advanced high temperature alloys

121
Advanced High Temperature Alloys Prof. Dr.-Ing. Uwe Glatzel Metals and Alloys University Bayreuth SS 2010 University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys 1

Upload: joshibec

Post on 27-Oct-2015

61 views

Category:

Documents


0 download

DESCRIPTION

high temp allllooys

TRANSCRIPT

Page 1: Advanced High Temperature Alloys

Advanced High Temperature Alloys

Prof. Dr.-Ing. Uwe GlatzelgMetals and Alloys

University BayreuthSS 2010

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys1

Page 2: Advanced High Temperature Alloys

Lecturer:Lecturer:Prof Dr Ing habil Uwe GlatzelProf. Dr.-Ing. habil. Uwe Glatzel• born Dez. 1960• Physik-Diplom (B Sc and M Sc) in Tübingen• Physik-Diplom (B.Sc. and M.Sc) in Tübingen

(exchange year in Corvallis, Oregon, USA)• PhD thesis at the Institute for Metals Research, Technical

University Berlin, Prof. Monika Feller-Kniepmeier• post-doc (1 Jahr) at Stanford University• Habilitation TU-BerlinHabilitation TU-Berlin• Gerhard-Hess award of the German Science Foundation

(DFG) for young scientist (400.000 €)• 1996-2003 full professor for Metals and Alloys, Jena• since April 2003 Bayreuth (Chair for Metals and Alloys)postal address:

d i h b h ( )

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys2

Ludwig-Thoma-Str. 36b phone: +49 (0) 921 - 55-5555D-95447 Bayreuth, Germany e-mail: [email protected]

Page 3: Advanced High Temperature Alloys

Literature• R Bürgel Handbuch Hochtemperatur-Werkstofftechnik Vieweg

LiteratureR. Bürgel, Handbuch Hochtemperatur Werkstofftechnik, Vieweg

• R.C. Reed, The Superalloys - Fundamentals and Applications, Cambridge Univ. Press• H. Frost, M. Ashby, Deformation-Mechanism Maps, Pergamon Press

G M th M V d V d M t i l f Hi h T t E i i• G. Meetham, M. Van der Voorde, Materials for High Temperature Engineering Applications, Springer

• J. Betten, Creep Mechanics, Springer• Askeland: Materialwissenschaften, Spektrum Lehrbuch; 1994• Callister: Materials Science and Engineering - An Introduction, Wiley, New York, 1999• H. Schumann, Metallographie, Deutscher Verlag für Grundstoffindustrie, Leipzig• F. Vollertsen, S. Vogler, Werkstoffeigenschaften und Mikrostruktur, Hauser Verlag• P. Haasen, Physikalische Metallkunde, Springer-Verlag, Berlin• H -J Bargel G Schulze Werkstoffkunde VDI-Verlag DüsseldorfH. J. Bargel, G. Schulze, Werkstoffkunde, VDI Verlag, Düsseldorf• P. Sarrazin, A. Galerie, J. Fouletier, Mechanisms of High Temperature Corrosion, Trans

Tech Publications

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys3

lecture notes: http://www.metalle.uni-bayreuth.de then "Lehre" then "Vorlesungen", you will find the link to this lecture notes and three review talks we will do at the end.

Page 4: Advanced High Temperature Alloys

What You Should Know:What You Should Know:

• basic thermodynamics• introduction to diffusionintroduction to diffusion• introduction to dislocations• phase diagrams• theory of elasticity• theory of elasticity• ...• basic materials science courses

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys4

Page 5: Advanced High Temperature Alloys

Contents1 Introduction Basics

Contents1. Introduction, Basics2. Stability of Microstructure3. Mechanical Properties

a) Static)b) Cyclic (Fatigue)

4 High Temperature Corrosion4. High Temperature Corrosion5. High Temperature Alloys6. Lost Wax Investment Casting7. Depending on Time: Lectures on

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys5

p ga) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys

Page 6: Advanced High Temperature Alloys

IntroductionIntroduction

• only alloys will be looked at (no ceramics no• only alloys will be looked at (no ceramics, no polymers).

• no coatings (BUT : practically all high temperature systems are coated!), simply not enough timeenough time.

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys6

Page 7: Advanced High Temperature Alloys

Maximum Temperatures for li i f iff i lApplications of Different Materials

i i t tGroup maximum service temperature[°C] deformation/damage mechanism

Polymer up to 300 melting, decomposing (pyrolyze)

Glass up to 800 viscous flow

Fe-Basis (coated) up to 1100Fe-ODS up to 1300

Metals

Fe ODS up to 1300Ni-base up to 1200Pt-base up to 1600

refractory metals in inert h b 1600

creep, dislocation climb,grain boundary sliding

atmosphere above 1600MoSi2 up to 1800

Ceramics SiC up to 1600viscous flow, glass transition temperature grain boundaryCeramics SiC up to 1600 temperature, grain boundary

sliding

Composits (SiC/C) up to 1600 complex

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys7

p ( ) p p

Page 8: Advanced High Temperature Alloys

Overview MaterialsOverview Materialsen

gth

usab

le st

ru

source: Plansee AGPlansee AG, Reutte, Tirol, Austria

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys8

temperature [°C]500 1500 2000

Page 9: Advanced High Temperature Alloys

Taking Density into AccountTaking Density into Accounten

gth

usab

le st

ru

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys9

500 1500 2000temperature [°C]

Page 10: Advanced High Temperature Alloys

Oxidation ResistanceOxidation Resistanceen

gth

usab

le st

ru

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys10

500 1500 2000temperature [°C]

Page 11: Advanced High Temperature Alloys

Refractory Metals:

Most common definition ofwider definition Most common definition of

refractory metals (refractory = widerspenstig, halsstarrig):

of refractory metals

two elements of the 5. and three elements of the 6. period with melting points higher

Tm of platinum

with melting points higher than Pt. Processing in general by powder metallurgy.

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys11

Page 12: Advanced High Temperature Alloys

DensityDensity

R PtOs, IrReWTa

Pt

Au

Os, Ir

Ru, Rh, PdHf

TcMo

PdMo

NbAg

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys12

Page 13: Advanced High Temperature Alloys

Abundance of ElementsAbundance of Elements

to find 1 atom Rh within a bunch of Si-atoms is comparable toatoms is comparable to find one individual person within the word population

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys13

population

Page 14: Advanced High Temperature Alloys

Material ChoiceMaterial Choice

• temperature• environment• moving/non-moving part• design complexity (how to manufacture)• price constrictions (depending on applicationprice constrictions (depending on application

of system). Reduction of 1 kg in weight:car 0 5 €– car ~ 0 - 5 €

– plane ~ 100 – 500 €

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys14

– aerospace ~ 100.000 - 500.000 €

Page 15: Advanced High Temperature Alloys

Influence of onInfluence of ... on ...• temperature:temperature:

– phase transitions, volume fractions, ...– diffusion ( recrystallization, dislocation climb, diffusional creep, ... )– thermal fatigue (TF)

• mechanical:– creep– fatigue (low cycle, LCF, high cycle fatigue, HCF)

i t• environment:– oxidation– corrosion– corrosion

• combinations:– thermo-mechanical fatigue (TMF)

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys15

thermo mechanical fatigue (TMF)– stress corrosion cracking, stress oxidation, ...

Page 16: Advanced High Temperature Alloys

BasicsBasicsThermodynamics ↔ KineticsThermodynamics ↔ Kinetics

Boltzmann-statistics: energy ofmovement increases with temperature 3p

Tk23u Batomkin ⋅=

TRQ

0 e ⋅−

⋅ε=ε &&Tk3Tk

232u2u BBatomkinatomtotal ⋅⋅=⋅⋅=⋅=

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys16

0Arrhenius-plotTR3U

moltotal ⋅⋅= 0,33 eV, bzw. 32 kJ/mol bei 1000°C

Page 17: Advanced High Temperature Alloys

Vacancy ConcentrationVacancy Concentration

F U T S t ti iF = U - T·S non-zero vacancy concentration is in thermodynamic equilibrium

TRQ

v

vac

ec ⋅−

= Qvacnickel = 1,36 eV (energy necessary to create one vacancy)

T[°C] 20 300 450 800 1000 1200 1454

T/Tm 0.17 0.33 0.42 0.62 0.74 0.85 1.00

cv 10-23 3·10-12 10-9 10-6 10-5 7·10-5 3·10-4

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys17

equilibrium vacancy concentration for nickel

Page 18: Advanced High Temperature Alloys

Nickel Vacancy ConcentrationNickel Vacancy Concentration

100

10 5

entra

tion 10-5

10-10

canc

y co

nc

10-15

Nickel Vacancy Concentration

vac

10-20

Nickel Vacancy Concentration

ncen

tratio

n [

10-4

]

1,00

temperature [°C]

0 200 400 600 800 1000 1200 1400 160010-25

Tm0 200 400 600 800 1000 1200 1400 1600

vaca

ncy

con

0,100,01

T

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys18

temperature [°C] Tm

Page 19: Advanced High Temperature Alloys

DiffusionDiffusion

cDj ∇⋅−=rv

1. Fick's law[j] ( ) 2 1[j] = (atoms) · m-2 · s-1

[D] = m2 · s-1[D] m s

[c] = (atoms) · m-3

diff ivacancy diffusion or volume diffusion

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys19

Page 20: Advanced High Temperature Alloys

Coefficient of DiffusionCoefficient of Diffusion

Qvac energy to create a vacancyQ i ti activation energy to migrate a vacancyQmigration activation energy to migrate a vacancyQSD activation energy for volume diffusion

QSD = Qvac + Qmigration

TkQ

0Tk

)QQ(

0

SDmigrationvac

eDeDD ⋅−

+−

⋅=⋅= 00

QSD ≈ 17 ·kB ·Tm QSDnickel ≈ 2.5 eV = 244 kJ/mol

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys20

(for a perfect crystal; defects will lower the activation energies)

Page 21: Advanced High Temperature Alloys

Dependence Melting Point and Enthalpy of Vacancy Creation

T Q t lelement Tm[°C] 17·R·Tm

Qvac[eV]

crystal structure

Pb 327 0 88 0 57 fccPb 327 0.88 0.57 fcc

Al 660 1.36 0.68 fcc

Cu 1 085 1.99 1.29 fcc

Ag 1 235 2.21 1.12 fcc

Ni 1 455 2.53 1.78 fcc

Pt 1 768 2 98 1 32 fccPt 1 768 2.98 1.32 fcc

Mo 2 623 4.23 3.00 bcc

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys21

W 3 422 5.40 4.00 bcc

Page 22: Advanced High Temperature Alloys

QSD versus TQSD versus Tm

400 kJ/mol

0 13 k /( l )0.137 kJ/(mol·K)≈ 17 · kB ·NA

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys22

Page 23: Advanced High Temperature Alloys

Coefficient of DiffusionCoefficient of Diffusion

Steep slope indicates a p phigh activation energy.

S ll l t diffSmall elements diffuse faster.

Diffusion in fcc crystals slower than in bcc crystals.y

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys23

Page 24: Advanced High Temperature Alloys

Coefficient of Diffusion with DefectsCoefficient of Diffusion with Defects

Coefficient of diffusion of Th i W

surface diffusion

in W.

Overall velocity for diffusion grain boundary diffusion

depending on grain boundary thickness, grain size and volume diffusion

dislocation density.pipediffusion

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys24

Page 25: Advanced High Temperature Alloys

Pipe DiffusionPipe DiffusionD D + a ρ DDeff = DSD + adisl. · ρ · Ddisl.

adisl. area of dislocation core( ≈ 5 b2 ≈ 0 3 nm2)ol me diff sion ( ≈ 5 b2 ≈ 0.3 nm2)

ρ dislocation density

D i diff i l

volume diffusiondominant

pipe diffusiondominant Ddisl. pipe diffusion along

dislocation core

t fl D

dominant

increasing

atom flux ~ D·area

2grainSD dD~

timeatoms

⋅⎟⎠⎞

⎜⎝⎛

nbD~i

atoms 2disl ⋅⋅⎟

⎠⎞

⎜⎝⎛

decreasing

dashed line:

diffusion in crystal by the velocity of pipe diffusion

graintime ⎠⎝

22 bDnbDdD

identical atom fluxes if:time .disl

.disl⎟⎠

⎜⎝

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys25

ρ⋅⋅=⋅⋅=⋅ 2.disl

grain

2.dislgrainSD bD

dbDdD

Page 26: Advanced High Temperature Alloys

Grain Boundary DiffusionGrain Boundary Diffusion

Deff = DSD + π · δ / d · Dgrain bound.

with:volume diffusiondominant

grain boundary diffusion

δ effective grain boundary thickness ( ≈ 2 b ≈ 0.5 nm)

dominantfinegrain

d grain size

D pipe diffusion along

coarsegrain

Ddisl. pipe diffusion along dislocation core

dashed line: diffusion in crystal by the velocity

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys26

y y yof grain boundary diffusion

Page 27: Advanced High Temperature Alloys

Activation Energies Indicating Mechanism Changes

~ QSD

Single crystal aluminium, oriented such that <110>{111} slip is activated.

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys27

Lytton, Shepard and Dorn, Trans. AIME 212 (1958) 220

Page 28: Advanced High Temperature Alloys

Diffusion in Ordered Structures ( lli h )(Intermetallic Phases)

• High binding energies high activation• High binding energies high activation energies low coefficient of diffusion

• For example NiAl: very low enthalpy of ordered B2 structure low enthalpy outweighs entropyB2 structure low enthalpy outweighs entropy

ordered up to meltingt ttemperatureTm

Ni = 1454°CTm

Al = 660°CTm

NiAl = 1638°C

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys28

m

Page 29: Advanced High Temperature Alloys

Second Fick's LawSecond Fick s LawC b l d d di tl f fi t Fi k' l

cDtc

Δ⋅=∂∂

Can be concluded directly from first Fick's law.

Similar in heat transfer systems electricalt∂ Similar in heat transfer systems, electrical potential, ... .

1( )x1)x(f1 Γ−=

⎟⎞

⎜⎛Γ

x1)(f0.6

0.8

f1(x)

⎟⎠

⎞⎜⎝

⎛Γ−=5.0

1)x(f2

⎟⎞

⎜⎛Γ

x1)x(f0.2

0.4

f2(x)

f3(x)

⎟⎠

⎜⎝

Γ−=05.0

1)x(f3

( ) ⎟⎞

⎜⎛ xsolution to these

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys29

0.5 1 1.5 2( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛Γ⋅−−=

tD2xccc)t,x(c 011

solution to these boundary conditions:

Page 30: Advanced High Temperature Alloys

Thermal ConductivityThermal Conductivity

The most simple, stationary case: no heat radiation, constant temperatures in front and back of component.

λ … coefficient of heat (or thermal) conductivity: λ = a · cp · ρ

a … coefficient of temperature conductivity

cp … heat capacity

ρ … density

compare:

cDj ∇⋅−=rr

Tλq ∇⋅−=r

&r

c∂ T∂

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys30

cDtc

Δ⋅=∂∂ ΔTa

tT

⋅=∂∂

Page 31: Advanced High Temperature Alloys

Temperature Distribution with h l i i ( )Thermal Barrrier Coating (TBC)

cooling aircooling air

hot air

Wärmedämm-schicht

Haftvermittlerschicht GrundwerkstoffTBC bond coat substrateschicht

In case of transients, the temperature should reach a stable distribution as fast as possible in order to reduce thermal stresses ( temperature conductrivity as high as possible).I f t ti i t h t d ti it l d t h t fl i t th lid

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys31

In case of stationary circumstances, heat conductivity leads to heat flow into the solid.

Page 32: Advanced High Temperature Alloys

Material Parameters at RTMaterial Parameters at RT

heat cond heat cap density temp cond

⎥⎦⎤

⎢⎣⎡

⋅KmW

⎥⎦

⎤⎢⎣

⎡⋅KkgJ

⎥⎦⎤

⎢⎣⎡

3cmg

⎥⎦

⎤⎢⎣

⎡ −

sm10

26

material/property

heat cond.λ

heat cap.cp

densityρ

temp. cond.a

⎦⎣ g ⎦⎣ ⎦⎣

ferritic steel 45 460 7.8 13.0

austenite steel 15 500 8.0 3.8

Ni-base alloys 11 450 8.2 3.0

Mo 145 240 10.2 59.0

Ti alloys (α-rich) 7 530 4.5 2.9

Al 210 890 2.7 87.0

Al2O3 bei RT( Al2O3 bei 1000°C )

25( 6)

800 3.9 8.4source: Bürgel

Attention: Heat conductivity strongly depends on alloy composition see steels and pure

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys32

Attention: Heat conductivity strongly depends on alloy composition, see steels and pureNi with 91 W/(m⋅K) in comparison to Ni-base alloys with 11 W/(m⋅K)

Page 33: Advanced High Temperature Alloys

ContentsContents1 Introduction Basics1. Introduction, Basics2. Stability of Microstructure3. Mechanical Properties

a) Staticb) Cyclic (Fatigue)

4 High Temperature Corrosion4. High Temperature Corrosion5. High Temperature Alloys6. Lost Wax Investment Casting7. Depending on Time: Lectures on

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys33

a) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys

Page 34: Advanced High Temperature Alloys

Microstructure is NOT stableMicrostructure is NOT stable

annealed deformedannealed deformed

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys34

stress-relieved recrystallized

Page 35: Advanced High Temperature Alloys

RecrystallizationRecrystallization

time dependence of recrystallization can berecrystallization can be approximated by Avrami Johnson MehlAvrami-Johnson-Mehl function:

n

0tt

e1f⎟⎠⎞⎜

⎝⎛−

−=r e1f

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys35

Page 36: Advanced High Temperature Alloys

Grain CoarseningGrain Coarsening

• driving force: reduction of grain boundary energygy

• T > 0.7 · Tm

d f i• no pre-deformation necessary• self-similar systemse s sys e• Ostwald ripening d ~ t1/3 (big grains eat up

ll i )small grains)• new grains have low dislocation density

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys36

g y

Page 37: Advanced High Temperature Alloys

Grain CoarseningGrain Coarsening

monomodal

bimodal (some grain boundaries are pinned, e.g. by precipitates)

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys37

Page 38: Advanced High Temperature Alloys

Precipitate HardeningPrecipitate Hardening

Requirements:• solid solution at higher

t t ( bilit ttemperatures (ability to homogenization heat treatment)treatment)

• during cooling a two-phase region should be reachedg

• in general: cooling rate as high as possible, thereafter g pannealing (in the two-phase region) to let grow the

i i

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys38

precipitates

Page 39: Advanced High Temperature Alloys

Thermodynamic ↔ KineticThermodynamic ↔ Kinetic

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys39

Page 40: Advanced High Temperature Alloys

Example: Al-Cu AlloyExample: Al Cu Alloy

G i i P tGuinier-Preston Zones leading to θ-Precipitates (Al2Cu) have paved the way to the success of Al-alloys

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys40

Page 41: Advanced High Temperature Alloys

Other Examples of i i h d iprecipitate hardening:

Al2Cu in AlCu alloy:

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys41

nickel-base superalloyplatinum-base superalloy

Page 42: Advanced High Temperature Alloys

Time Dependence of Precipitation Hardening

nucleation growth coarseningnucleation, growth, coarsening

T = const.

dT precipitate size λT distance between precipitates

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys42

fT volume fraction of precipitates

Page 43: Advanced High Temperature Alloys

Coherent - Semicoherent - IncoherentCoherent Semicoherent Incoherent

(mit Orientierungsbezug) (ohne Orientierungsbezug)

misfit ( ) aa

aaa

aaa

aaaa:

T

MT

M

MT

MT21

MT Δ≈

−≈

−≈

+−

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys43

( ) aaaaa TMMT2 +

Page 44: Advanced High Temperature Alloys

Energy ConsiderationEnergy Consideration

ΔGtotal = ΔGvol + ΔGboundary + ΔGstrain + ΔGdefect

total change in free enthalpy

strain enthalpy (elastic energy + dislocation line energy)

enthalpy of phase boundary (scales with surface)

reduction of enthalpy by precipitation coupled with a defect

enthalpy of formation of matrix to precipitate (scales with volume)

py p y ( )

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys44

Page 45: Advanced High Temperature Alloys

Heterogeneous NucleationHeterogeneous Nucleation

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys45

Page 46: Advanced High Temperature Alloys

TEM-Micrograph of TiC Precipitates at Di l i i A i i S lDislocations in an Austenitic Steel

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys46

Page 47: Advanced High Temperature Alloys

Ostwald-Ripening of PrecipitatesOstwald Ripening of Precipitates

d3 - d03 ~ D⋅t here for T/Tm ≈ 0.74

' ti l i i IN 738 LC tγ' particle size in IN 738 LC atT = 920°C.

particle coarsening constant of(50 nm)3/h(50 nm)3/h

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys47

Page 48: Advanced High Temperature Alloys

ContentsContents1 Introduction Basics1. Introduction, Basics2. Stability of Microstructure3. Mechanical Properties

a) Staticb) Cyclic (Fatigue)

4 High Temperature Corrosion4. High Temperature Corrosion5. High Temperature Alloys6. Lost Wax Investment Casting7. Depending on Time: Lectures on

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys48

a) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys

Page 49: Advanced High Temperature Alloys

Room Temperature (RT) versusHi h T (HT) D f iHigh Temperature (HT) Deformation

• most alloy properties at room temperature are time and rate independent (elastic constants, tension stress, ... ), tension stress experiment.

• For T > 0.4 · Tm the properties (deformation) will be time m p p ( )and rate dependent, creep experiment.

deformation hardening fine grain hardening solid solution strengthening

precipitate hardening

cold deformation (RT) strong medium medium to strong medium to strong

creep (HT)

temporary hardening, reduced creep rupture strength, may lead to

recrystallization

reduced strength with fine grain material coarse grain, ideally

single crystal

medium medium to strong

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys49

Page 50: Advanced High Temperature Alloys

Change in Materials Properties with Temperature

Material properties of steel and Ni alloys at elevatedNi-alloys at elevated temperatures. Comparison b t h t t d lbetween short-term and long-term parameters.

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys50

Page 51: Advanced High Temperature Alloys

Tension ↔ Creep ExperimentTension ↔ Creep Experiment

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys51

Page 52: Advanced High Temperature Alloys

Elastic (E-)Modulus andi iPoisson's Ratio

)1(2EG

ν+⋅=shear modulus G

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys52

Page 53: Advanced High Temperature Alloys

Anisotropy and Temperature Dependence of El i C i Ni b S llElastic Constants in Ni-base Superalloys

D. Siebörger, H. Knake, U. Glatzel, Mat. Sci. Eng. A298 (2001)

Orientation dependence of Young’s modulus E of matrixphase Distance from the center tophase. Distance from the center to the surface indicates the magnitude of the Young’s modulus i thi di ti

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys53

in this direction.

Page 54: Advanced High Temperature Alloys

High Temperature DeformationHigh Temperature Deformation

• dislocation glide (Peierls stress, in fcc and hcp very small and for T > 0.15 Tm negligible)

li f di l ti d di l ti i t ti (f l• cross slip of screw dislocations and dislocation interactions (for a low stacking fault energy larger dislocation spacing thermal activation necessary T > 0 2 T influence on deformation rate)activation necessary, T > 0.2 Tm, influence on deformation rate)

• climb of edge dislocations to overcome obstacles:diffusion at completepdislocation line

T > 0.4 Tm

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys54

Page 55: Advanced High Temperature Alloys

Dislocation ClimbDislocation Climb

climb of edge dislocations to annihilate each other.

arrangement in low energy configurations (sub-grain boundaries), climbing around b l (l i h lidabstacles (leaving the glide

plane)

movement of screw dislocations ith kink

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys55

dislocations with kink

Page 56: Advanced High Temperature Alloys

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys56

Page 57: Advanced High Temperature Alloys

Internal Back StressInternal Back Stress

i l i li b ll ihil i f di l iDislocations climb allows annihilation of dislocations and to establish a constant dislocation density, resulting in an internal back stress of:

bG ρασ ⋅⋅⋅= bG.int

1bG 1σdislocation = and

r1

2bG⋅

π⋅⋅

r1

G shear modulus, α constant 0.3 - 1, b magnitude of Burgers vector

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys57

Page 58: Advanced High Temperature Alloys

Creep ExperimentCreep Experiment

behavior of pure metals:

primary secondary tertiary:

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys58

primary secondary tertiary:

Page 59: Advanced High Temperature Alloys

Creep Experimental Setup up to 1400°C

Constant temperature and stress or a d st ess oload

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys59

Page 60: Advanced High Temperature Alloys

Creep Experimental Setup forElectrical Conductivity Materialy

up to Melting Temperature

Pyrometer from left, optical strain measurement from right, both contact-free.

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys60

g ,

Page 61: Advanced High Temperature Alloys

Interrupted creep testsInterrupted creep tests

[001] orientation 1123K 650MPa67

single crystal (SX) nickel base superalloy (habilitation thesis Glatzel)8x10-6

[001] orientation, 1123K, 650MPa

stra

in [

%]

3456

[001] orientation, 1123K, 650MPa

in ra

te [

1/s]

4x10-6

6x10-6

0 10 20 30 40 50 60 70

s

012

0 10 20 30 40 50 60 70

stra

i

0

2x10-6

time [h]

0 10 20 30 40 50 60 70

time [h]

0 10 20 30 40 50 60 70

1123K, 650 MPa]

10-5

logarithm of strain rate versus strain,

stra

in ra

te [

1/s]

10-6

logarithm of strain rate versus strain (most valuable information for

i l i i )

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys61strain [%]

0 1 2 3 4 5 610-7

materials scientist)

Page 62: Advanced High Temperature Alloys

Different Creep StagesDifferent Creep Stages

• primary creep: strain rate dε/dt decreases material hardens

• secondary creep stage: strain rate constant hardening and softening are in equilibriumhardening and softening are in equilibrium dislocation multiplication and annihilation in equilibrium disl. density ρ = const.

• tertiary creep: necking (creep pores) developtertiary creep: necking (creep pores) develop local stress and strain rate increases

drasticallyUniversity Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys62

drastically.

Page 63: Advanced High Temperature Alloys

Modelling of Primary and dSecondary Creep Stage

l idensity velocity

vb= ρε& vb ⋅⋅= ρε

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys63

Page 64: Advanced High Temperature Alloys

Problem with Low Creep RatesProblem with Low Creep Rates

Life time of stationary gas turbines > 20 years Assuming aLife time of stationary gas turbines > 20 years. Assuming a maximum deformation of 3%, this leads to an assumed

d i ( l i i d isteady state strain rate (neglecting primary and tertiary creep) of about = 5·10-11 s-1. Reliable data in labs statesteadyε&can only be obtained down to 1·10-9 s-1 (1 μm change with l0 = 25 mm after 10 h one creep experiment with 3.5%l0 25 mm after 10 h one creep experiment with 3.5% strain per year!).Th f ithi i it l b t dTherefore within university labs we are two and more orders of magnitude too fast than real life in a stationary

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys64

gas turbine!

Page 65: Advanced High Temperature Alloys

Engineering Creep CurvesEngineering Creep Curves

raw data creep curves:raw data creep curves:

time to failure: time - strain

isochrone time to failure: isochrone strain

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys65

Page 66: Advanced High Temperature Alloys

Natural Creep LawNatural Creep Law

b& vbstatesteady ⋅⋅ρ=ε&

2external

bG⎟⎠⎞

⎜⎝⎛

⋅σ

≈ρbG ⎠⎝ ⋅

1v σexternal~v σ

natural creep lawbG

~ 2

3external

⋅σ

ε&

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys66

bG

Page 67: Advanced High Temperature Alloys

Norton Creep Law (Empirical)Norton Creep Law (Empirical)

TRQ

nexternal

creep

eA ⋅

⋅σ⋅=ε&with the Norton creep exponent "n" and

Qcreep ≈ Qself diffusionQcreep Qself diffusion

l b kpower law break down (plb) stress dependence

of the stationary T = const.

dislocation

creep rate of the austenitic steel 800 H at 900°C and

climbH at 900°C and 1000°C:

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys67

diffusional creep

Page 68: Advanced High Temperature Alloys

Diffusional CreepDiffusional Creep

• Nabarro-Hering creep (pure volume diffusion)

D ΩTkh

D2 2

diffusionselfNH ⋅

Ω⋅σ=ε&

• Coble creep (grain boundary diff.)

TkhD

2 3boundarygrain

C ⋅Ω⋅σ⋅δ

=ε&

h grain size, δ thickness of grain boundary

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys68

Page 69: Advanced High Temperature Alloys

Combined NH and Coble Creep:Combined NH and Coble Creep:

2eff

3boundarygrain

2diffusionself

CNHdiff iD~

DD2 ⋅

Ωσ⎟⎟⎞

⎜⎜⎛ ⋅δ⋅π

+⋅Ω⋅σ

⋅=ε+ε=ε &&&232CNHcreepdiffusion hTkhhTk

2 ⎟⎟⎠

⎜⎜⎝

+⋅

ε+εε

hD

DD boundarygraindiffusionselfeff

⋅δ⋅π+=

real geometry (non-cuboidal grains)

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys69

Page 70: Advanced High Temperature Alloys

Temperature Dependence of iStationary Creep Rate

σ = 28 MPA = const.

fcc alloys:

TRQcn

53A−

⎟⎞

⎜⎛ σ& TR5,3

SFs eE

A ⋅⋅⎟⎠⎞

⎜⎝⎛ σ⋅γ⋅=ε&

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys70

Austenitischer Stahl 800H

Page 71: Advanced High Temperature Alloys

Activation Energy for CreepActivation Energy for Creep

slope = 1

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys71

Page 72: Advanced High Temperature Alloys

Constant Load ↔ Constant StressConstant Load ↔ Constant Stress

( )nn )1(FF ⎟⎞

⎜⎛ ε+⋅⎞⎛ ( )nn

000

00n

0 1A

)1(FAF

ε+⋅σ⋅ε=⎟⎟⎠

⎞⎜⎜⎝

⎛ ε+⋅⋅ε=⎟

⎠⎞

⎜⎝⎛⋅ε=σ⋅ε=ε &&&&&

failure

in case the gauge length deforms uniform with constant volume

This method is applicable to determine the stress exponent "n" only, if the secondary creep state y, y plasts to at least 10%

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys72

ln = ln + n · ln σ0 + n · ln (1+ε) = const. + n · ln (1+ε)ε& 0ε&

Page 73: Advanced High Temperature Alloys

Ashby Deformation Mechanism Maps

n = 3

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys73

Page 74: Advanced High Temperature Alloys

Ashby Deformation Mechanism Maps

Versetzungsklettern !dislocation climb !

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys74

Page 75: Advanced High Temperature Alloys

Deformation Mechanisms:Deformation Mechanisms:

Elastic Deformation: Spontaneous and reversible deformation. In the elastic region: σ = E·ε (rule of thumb: εe, max ≈10-3, but definitely << 1%). Plastic or non-reversible deformation achieves way higher strains. Coble-creep (grain boundary diffusion) is in theory possible even at 0 K.p (g y ) y p

Dislocation Glide: … without significant time dependent recovery (climb). Is dominant in the complete temperature regime from 0 K up to the melting point Tm at moderate and higher stress levels. At low temperatures (< 0 4 T ) dislocation glide has the lower boundary in the range of the elastic stress limittemperatures (< 0.4⋅Tm) dislocation glide has the lower boundary in the range of the elastic stress limit (typically 10-3⋅E).

Dislocation Climb: At higher temperatures (> 0.4⋅Tm) and lower stress levels dislocation climb plays the major role => time dependent constant strain rate (dε/dt)ss ~ σn, with a Norton stress exponent in-between 3 und 8.

Diffusional Creep: In-between 0 K und 0.8⋅T and very low stress levels: Coble-creep (grain boundaryDiffusional Creep: In between 0 K und 0.8 Tm and very low stress levels: Coble creep (grain boundary diffusion). Below 0.4⋅Tm not measurable. For geological times a time dependent deformation can be determined. Transition to Nabarro-Herring creep (volume diffusion) is dependent on grain size and grain boundary thickness The transition temperature from coble to Nabarro Herring creep can be explained by

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys75

boundary thickness. The transition temperature from coble to Nabarro-Herring creep can be explained by the different activation energies of volume and grain boundary diffusion.

Page 76: Advanced High Temperature Alloys

Creep of AlloysCreep of Alloys

a) interaction dislocationand impurity (low temp.)

solutionsolidi bG σ+ρ⋅⋅⋅α=σ

b) stationary dislocationpinned by impurities(C ll l d )(Cottrell clouds)

c) pulled off Cortrell clouds(Lüd b d )(Lüders bands)

d) gliding dislocation trailsi iti b hi d ( i lid )impurities behind (viscous glide)

e) impurities faster than dislocation (very high temp., no hardening)

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys76

f) annihilation due to dislocation climb

Page 77: Advanced High Temperature Alloys

Precipitation HardeningPrecipitation Hardening

eprecipitatsolutionsolidi bG σ+σ+ρ⋅⋅⋅α=σ

threshold stress concept (with n ≈ 3 - 4 and Qcreep = Qself diffusion):

TRQcn

0ss e

EA ⋅

⋅⎟⎠⎞

⎜⎝⎛ σ−σ⋅=ε&

mechanism temperaturecoherent and semi-

coherent phase boundaries

in-coherent phase boundaries

cutting 0 K up to Ts yes no

bypass by Orowan 0 K up to Ts yes yes

li b b l 0 4 T

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys77

climb over obstacles > 0.4⋅Ts yes no

Page 78: Advanced High Temperature Alloys

Hardening Mechanisms as Function of Precipitate Size

dT0 initial precipitate sizedT0 initial precipitate size

σ1 and σ2 arbitrary external stress levels

passing by:

li bi

Td~ε&

1&

= cutting

climbing:

Cutting is relevant only for coherent

2Td

precipitates

Dependence of stationary creep rate on initial precipitate size for two different

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys78

p pexternal stress levels

Page 79: Advanced High Temperature Alloys

Pinning of Dislocations by bid i i i lCarbides in Austenitic Steel

T 1000°C 25 MP bid f th t TiC d M C

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys79

T = 1000°C, σ = 25 MPa, carbides of the type TiC und M23C6

Page 80: Advanced High Temperature Alloys

Very High Volume FractionsVery High Volume Fractions

Volume fractions of 70% are only achievable with non spherical precipitatesVolume fractions of 70% are only achievable with non-spherical precipitates. Spacing between precipitates is getting smaller Orowan stressσO ≈ G·b/L necessary. For small strains precipitates are not cut byσOrowan G b/L necessary. For small strains precipitates are not cut by dislocations. With G = 90 GPa, b = 0.25 nm, L ≈ 75 nm => σOrowan ≈ 300 MPa

nickel base superalloys

ODS llODS alloys:

σOrowan ≈ .vol

dfbG ⋅⋅

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys80

.partd

Page 81: Advanced High Temperature Alloys

Dispersion Hardening(oxide dispersion strengthened alloys (ODS-alloys))

precipitate strengthenedyield precipitate strengthened

dispersion strengthened

stress

temperature

back-side pinning of dislocation by

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys81

p g yODS-particle (Rössler + Arzt)

Page 82: Advanced High Temperature Alloys

Summary:d i h iHardening Mechanisms

Internal back stress in steady state regime: ρασ ⋅⋅⋅= bGi

Orowan stress in case of precipitates or particles: σOrowan ≈ G·b/L

Solid solution strengthening: ΩΔΩ⋅≈ .constsolutionsolidσ

ΔIn case of coherent precipitates: E

aa

coherencyΔ

≈σ

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys82

Page 83: Advanced High Temperature Alloys

Creep DamageCreep Damage

creation of a creep pore in poly-crystalline material due to disloction glide:

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys83

a) cracks at grain boundaries b) cavities (micropores) at grain boundaries

Page 84: Advanced High Temperature Alloys

Creep DamageCreep Damage

nucleation, not detectable with OMfracture

micropore, difficult to detectmicro cracks

pear necklace like chain of micropores (easy detectable)

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys84

Page 85: Advanced High Temperature Alloys

Extrapolation of Time-to-Fracture Data(L Mill l L Mill )(Larson-Miller plot, Larson-Miller parameter)

M k G t l ti ith t t K d t 1

Kt =

Monkmann-Grant relation with constant K and exponent m ≈ 1:

or: ( )lnmK)tln( ε&mss

ftε

=&

or: ( )ssf lnmK)tln( ε⋅−=

TRQcreep

eB ⋅−

⋅=ε& or: 1BB)ln( 21ss ⋅−=ε&ss eBε T

)( 21ss

11T1PC

T1BmBmK)tln( 21f ⋅+−=⋅⋅−⋅−=

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys85

with material dependent constants C and P

Page 86: Advanced High Temperature Alloys

Larson-Miller-PlotLarson Miller Plott ti t bi b t 20 f i 130 000 hstationary gas turbine, about 20 years of service ~ 130.000 h

Comparison of CMSX-6, LEK 94 d CMSX 4LEK 94 and CMSX-4, patent Wöllmer, Glatzel,

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys86

P = T⋅[20 + ln(tf)]⋅10-3 (T in K, tf in h)Mack, Wortmann

Page 87: Advanced High Temperature Alloys

Comparison LEK 94 withdCMSX-4 and CMSX-6

3

500CMSX-6 [Wortmann 88] 8.0 g/cm3

CMSX-4 [Erickson 94] 8.7 g/cm3

CMSX-4 [Frasier 90] 8.7 g/cm3

LEK-2 8.5 g/cm3

MPa

]

gLEK-4 8.2 g/cm3

LEK-5 8.2 g/cm3

LEK-3 8.1 g/cm3

LEK-6 8 3 g/cm3

24 K

stre

ss [M 230

LEK 6 8.3 g/cmLEK-1C 8.4 g/cm3

LEK-1B 8.3 g/cm3

LEK-1A 8.2 g/cm3ΔT = 10 K

120

29 K

Not corrected

Larsen-Miller-parameter25 26 27 28 29 30 31 32

10 K

regarding density!

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys87

Larsen Miller parameterP = T (20+log tB) 10-3

Page 88: Advanced High Temperature Alloys

ContentsContents1 Introduction Basics1. Introduction, Basics2. Stability of Microstructure3. Mechanical Properties

a) Staticb) Cyclic (Fatigue)

4 High Temperature Corrosion4. High Temperature Corrosion5. High Temperature Alloys6. Lost Wax Investment Casting7. Depending on Time: Lectures on

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys88

a) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys

Page 89: Advanced High Temperature Alloys

Time Dependent Variation of Stress d/ T d/and/or Temperature and/or ...

Wöhl di f T < 0 4 T Z ti f ti li it D dWöhler diagram for T < 0.4·Tm. Z time fatigue limit, D endurance fatigue limit

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys89

a) type I metal (bcc) b) type II metal (fcc) endurance limit at 2·107

Page 90: Advanced High Temperature Alloys

Change in Wöhler Diagram with d ldi iTemperature and Holding Time

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys90

Page 91: Advanced High Temperature Alloys

Thermal FatigueThermal Fatigue

Thermal breathing of turbine blade:a) heating phase: edges reach high temperatures faster than interior

b) cooling phase: edges cool faster than interior

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys91

c) repeated thermal cycles lead to thermal fatigue cracks at edges

Page 92: Advanced High Temperature Alloys

Thermal Strains and Stresses :Thermal Strains and Stresses :

εthermal = αthermal · ΔT, or: σthermal = E · εthermal

E ΔTσthermal = E · αthermal · ΔT

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys92

Page 93: Advanced High Temperature Alloys

Lower E-Modulus is Helpful:Lower E Modulus is Helpful:

orientation of single crystals in <100> direction reduces thermal stresses

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys93

orientation of single crystals in <100> direction reduces thermal stresses

Page 94: Advanced High Temperature Alloys

TMF and many other Time Dependent Test Techniques

Can not be covered in this lecture!

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys94

Page 95: Advanced High Temperature Alloys

ContentsContents1 Introduction Basics1. Introduction, Basics2. Stability of Microstructure3. Mechanical Properties

a) Staticb) Cyclic (Fatigue)

4 High Temperature Corrosion4. High Temperature Corrosion5. High Temperature Alloys6. Lost Wax Investment Casting7. Depending on Time: Lectures on

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys95

a) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys

Page 96: Advanced High Temperature Alloys

High Temperature CorrosionHigh Temperature Corrosion

• oxidation: external and internal, passivation• carburization (internal carbides)carburization (internal carbides)• nitration: internal, seldom nitrite passivation• sulfurization: external (sometimes

passivation), seldom internalp ss v o ), se do e

Worldwide 1 ton iron per minute corrodes to rust (low temperature aqueous corrosion)

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys96

temperature aqueous corrosion).

Page 97: Advanced High Temperature Alloys

Ellingham-Richardson-DiagramEllingham Richardson Diagram

right hand and lower axesO2 partial pressure at T = 0.

As an example pO2ofO2

10-15 Pa = 10-20 bar = 10-17 mbar

is shown as a dashed line.is shown as a dashed line.

only the oxides below this lineonly the oxides below this line are thermodynamic stable.

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys97

Page 98: Advanced High Temperature Alloys

Time Dependent OxidationTime Dependent Oxidation

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys98

Page 99: Advanced High Temperature Alloys

Oxidation MechanismsOxidation Mechanisms

• logarithmic (not shown) low temperature oxidation which eventually comes to a stop or no measurable increase in oxide scale thickness (e.g. Al, Cr, Mg).

• parabolic mass change (Δm/A)2 ~ t. Diffusion through p g ( ) goxidation layer (either oxygen or metal). Most favorable oxidation behavior.

• linear mass change: oxide layer with cracks continuous contact with metal (e.g. Ta, Nb).contact with metal (e.g. Ta, Nb).

• mass loss: volatile oxides catastrophic oxidation (e.g. V, Mo W Cr Pt) You can see it inside a broken light bulb

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys99

Mo, W, Cr, Pt). You can see it inside a broken light bulb.

Page 100: Advanced High Temperature Alloys

Pilling-Bedworth RatioPilling Bedworth Ratio

PB = (volume of oxide of one metal atom)/(volume of metal atom)

Oxide TiO MgO Al2O3 MgO2 Ti2O3 ZrO2 Ti3O5 NiO FeO TiO2 CoO

PB 0.70 0.81 1.28 1.34 1.50 1.56 1.65 1.65 1.70 1.73 1.86

Oxide Cr2O3 FeCr2O4 Fe3O4 Fe2O3 SiO2 Ta2O5 Nb2O5 W

PB 2.05 2.10 2.11 2.15 2.15 2.50 2.68 3.40

ideal is 1.1 to 1.3

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys100

Of course thermal expansion coefficients also play a major role for the stability of oxide scales.

Page 101: Advanced High Temperature Alloys

Alloying Effects:Alloying Effects:

different elements have different oxygen affinitydifferent oxygen affinity

concentration changesconcentration changes

diffusion rates are different

oxide layer contains other ymetals

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys101

Page 102: Advanced High Temperature Alloys

Example Ni-Cr-AlExample Ni Cr Al

Ni Cr 10 Al 5oxide layer and yinternal oxidation occurs

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys102

Page 103: Advanced High Temperature Alloys

Observations for the [MB1]noch andere Eigenschaften reinschreiben?

Superalloy Rene N5

Diploma thesis Bensch, 2009and submitted paper

layer number layer composition properties

1 cover oxide layer NiO, CoO thick and porous monophase layer

2 interlayer of oxides NiAl2O4 , NiTa2O6, Cr2O3 thick and porous layer consisting of two fractions

3 third oxide layer Al2O3 dense and thin monophase layer

4 γ’-free layer see Tab. 1 Al-content of 2.2 wt. %

5 γ’ reduced layer composition in between layer number 4 and 6 reduced Al content γ’ morphology change

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys103

5 γ reduced layer composition in-between layer number 4 and 6 reduced Al content, γ morphology change

6 two-phase centre region nominal composition of René N5 (Tab. 1) regular γ’/ γ structure, see Fig. 6 f)

Page 104: Advanced High Temperature Alloys

ContentsContents1 Introduction Basics1. Introduction, Basics2. Stability of Microstructure3. Mechanical Properties

a) Staticb) Cyclic (Fatigue)

4 High Temperature Corrosion4. High Temperature Corrosion5. High Temperature Alloys6. Lost Wax Investment Casting7. Depending on Time: Lectures on

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys104

a) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys

Page 105: Advanced High Temperature Alloys

High Temperature AlloysHigh Temperature Alloys

T > 500°C, Application in:• energy generationenergy generation• engines (cars, trains, airplanes, ships, ... )• chemical industry• metallurgy• metallurgy• mechanical engineering

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys105

Page 106: Advanced High Temperature Alloys

Overview MetalsOverview Metalsele struc T T ρ max O solubility advantages/disadvantageselem.

struc-ture

Ttrans.Tm[°C]

ρ[g/cm3]

max. O-solubility[at.%]

advantages/disadvantages

Ti αhdpβ k

8821855

4.54.5

31.98

+ low density+ high melting point+ b d t il blβ krz + abundant available+ low αth. (~ 10-5 K-1)− now alloy known with adequate strength for temperatures > 600°C− high oxygen and nitrogen solubility > 700°C, increased brittleness− linear oxidation > 800°C− low thermal conductivity− ignition hazard

V krz 1910 6.1 17 − catastrophic oxidation; Tm(V2O5) = 658°C

Cr krz 1863 7.2 0.0053 − very brittle at RT; conventionally not processableCr krz 1863 7.2 0.0053 very brittle at RT; conventionally not processable

Mo krz 2623 10.2 0.03 + very high creep strength+ lowαth, high thermal conductivity, good thermal fatigue strength− very brittle at RT− catastrophic oxidation; Tm(MoO5) = 795°Cp m( 5)− no long lasting coating available

W krz 3422 19.3 ≈ 0 + highest melting point of metals (only C with even higher Tm)+ very high creep strength+ low αth, high thermal conductivity, good thermal fatigue strength

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys106

− very brittle at RT− catastrophic oxidation > 1000°C durch hohe WO3-Abdampfrate− no long lasting coating available− very high density

Page 107: Advanced High Temperature Alloys

Overview MetalsOverview Metals

elem. structure Ttrans.Tm

[°C]

ρ[g/cm3]

max. O-solubility

[at.%]

advantages/disadvantages

α krz 912 7.9 0.0008 + very good corrosion resistance by alloying with Cr or (Cr + Al)

Feγ kfzδ krz

13951538

7.77.4

0.00980.029

y g y y g ( )+ γ-structure can be stabilized down to RT (by Ni)+ very good processable and weldable+ low cost (~ 1 €/kg)− strength at high temperatures (> 700°C) limited

Co ε hdpα kfz

4221495

8.88.7

≈ 00.048

+ very good corrosion resistance by alloying with Cr or (Cr + Al)+ Co-alloys castable in air good weldability− only moderate hardening available − Ni-additions necessary to stabilize fcc structure, reduces strength

i kf 14 8 9 0 0 b d ibili i f ll i hi h h i iblNi kfz 1455 8.9 0.05 + broad possibilities for alloying, high strength increase possible+ very good corrosion resistance by alloying with Cr or (Cr + Al)+ processable − relatively low melting point−αth high, low thermal conductivityth. g , y

Pt kfz 1772 21.5 ≈ 0 + high corrosion and oxidation resistance+ high melting point− very high density− very expensive (~ 33 €/g)

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys107

Page 108: Advanced High Temperature Alloys

Evolution of materialsused in aero-engines

The earlier approach of technolog transfer from militar to ci il isThe earlier approach of technology transfer from military to civil is tending to switch direction.

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys108

© www.azom.com

Page 109: Advanced High Temperature Alloys

10 000 h Life Time10.000 h Life Time

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys109

Page 110: Advanced High Temperature Alloys

Example of Intermetallic Phases (Ni-Al-System)

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys110

Page 111: Advanced High Temperature Alloys

Ni-Al Intermetallic PhasesNi Al Intermetallic Phasesphase structure T ρ advantages/disdavantagesphase structure Ttrans.

Tm[°C]

ρ[g/cm3]

advantages/disdavantages

Ni3Al L12 1383 7.5 + anomalous temperature dependence of strengthb h Ni i (f )+ same structure base than Ni matrix (fcc)

+ stable for larger Al variations > 1 wt.% Al+ ductile as single crystal− high density

b ittl l t l ( b hi d d b b d i ( i− brittle as polycrystal (can be hindered by boron doping (grain boundary strengthener)−Al-content not sufficient to build stable Al2O3-layer reduced high temperature oxidation resistance

NiAl L10 1638 5.85 + very good oxidation resistance, since 30 wt.% Al+ high melting point+ low density+ ordered structure up to melting pointp g p+ high thermal conductivity+ low coefficient of thermal expansion− extremely brittle at temperatures below 500°C (von Mises criterion not fulfilled)

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys111

)− low strength at high temperatures

Page 112: Advanced High Temperature Alloys

NiAl, B2 Ordered Intermetallic Phase

• At a first sight very interesting (see advantages) but despite many efforts and many g ) p y y100 Mio. US$ research money spent, up today no bulk usage of NiAl has been achievedno bulk usage of NiAl has been achieved.

• BUT: aluminum coatings leading to NiAl layers is heavily used.layers is heavily used.

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys112

Page 113: Advanced High Temperature Alloys

ContentsContents1 Introduction Basics1. Introduction, Basics2. Stability of Microstructure3. Mechanical Properties

a) Staticb) Cyclic (Fatigue)

4 High Temperature Corrosion4. High Temperature Corrosion5. High Temperature Alloys6. Lost Wax Investment Casting7. Depending on Time: Lectures on

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys113

a) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys

Page 114: Advanced High Temperature Alloys

MTS-Factory in BayreuthMTS Factory in Bayreuth

ground-breaking ceremony: 20.02.2008, topping-out ceremony: 06.06.2008

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys114

g g y , pp g ystart of production: ~ 12/2008

Page 115: Advanced High Temperature Alloys

MTS-Factory June 2008MTS Factory, June 2008

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys115

Page 116: Advanced High Temperature Alloys

MTS-Factory June 2008MTS Factory, June 2008

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys116

Page 117: Advanced High Temperature Alloys

MTS-Factory June 2008MTS Factory, June 2008

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys117

Page 118: Advanced High Temperature Alloys

Processing of a Turbine l dBlade

FPIX-Rayy

F i W h h l f h l i i

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys118

Feinguss, Wachsausschmelzverfahren, lost wax investment casting, ...

Page 119: Advanced High Temperature Alloys

Archaeological Evidence (Bibracte) ~ 50 B.C.

ceramic mould filled with wax

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys119

cloth clip

Page 120: Advanced High Temperature Alloys

Singly Crystal Castin in Bayreuth h h i f l d llat the Chair for Metals And Alloys

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys120

Page 121: Advanced High Temperature Alloys

ContentsContents1 Introduction Basics1. Introduction, Basics2. Stability of Microstructure3. Mechanical Properties

a) Staticb) Cyclic (Fatigue)

4 High Temperature Corrosion4. High Temperature Corrosion5. High Temperature Alloys6. Lost Wax Investment Casting7. Depending on Time: Lectures on

University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys121

a) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys