 -­‐3%Skylight 0 0 0Exterior  Walls  and  Windows 6552 5753 -­‐799 14%Floor 873 779 -­‐95 12%Slab 0 0 0Below  Grade  Wall 0 0 0Daylighting  Potential 3478 4140 663 -­‐16%Total 11884 11683 -­‐201 1.7%

FAILS

Component Area UxA %  of  Heat  LossWindows 10,884               4,898                   55.7%Doors 1,093                   492                         5.6%Wall  EW1 8,479                   1,495                   17.0%Wall  EW2 894                         147                         1.7%Wall  EW3 168                         26                             0.3%Curb  and  slab  edge  details 1,585                   652                         7.4%Floor  and  Soffit  Areas 7,466                   622                         7.1%Roof  and  Deck  Areas 7,474                   460                         5.2%TOTAL 38,043               8,791                  

Overall  Effective  U-­‐Value 0.23Overall  Effective  R-­‐Value 4.33

Page 30: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

Impact  of  Window  to  Wall  Ra%o  on  Overall  Performance  

Page 31: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

Value  of  High  Performance  Windows  on  ASHRAE  Compliance  

ASHRAE,  Maximum  40%  Glazing  Area  

Non-­‐Compliant  

Compliant  

1.  Allows  for  Higher  Window-­‐Wall  Ra%os  

Improve  Enclosure  R-­‐value  

Page 32: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!  Whole  building  energy  simula.on  considers  building  envelope  plus  HVAC,  DHW,  ligh.ng  and  power.  !   Trade-­‐offs  allowed  between  BE  and  mechanical  systems  !   Energy  cost  ($)  of  proposed  building  compared  to  baseline  

building  (with  minimally  compliant  enclosure  and  baseline  HVAC  system)    

!   Used  where  building  envelope  performance  cannot  meet  BE  Trade-­‐off  or  prescrip.ve  requirements    

!   Requires  detailed  building  envelope  R-­‐value  calcula.ons  for  energy  model  input  –  same  level  of  detail  as  required  for  BE  Trade-­‐off  with  overall  R-­‐values  

!   ECB  energy  model  is  different  the  LEED  PRM  energy  model  

Energy  Cost  Budget  Op%on  

Page 33: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Energy  Cost  Budget  –  depends  on  $  savings,  not  necessarily  energy  !  Bigger  benefit  to  addressing  higher  cost  fuel  (omen  electricity)  

rather  than  higher  energy  use  (ie  gas  hea.ng)  

!   Common  approach  for  compliance  for  buildings  undergoing  LEED  or  other  energy  modeling  

!  Mechanical  systems  omen  make-­‐up  for  poor  enclosure  choices  –  not  great  from  long-­‐term  or  passive  approach  

!   Allows  for  most  flexibility  in  design,  higher  window  to  wall  ra.o,  more  thermal  bridging  (to  a  point)  

Trends  with  Energy  Cost  Budget  Op%on  

Page 34: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   ASHRAE  Mandatory  Provisions  Checklist  

!   City  of  Vancouver  Submission  Checklist  

!   “Insula.on  Schedule”  and  Effec.ve  R-­‐values  on  Drawings  

!   Comparison  of  actual  vs  prescrip.ve  R-­‐values  

!   Energy  Modeling  outputs  

Compliance  Documenta%on  

Page 35: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Na.onal  Energy  Code  of  Canada  for  Buildings  (NECB)  2011  replaces  MNECB  1997  

!   Similar  compliance  paths  to  ASHRAE  90.1  –  Prescrip.ve,  Trade-­‐offs,  and  Energy  Modeling  !  3  –  Building  Envelope  !  4  –  Ligh.ng  !  5  –  HVAC  !  6  –  Service  Water  Hea.ng  !  7  –  Electrical  Power  Systems  and  Motors  !  8  –  Building  Energy  Performance  Compliance  Path  

!   Building  Envelope:  Maximum  window  to  wall  ra.o  from  40%  (HDD  <4000)  down  to  20%  (HDD  >7000)  

!   Energy  Consump.on  vs  Energy  Cost  

NECB  2011  Similari%es  &  Differences  

Page 36: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

ASHRAE  90.1-­‐2010  vs  NECB  2011  

Climate  Zone  

Wall  –  Above  Grade:  Minimum    R-­‐value  (IP)  

Roof  –  Flat  or  Sloped:  Minimum  R-­‐value  (IP)  

Window:  Max.  U-­‐value  (IP)    

8   31.0   40.0   0.28  

7B   27.0   35.0   0.39  

7A   27.0   35.0   0.39  

6   23.0   31.0   0.39  

NEC

B  2011  

ASHR

AE  90.1-­‐2010  –  

Reside

n%al  Building   Climate  

Zone  Wall  (Mass,  Wood,  Steel):  Min  R-­‐value  

Roof  (A]c,  Cathedral/Flat):  Min  R-­‐value  

Window  (Alum,  PVC/FG):Max.  U-­‐value  

8   19.2,  27.8,  27.0   47.6,  20.8   0.45,  0.35  

7B   14.1,  19.6,  23.8   37.0,  20.8   0.45,  0.35  

7A   14.1,  19.6,  23.8   37.0,  20.8   0.45,  0.35  

6   12.5,  19.6,  15.6   37,0,  20.8   0.55,  0.35  

*7A/7B  combined  in  ASHRAE  90.1  

Page 37: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Builder  Insight  Bulle.ns  &  Building  Enclosure  Design  Guides  ! www.hpo.bc.ca    

!   City  of  Vancouver  Checklists  

!   ASHRAE  90.1  User  Guides  !   NECB  2011  Presenta.ons  

For  More  Informa%on  &  Assistance  

Page 38: Adoption and Compliance with Energy Codes: ASHRAE 90.1 and NECB

!   Graham  Finch,  MASc,  P.Eng  [email protected]  604-­‐873-­‐1181  

Discussion