advanced imager technology development at mit ... - eso · mit lincoln laboratory eso-dfa-1 vs...

22
MIT Lincoln Laboratory ESO-DFA-1 VS 10/13/09 Advanced Imager Technology Development at MIT Lincoln Laboratory Vyshnavi Suntharalingam [email protected] Barry E. Burke, James Gregory, Robert K. Reich MIT Lincoln Laboratory Detectors for Astronomy, ESO Garching 12-16 October 2009 The MIT Lincoln Laboratory portion of this work was performed in part under a Collaboration Agreement between MIT Lincoln Laboratory and University of Hawaii (Pan-STARRs), sponsored in part by NASA, and the Air Force under the Department of the Air Force contract number FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Upload: lamdang

Post on 05-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

MIT Lincoln Laboratory

ESO-DFA-1 VS 10/13/09

Advanced Imager Technology

Development at MIT Lincoln

Laboratory

Vyshnavi Suntharalingam [email protected]

Barry E. Burke, James Gregory, Robert K. Reich MIT Lincoln Laboratory

Detectors for Astronomy, ESO Garching 12-16 October 2009

The MIT Lincoln Laboratory portion of this work was performed in part under a Collaboration Agreement between MIT Lincoln Laboratory and University of

Hawaii (Pan-STARRs), sponsored in part by NASA, and the Air Force under the Department of the Air Force contract number FA8721-05-C-0002. Opinions,

interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory ESO-DFA-2 VS 10/13/09

Outline

• Overview of MIT-LL X-ray, visible to NIR imaging technology

– Tiled CCD Imagers for astronomy

– Devices for adaptive optics

– Back-illumination processes

• Next-generation technologies

– Stitched large-format, small-pixel CCDs

– Four-side abuttable CCD and 3-D CMOS image sensors

• Summary

MIT Lincoln Laboratory ESO-DFA-3 VS 10/13/09

Imaging Devices at MIT Lincoln Laboratory

Space- and Ground-based

Surveillance and Scientific Imagers High-Speed Imaging

Silicon Photon

Counting Arrays

Program Areas

Technology Elements Silicon Detector

Process Development Detector Design Advanced Packaging Electronics

• Curved CCDs • Orthogonal Transfer Arrays

• Large-format, small-pixel imagers

• High-fill-factor APDs • CMOS ROIC for photon counting

• Single-electron sensitive readout

• High-speed camera electronics • CMOS x-ray sensor

• Multi-sample CCD

MIT Lincoln Laboratory ESO-DFA-4 VS 10/13/09

Microelectronics Facility Upgrade to 200-mm Silicon Wafer Size

150-mm waferSix devices

100-mm waferTwo devices (2K x 4K)

• Three-year capability upgrade in progress

– First 200-mm device lots beginning Feb. 2011

200-mm waferNine devices

illustration

CCID-20

CCID-20

• Nine CCID-20s on a 200-mm wafer

– 15- m pixel, 2K x 4K, 32mm x 63mm

MIT Lincoln Laboratory ESO-DFA-5 VS 10/13/09

Tiled CCD Imagers for Astronomy

60 Orthogonal-Transfer CCDs

Pan-STARRs (3° WFOV)

1.36 Gpixels 12-CCD UH/CFHT FPA

100Mpix Image from First Light

(August 2007)

200 m

1.2 mm

MIT Lincoln Laboratory ESO-DFA-6 VS 10/13/09

Lincoln Laboratory High-Speed CCDs for Adaptive Optics

1990 2000 1985 1995 2005 2010

First AO devices

64 64, 4 ports

CCD and camera electronics

128 128, 16 ports

160 160, 20 ports;

pJFET sense amplifier

256 256, 32/64 ports

(in design)

Electronic shutter

CCD for curvature

wavefront sensing

Polar-coordinate imager

(in design)

MIT Lincoln Laboratory ESO-DFA-7 VS 10/13/09

Performance of pJFET-based Output Circuit

Noise: pJFET vs. nMOSFET

Am

plifi

er

read

no

ise

(rm

s e

lectr

on

s)

Output Data Rate (MHz)

MIT Lincoln Laboratory ESO-DFA-8 VS 10/13/09

Output Circuit Comparison

Sense-node capacitance is lower ( higher responsivity) for JFET

than MOSFET

Noise spectral voltage is lower for JFET than MOSFET

MIT Lincoln Laboratory ESO-DFA-9 VS 10/13/09

Back Illumination Processes MBE and Laser Anneal (IILA)

MBE Delivers Reflection-Limited QE Room Temperature (20°C) Result

60-sec Integration Time

Wafer-level Image

of Buckman Tavern

Vignetting from test setup 1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

IILA-IS IILA-Back

MBE-IS MBE-Bulk & Back

Estimated Bulk

MBE-Back

Dark Current Sources

Dark

Cu

rren

t (A

/cm

2)

MBE backside dark current 10x better than IILA Clock dithering can suppress front interface states (IS)

200 600 700 800 900 500 400 300 1000 1100 Wavelength (nm)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Exte

rnal

QE

Front Illuminated

Reflectance Limit

MBE No ARC here

MIT Lincoln Laboratory ESO-DFA-10 VS 10/13/09

Outline

• Overview of MIT-LL X-ray, visible to NIR imaging technology

– Tiled CCD Imagers for astronomy

– Devices for adaptive optics

– Back-illumination processes

• Next-generation technologies

– Stitched large-format, small-pixel CCDs

– Four-side abuttable, 3-D CMOS image sensors

• Summary

MIT Lincoln Laboratory ESO-DFA-11 VS 10/13/09

Deeply Scaled CCD Process Technology

• Small pixels, low-voltage, CMOS-compatible operation

• Demonstrated small-array CCDs

– Simplified single and two poly fabrication

– Reduced pixel dimension (8-, 5-, 2-μm)

– ~150,000 e- well capacity for 8-μm pixel at 3V

• Current efforts: Apply to large area devices

– Deep ultraviolet photolithography for submicron features (pixel sizes to 2

m)

– Stitching for large format imagers

10μm

10μm

Single Poly OTCCD

10μm

Two Poly OTCCD

5-μm

pixel

8-μm

pixel

2- m

pixel CCD

MIT Lincoln Laboratory ESO-DFA-12 VS 10/13/09

Large-Format, Modular CCD Imagers

• Example: 3K x 3K OTCCD image sensor with 8 m x 8 m pixels

• Pixels with submicron dimensions require high-resolution (248-nm) patterning

– Lithography field size is smaller than device size

• Design is fractured into functional blocks onto a multi-field reticle and precisely stitched back together on wafer

Design Concept Layout Fractured

Functional Blocks Reassembled Design on Wafer Multi-field Reticle

MIT Lincoln Laboratory ESO-DFA-13 VS 10/13/09

Completed 3K x 3K OTCCD Devices

• Large-area devices (26 mm x 50 mm) fabricated with low-voltage CCD technology

• Stitching methods achieve 35nm (3 ) precision with 8- m pixel active devices

• Device test results expected in Dec. 2009

• Process technology will be migrated to 200-mm substrates

single poly

Frame Store

dual poly

OT Image Array

8 m

300 nm

Stitched

Boundary Reference Image (No Stitching Required)

Stitch boundary

300 nm

Poly-1 gate

channel

stop

1 m 1 m

150 mm

MIT Lincoln Laboratory ESO-DFA-14 VS 10/13/09

• Pixel electronics and detectors share area

• Fill factor loss

• Co-optimized fabrication

• Control and support electronics placed outside of imaging area

Conventional Monolithic

CMOS Image Sensor 3-D Pixel

pixel

Addressing

A/D, CDS, …

Addre

ssin

g

• 100% fill factor detector

• Fabrication optimized by layer function

• Local image processing

– Power and noise management

• Scalable to large-area focal planes

Light PD

3T

pixel

PD

ROIC

Processor

Four-Side Abuttable 3-D CMOS Image Sensor Development

MIT Lincoln Laboratory ESO-DFA-15 VS 10/13/09

Oxide-Bonded 3D-I Technology

• Smaller pixels than bump bonding

• 100% Fill Factor for Back Illumination

Center of Pixel Array

Tier-1

Detector 50 m thick

Tier-2

Readout

Single

8- m

pixel 10 m

Oxide Bond

3-D

Via

SOI Transistor

MIT Lincoln Laboratory ESO-DFA-16 VS 10/13/09

Mockup Tile with ADC Chip

8 mm

Tier-3

Example 3D Imager Demonstrations (1)

-6 +3

3 feet

Shadow

Target: Cone and Support Post In Front of Flat Plate

Back Illum. Chip

Photomicrograph

Wafer-probe-level test Off-chip A-to-D

Two-Tier, CMOS Image Sensor

1024x1024 Array, 8-μm pixel

Three-Tier, GmAPD Laser Radar

64x64 Array, 50-μm pixel

8μm

Transistors

Tier-1: 30V Back Illuminated APD Layer

Tier-2: 3.5V SOI CMOS Layer

Tier-3: 1.5V SOI CMOS Layer

Completed Pixel Cross-Sectional SEM

Transistors3DVia

3DVia

10μm

Captured Range

Image

IEEE ISSCC 2005 IEEE ISSCC 2006

Wafer-probe-level test Off-chip A-to-D

MIT Lincoln Laboratory ESO-DFA-17 VS 10/13/09

Example 3D Imager Demonstrations (2)

Fe55 X-ray histogram (companion two tier sensor)

Photo-response in PIN diode current

Seven-Tier, Four-side Abuttable CMOS APS

1024x1024 Array, 8-μm pixel

Two-Tier, InGaAs Detector

8-μm pixel

InP substrate

3D via

SOI

readout

Tier-1: InGaAs PIN diode (epi)

8μm

Tier-2: 3.5V SOI CMOS Layer

10 μm

Pixel Cross-Sectional SEM

IEEE ISSCC 2009

IEEE

3DIC 2009

Captured Image at 10fps

~70μm

64-ch ADC

From temporary support

IEEE Trans. Elec. Dev.2009

Co

un

ts

100

12.6 electrons

noise

300

200

100

0 20 40 60 80

Signal (mV)

180 eV

Light

Dark

-2

-1

0

1

2

Cu

rren

t (μ

A)

-2.0 -1.5 -1.0 -0.5 0 0.5

Bias (V)

MIT Lincoln Laboratory

ESO-DFA-18 VS 10/13/09

Summary

• Lincoln Laboratory develops tiled CCD imagers with novel architectures for astronomy

– First gigapixel focal plane successfully deployed

• New device and process improvements continue to increase responsivity and reduce dark current

• Next-generation imagers in development

– Small pixel, large format, four-side abuttable devices

– CCD and CMOS-based detectors

– Back-illuminated, 100% fill factor, 3-D integrated image sensors

– Advanced package development for higher data rate, tiled image sensors

MIT Lincoln Laboratory ESO-DFA-19 VS 10/13/09

Acknowledgments

Design Brian Aull

Bob Berger

Chang-Lee Chen

Michael Cooper Brad Felton

Kay Johnson

Keith Percival

Dennis Rathman

Bruce Wheeler

Microelectronics Lab

Doug Young

Andy Loomis

Chenson Chen

Jeff Knecht Donna Yost

Kevin Newcomb

Keith Warner

Dave Astolfi

Vladimir Bolkhovsky Ken Belanger

Desi Biasella

Laurie Briere

Marc Brunelle

John Burke Joe Ciampi

Jeff Decaprio

Diane DeCastro

Charlie Doherty

Pascale Gouker Yvette Grinbush

Paul Healey

Bob Healey

Denise Holohan

Testing Harry Clark

David Craig

William McGonagle

Dan O’Mara Tony Soares

Microelectronics Lab

Sal Ieni

John Jarmalowicz

Scott Ladd

Renée Lambert Debbie Landers

Jim Lawless

Jamie Mongiello

Chuck Monoxelos

Alan O’Dea John Pentoliros

Segundo Pichardo

Joe Powers

Sandra Roy

Angel Reinold Dolly Shibles

Chris Weinberg

Peter O’Brien

Wendy Ruth

T.J. Wlodarczak C. Keast (Solid State Div.)

D. Shaver (Solid State Div.)

MIT Lincoln Laboratory ESO-DFA-20 VS 10/13/09

Backup

MIT Lincoln Laboratory ESO-DFA-21 VS 10/13/09

Tile Block Diagram

• Vertically stacked

• Pixel readout on Tier-2

• Timing control in Stack

• 64-ch 12-b pipelined ADC

• Digital output

Light

MIT Lincoln Laboratory ESO-DFA-22 VS 10/13/09

Finished Tile Stack Appearance

Back Illuminated

3-D CMOS Imager 1024 x 1024 pixels

8.3 x 8.3 μm2 pixel 64 analog outputs ~70μm

144 gold stud bumps

88 POGO pins

2 x 96 side bus lines

>1 Million vias

1024x1024 pixels

5 layer stack

64 A/D converters

Timing & Control

Programmable Digital Imaging Tile