advanced topics in digital communications …...advanced topics in digital communications spezielle...

47
Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for Telecommunications and High-Frequency Techniques Department of Communications Engineering Room: SPT C3160, Phone: 0421/218-62386 [email protected] www.ant.uni-bremen.de/courses/atdc/ Lecture Thursday, 10:00 – 12:00 in N3130 Exercise Wednesday, 14:00 – 16:00 in N1250 Dates for exercises will be announced during lectures. Tutor Tobias Monsees Room: SPT C3220 Phone 218-62407 [email protected]

Upload: others

Post on 19-Apr-2020

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Advanced Topics in Digital CommunicationsSpezielle Methoden der digitalen Datenübertragung

Dr.-Ing. Carsten BockelmannInstitute for Telecommunications and High-Frequency Techniques

Department of Communications EngineeringRoom: SPT C3160, Phone: 0421/218-62386

[email protected]

www.ant.uni-bremen.de/courses/atdc/

LectureThursday, 10:00 – 12:00 in N3130

ExerciseWednesday, 14:00 – 16:00 in N1250

Dates for exercises will be announced during lectures.

TutorTobias Monsees

Room: SPT C3220Phone 218-62407

[email protected]

Page 2: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Who are we?

Lecturers Dirk gives lecture from Oct to end of Nov Carsten gives lecture from Dec. (end of parental leave) to end of semester

Tutor Tobias provides guidance in exercises and is available for questions

2

Carsten BockelmannDirk Wübben Tobias Monsees

Page 3: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Aim of Course and Requirements

Bridging the gap between courses and theses

Course focuses on state-of-the-art topics being subject of current research

Interactive exercises Executed in small groups Solve little problems with Matlab autonomously Presentation and discussion during exercises

Requirements for course attendance (recommended) Wireless Communications Channel Coding I Digital Signal Processing

3Outline

Page 4: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Outline Part 1: Linear Algebra

Eigenvalues and eigenvectors, pseudo inverse Decompositions (QR, unitary matrices, singular value, Cholesky )

Part 2: Basics and Preliminaries Motivating systems with Multiple Inputs and Multiple Outputs (multiple access techniques) General classification and description of MIMO systems (SIMO, MISO, MIMO) Mobile Radio Channel

Part 3: Information Theory for MIMO Systems Repetition of IT basics, channel capacity for SISO AWGN channel Extension to SISO fading channels Generalization for the MIMO case

Part 4: Multiple Antenna Systems SIMO: diversity gain, beamforming at receiver MISO: space-time coding, beamforming at transmitter MIMO: BLAST with detection strategies Influence of channel (correlation)

Part 5: Relaying Systems Basic relaying structures Relaying protocols and exemplary configurations

4Outline

Page 5: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Outline Part 6: In Network Processing

Part 7: Compressive Sensing Motivating Sampling below Nyquist Reconstruction principles and algorithms Applications

5Outline

Page 6: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Linear Algebra

Notations and definitions Vectors and matrices Special Matrices Elementary operations, Matrix multiplication, Transpose, Hermitian Transpose Determinants, Vector and Matrix norm Linear combination (range, null space)

Linear equation systems Cramer’s rule, Gaussian elimination, iterative methods Inverse matrix, matrix inversion lemma, inverse of a block matrix

Matrix factorizations LU, Cholesky, QR (Gram-Schmidt, Householder, Givens) Eigenvalues and eigenvectors Singular Value Decomposition SVD (pseudo-inverse, condition number)

Least squares

6Part 1: Linear Algebra

Page 7: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Notations and Definitions (1)

Vectors Column vectors (preferred): boldface lower case

Row vectors: underlined boldface lower case

Matrices Boldface capital letters (m × n matrix)

Column vectors are just m × 1 matrices Row vectors are just 1 × n matrices

7Part 1: Linear Algebra

x =

⎡⎢⎢⎢⎣x1x2...xn

⎤⎥⎥⎥⎦x =

£x1 x2 · · · xn

¤

A =

⎡⎢⎢⎢⎣a1,1 a1,2 · · · a1,na2,1 a2,2 · · · a2,n...

.... . .

...am,1 am,2 · · · am,n

⎤⎥⎥⎥⎦ = £ a1 a2 · · · an¤=

⎡⎢⎢⎢⎣a1a2...am

⎤⎥⎥⎥⎦

Page 8: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Notations and Definitions (2)

Some special matrices Identity matrix and zero matrix

Diagonal, lower and upper triangular matrices

8Part 1: Linear Algebra

Explicit dimensions:

Im: m × m identity matrix

0m,n: m × n zero matrixI =

⎡⎢⎢⎢⎣1 0 · · · 00 1 · · · 0....... . .

...0 0 · · · 1

⎤⎥⎥⎥⎦ 0 =

⎡⎢⎢⎢⎣0 0 · · · 00 0 · · · 0....... . .

...0 0 · · · 0

⎤⎥⎥⎥⎦

D =

⎡⎢⎢⎢⎣d1 0 · · · 00 d2 · · · 0...

.... . .

...0 0 · · · dn

⎤⎥⎥⎥⎦ L =

⎡⎢⎢⎢⎣l1,1 0 · · · 0l2,1 l2,2 · · · 0...

.... . .

...ln,1 ln,2 · · · ln,n

⎤⎥⎥⎥⎦ U =

⎡⎢⎢⎢⎣u1,1 u1,2 · · · u1,n0 u2,2 · · · u2,n...

.... . .

...0 0 · · · un,n

⎤⎥⎥⎥⎦

Page 9: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Basic Operations and Properties

Let A, B, C be matrices and , be scalars Addition and scalar multiplication are defined element-wise

Properties Addition is commutative Addition is associative Neutral element of addition Inverse element of addition Scalar multiplication is associative Neutral element of scalar multiplication Scalar multiplication is distributive Scalar multiplication is distributive

9Part 1: Linear Algebra

m n

A+B =

⎡⎢⎣ a1,1 + b1,1 · · · a1,n + b1,n...

. . ....

am,1 + bm,1 · · · am,n + bm,n

⎤⎥⎦ αA =

⎡⎢⎣ αa1,1 · · · αa1,n...

. . ....

αam,1 · · · αam,n

⎤⎥⎦A+B = B+A

(A+B) +C = A+ (B+C)

A+ 0 = A

A+ (−A) = 0(αβ)A = α(βA)

1A = A

(α+ β)A = αA+ βA

α(A+B) = αA+ αB

Page 10: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Matrix Multiplication (1)

Let A be a m × n matrix and B be a n × p matrix

The product C=AB is a m × p matrix with elements “row times column”

Note: number of columns of A has to equal number of rows of B Equivalent formulations of the matrix multiplication:

10Part 1: Linear Algebra

A =

⎡⎢⎣ a1,1 · · · a1,n...

. . ....

am,1 · · · am,n

⎤⎥⎦ = £ a1 · · · an¤=

⎡⎢⎣ a1...am

⎤⎥⎦B =⎡⎢⎣ b1,1 · · · b1,p

.... . .

...bn,1 · · · bn,p

⎤⎥⎦ = £ b1 · · · bp¤=

⎡⎢⎣ b1...bn

⎤⎥⎦ci,j = ai · bj =

nXk=1

ai,k · bk,j

C =

⎡⎢⎢⎢⎢⎢⎣nPk=1

a1,k · bk,1 · · ·nPk=1

a1,k · bk,p...

. . ....

nPk=1

am,k · bk,1 · · ·nPk=1

am,k · bk,p

⎤⎥⎥⎥⎥⎥⎦ =⎡⎢⎣ a1b1 · · · a1bp

.... . .

...amb1 · · · ambp

⎤⎥⎦ = £ Ab1 · · · Abp¤=

⎡⎢⎣ a1B...

amB

⎤⎥⎦ = nXk=1

akbk

Page 11: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Matrix Multiplication (2)

Special cases m = 1, n > 1, p = 1 (row vector times column vector)

m = 1, n > 1, p > 1 (row vector times matrix)

m > 1, n > 1, p = 1 (matrix times column vector)

m > 1, n = 1, p > 1 (column vector times row vector)

11Part 1: Linear Algebra

scalar

row vector

column vector

matrix

Inner or scalar product

Outer or dyadic product

Matrix-vector products

c = ab =

nXk=1

akbk

c = aB =

nXk=1

akbk

c = Ab =

nXk=1

akbk

C = ab =

⎡⎢⎣ a1,1b1,1 · · · a1,1b1,p...

. . ....

am,1b1,1 · · · am,1b1,p

⎤⎥⎦

Page 12: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Matrix Multiplication (3)

Properties Matrix multiplication is distributive Matrix multiplication is distributive Mixed scalar / matrix multiplication is associative Matrix multiplication is associative

Note: matrix multiplication is not commutative in general Example

12Part 1: Linear Algebra

(A+B)C = AC+BC

A(B+C) = AB +AC

(AB)C = ABC

A =

·2 61 7

¸B =

·−3 −12 1

¸C =

·15 61 20

¸AB =

·6 411 6

¸BA =

·−7 −255 19

¸AC =

·36 13222 146

¸CA =

·36 13222 146

¸ ⇒

AB 6= BA

AC = CA

Page 13: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Transpose and Hermitian Transpose

Transpose of a matrix

Row vectors become column vectors and vice versa Hermitian transpose of a complex matrix

Transpose of the complex conjugate matrix Properties

and

13Part 1: Linear Algebra

A =

⎡⎢⎣ a1,1 · · · a1,n...

. . ....

am,1 · · · am,n

⎤⎥⎦ = £ a1 · · · an¤=

⎡⎢⎣ a1...am

⎤⎥⎦ AT =

⎡⎢⎣ a1,1 · · · am,1...

. . ....

a1,n · · · am,n

⎤⎥⎦ = £ aT1 · · · aTm¤=

⎡⎢⎣ aT1...aTn

⎤⎥⎦⇒

AH = (A∗)T =

⎡⎢⎣ a∗1,1 · · · a∗1,n...

. . ....

a∗m,1 · · · a∗m,n

⎤⎥⎦T

=

⎡⎢⎣ a∗1,1 · · · a∗m,1...

. . ....

a∗1,n · · · a∗m,n

⎤⎥⎦ = £ aH1 · · · aHm¤=

⎡⎢⎣ aH1...aHn

⎤⎥⎦

(AT )T = A (AH)H = A(A+B)T = AT +BT (A+B)H = AH +BH

(AB)T = BTAT(AB)H = BHAH

Page 14: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Determinants (1)

Determinant of a 2 × 2 matrix

Determinant of a 3 × 3 matrix (Sarrus’ rule)

Determinant of a n × n matrix Let the (n-1) × (n-1) matrix Ai,j equal A without the i-th row and j-th column Recursive definition of determinant by cofactor expansion

14Part 1: Linear Algebra

column expansion row expansion Ai,j: minor matrix

det Ai,j: minor

detA = |A| =¯̄̄̄a1,1 a1,2a2,1 a2,2

¯̄̄̄= a1,1a2,2 − a2,1a1,2

detA = |A| =

¯̄̄̄¯̄ a1,1 a1,2 a1,3a2,1 a2,2 a2,3a3,1 a3,2 a3,3

¯̄̄̄¯̄ a1,1 a1,2a2,1 a2,2a3,1 a3,2

= a1,1a2,2a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2−a3,1a2,2a1,3 − a3,2a2,3a1,1 − a3,3a2,1a1,2

detA =

nXi=1

(−1)i+jai,jdetAi,j detA =

nXj=1

(−1)i+jai,jdetAi,j

Page 15: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Determinants (2)

Fundamental properties Linearity in columns (rows) Exchanging two columns (rows) Determinant of identity matrix

Some additional properties Symmetry in columns and rows Zero column (row) Two equal columns (rows) Multiple of one column (row) Scalar multiplication Adding two columns (rows) Determinant of matrix product

All properties valid for arbitrary n × n matrices

15Part 1: Linear Algebra

|αa1 + α0a01 a2| = α · |a1 a2|+ α0 · |a01 a2||a2 a1| = −|a1 a2|det I = 1

detA = detAT

|0 a2| = 0|a1 a1| = 0|αa1 a2| = α · |a1 a2|det(αA) = αn detA|a1 + αa2 a2| = detAdet(AB) = detA · detB

Page 16: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Determinants (3)

Determinant of diagonal or triangular matrix At least one factor is zero for all

Efficient calculation of determinant Determinant unaffected by adding multiples of rows (columns) to rows (columns) Transform A into triangular matrix by elementary row (column) operations

Practical meaning of the determinant If det A = 0 the matrix A is singular det A equals volume of parallelepiped with edges given by rows (columns) of A Gives formulas for the pivots used for solving linear equation systems …

16Part 1: Linear Algebra

detD =

nYi=1

di,i detL =

nYi=1

li,i detU =

nYi=1

ui,i

Page 17: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Vector and Matrix Norm

Trace and diag operation

Vector norm ( -norm, Euclidian length)

Matrix norm ( -norm, spectral norm)

Frobenius norm

17

i : singular value of Amax(A) : largest singular value of Amin(A) : smallest singular value of A

tr{A} =nXi=1

ai,i diag{A} =

⎡⎢⎣ a1,1...

an,n

⎤⎥⎦ diag{x} =

⎡⎢⎢⎢⎣x1 0 · · · 00 x2 · · · 0...

.... . .

...0 0 · · · xn

⎤⎥⎥⎥⎦kxk = kxk2 =

√xH · x =

qtr{x · xH} =

vuut nXi=1

x∗i · xi =

vuut nXi=1

|xi|2

kAk2 = supx6=0

kAxkkxk = sup

kxk=1kAxk = σmax(A)

kAkF =qtr{A ·AH} =

vuut mXi=1

nXj=1

|ai,j |2 =

vuut mXi=1

σ2i

kA−1k2 =1

σmin(A)kAxk ≤ kAk2 · kxk

`2

`2

Page 18: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Linear Equation Systems (1)

System of m linear equations in n unknowns

Matrix-vector notation

Geometric interpretations x is the intersection of m hyperplanes b is a linear combination of the column vectors

18Part 1: Linear Algebra

Extended coefficient matrix [A | b]

a1,1x1 + a1,2x2 + · · · + a1,nxn = b1a2,1x1 + a2,2x2 + · · · + a2,nxn = b2...

......

...am,1x1 + am,2x2 + · · · + am,nxn = bm

⎡⎢⎢⎢⎣a1,1 a1,2 · · · a1,na2,1 a2,2 · · · a2,n...

.... . .

...am,1 am,2 · · · am,n

⎤⎥⎥⎥⎦ ·⎡⎢⎢⎢⎣x1x2...xn

⎤⎥⎥⎥⎦ =⎡⎢⎢⎢⎣b1b2...bm

⎤⎥⎥⎥⎦⎡⎢⎢⎢⎣a1,1 a1,2 · · · a1,na2,1 a2,2 · · · a2,n...

.... . .

...am,1 am,2 · · · am,n

¯̄̄̄¯̄̄̄¯b1b2...bm

⎤⎥⎥⎥⎦Ax = b⇔

aix = bi nXi=1

xiai = b

Page 19: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Linear Combination

Matrix ARm x n describes linear mapping of vector xRn onto vector yRm

Vector y is given by linear combination of the column vectors ai

Important subspaces Range (span, image): Subspace consisting of all linear combinations of a1,…, an

is called the subspace spanned by A

If the columns of A are linear independent, they form a basis of the spanned space

Null space (kernel): The null space consists of all vectors x such that Ax = 0

19

Linearity:A : Rn → Rm x→ A · x A · (γx+ x0) = γ(Ax) + (Ax0)

y = A · x = a1x1 + a2x2 + · · · anxn =nXi=1

aixi

R{A} = span{A} = {y|y = A · x, x ∈ Rn}

N{A} = kern{A} = {x|A · x = 0, x ∈ Rn}

a1

a2 y

x1a1

x2a2

Page 20: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Linear Combination

Example R1 R3

Example R2 R3

Example R3 R3

20

Line in R3

Plane in R3

y =

⎡⎣ y1y2y3

⎤⎦ =⎡⎣ a1,1a2,1a3,1

⎤⎦x1 = a1x1

y =

⎡⎣ a1,1 a1,2a2,1 a2,2a3,1 a3,2

⎤⎦ · x1x2

¸= a1x1 + a2x2

y =

⎡⎣ a1,1 a1,2 a1,3a2,1 a2,2 a2,3a3,1 a3,2 a3,3

⎤⎦⎡⎣ x1x2x3

⎤⎦ = a1x1 + a2x2 + a3x3

a1

a2

yy

y

a1

a2

a1

a2

a1

a3

Page 21: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Linear Equation Systems (2)

Illustration for 2 × 2 system (hyperplanes straight lines)

21Part 1: Linear Algebra

intersecting straight lines parallel straight lines identical straight lines

a1, a2 linearly independent a1, a2 parallel a1, a2, b parallel

unique solution no solution infinite number of solutions

a2 b

a1

a3

x2a2

x1a1

b b

a2a1

a2a1

x2

x1

x2

x1

x2

x1

a1x = b1

a2x = b2 a1x = b1

a2x = b2 a1x = b1

a2x = b2

Page 22: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Linear Equation Systems (3)

Elementary operations that result in equivalent linear equation systems Interchange two columns Multiply an equation by a nonzero scalar Add a constant multiple of one equation to another

As equations correspond to rows of the extended coefficient matrix [A | b], the elementary operations are performed on the rows of this matrix

Apply elementary operations to solve task Apply operations to the rows of the extended coefficient matrix [A | b] to simplify

the calculation of the solution Calculation of the inverse by Gauss-Jordan method Cholesky and QR decomposition of matrices

22

Page 23: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Linear Equation Systems (4)

Square linear equation system Ax = b with n equations in n unkowns Cramer’s rule

Let Aj equal A with the j-th column replaced by b

Then the j-th element of x is

Proof: substitute into Aj and use linearity in columns

Three possibilities unique solution no solution infinite number of solutions

23Part 1: Linear Algebra

Example for n=5 and j=3

Aj =£a1 · · · aj−1 b aj+1 · · ·an

¤xj =

detAj

detAb =

nXi=1

xiai

detA 6= 0detA = 0 and detAj 6= 0 for some j

detA = 0 and detAj = 0 for all j

det(A3) = |a1 a2 b a4 a5|

= |a1 a2

5Xi=1

xiai a4 a5|

= |a1 a2 x3a3 a4 a5|= x3 · |a1 a2 a3 a4 a5|= x3 · det(A)

Page 24: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Gaussian Elimination (1)

Example: system

24Part 1: Linear Algebra

(1) Elimination Subtracting multiples of rows to create zeros Transform system into upper triangular form

(2) Back-substitution Solve for unknowns Computation in reverse order

3 3

Pivot elements

Extension to (1): If If for some k > j exchange rows

If for all k > j move to next columnReduced systems

·l2,1 = a2,1/a1,1·l3,1 = a3,1/a1,1

·l3,2 = a(1)3,2/a(1)2,2

x3 = b(2)3 /a

(2)3,3

x2 = (b(1)2 − a(1)2,3x3)/a

(1)2,2

x1 = (b1 − a1,2x2 − a1,3x3)/a1,1

a1,1 a1,2 a1,3 b1a2,1 a2,2 a2,3 b2a3,1 a3,2 a3,3 b3a1,1 a1,2 a1,3 b1

0 a(1)2,2 a

(1)2,3 b

(1)2

0 a(1)3,2 a

(1)3,3 b

(1)3

a1,1 a1,2 a1,3 b1

0 a(1)2,2 a

(1)2,3 b

(1)2

0 0 a(2)3,3 b

(2)3

a(j−1)k,j 6= 0

a(j−1)k,j = 0

a(j−1)j,j = 0

Page 25: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Gaussian Elimination (2)

Special cases All diagonal elements nonzero

Zero row in coefficient matrix, corresponding right hand side nonzero

Zero rows in coefficient matrix, corresponding right hand sides zero

25Part 1: Linear Algebra

unique solution

no solution

infinite number of solutions

Free parameters

• ∗ ∗ ∗0 • ∗ ∗0 0 • ∗

∗ ∗ ∗ ∗0 ∗ ∗ ∗0 0 0 •

• ∗ ∗ ∗0 • ∗ ∗0 0 0 0

• ∗ ∗ ∗0 0 • ∗0 0 0 0

• ∗ ∗ ∗0 0 0 00 0 0 0

0 0 0 00 0 0 00 0 0 0

x3 x3 x3x2 x2 x2x1

Page 26: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Gaussian Elimination (3)

General formulation of the algorithm (1) Initialization and elimination

26Part 1: Linear Algebra

Back-substitution

Pivot search

A(0) := A,b(0) := bfor j := 1 to m− 1 do

find pivot element a(j−1)j,nj

for i := j + 1 to m do

li,j = a(j−1)i,nj

/a(j−1)j,nj

for k := nj + 1 to n do

a(j)i,k = a

(j−1)i,nj

− li,j · a(j−1)j,nj

end

b(j)i = b

(j−1)i − li,j · b(j−1)j

endend

nj := index of first nonzero columnif no nj then r := j − 1, breakexchange rows, so that a

(j−1)j,nj

6= 0

choose values for free parametersfor j := r down to 1 do

xnj =

Ãb(j−1)j −

nPk=nj+1

a(j−1)j,k · xk

!· 1

a(j−1)j,nj

end

Page 27: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Gaussian Elimination (4)

Result after Elimination Step

Number of nonzero rows on left hand side: Rank of Matrix A(number of linear independent equations)

Solution exists only if or Unique solution if no free parameters Infinite number of solutions if free parameters

27Part 1: Linear Algebra

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(0)1,n1

· · · ∗ · · · · · · ∗ ∗ · · · ∗ b(0)1

0 · · · a(1)2,n2

· · · · · · ∗ ∗ · · · ∗ b(1)2

......

. . ....

......

0 · · · 0 · · · · · · a(r−1)r,nr ∗ ∗ b

(r−1)r

0 · · · 0 · · · · · · 0 · · · · · · 0 b(r)r+1

......

......

0 · · · 0 · · · · · · 0 · · · · · · 0 b(r)m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r

m− r

rank{A} = r

r = m

r = nr < n n− r

r < m and b(r)r+1 = · · · = b

(r)m = 0

Page 28: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Iterative Solution of Linear Equation Systems

Linear equation system Basic idea of iterative algorithms

Start with initial estimate of the solution vector Find improved approximation from previous approximation Stop after convergence

Jacobi Solve row i for unknown xi

Parallel implementation possible Gauss-Seidel

Use already updated values Better convergence behavior than Jacobi No parallel implementation possible

Conjugate Gradient More complicated implementation, but usually fast convergence

28Part 1: Linear Algebra

Ax = b⇔nXj=1

ai,jxj = bi for 1 ≤ i ≤ n

x(0)

x(k)x(k+1)

x(k+1)i =

⎛⎝bi − i−1Xj=1

ai,jx(k)j −

nXj=i+1

ai,jx(k)j

⎞⎠ · 1ai,i

x(k+1)i =

⎛⎝bi − i−1Xj=1

ai,jx(k+1)j −

nXj=i+1

ai,jx(k)j

⎞⎠ · 1ai,i

Page 29: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Inverse Matrix (1)

Inverse A-1 of a square n × n matrix A

Relation of inverse to linear equation systems

Calculation of the inverse by Gauss-Jordan method n simultaneous linear equation systems Forward elimination Backward elimination

Inverse exists only if AX = I has a unique solution ( A nonsingular) Condition:

Properties

29Part 1: Linear Algebra

A−1A = AA−1 = I

Ax = b ⇔ x = A−1b

£Ax1 · · ·Axn

¤= AX = I⇔ [A|I]

[A|I]⇒ [U|L−1][U|L−1]⇒ [I|A−1]

rank{A} = n ⇔ detA 6= 0

(A−1)−1 = A

(AB)−1 = B−1A−1

(AH)−1 = (A−1)H

Page 30: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Inverse Matrix (2)

Matrix Inversion Lemma (ARm x m, BRm x n, CRn x n, DRn x m)

Inverse of block matrix E:

with ARm x m, BRm x n, CRn x m, DRn x n

30

Schur complement of A w.r.t E

Schur complement of D w.r.t E

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

= A−1 −A−1B(I+CDA−1B)−1CDA−1

E =

·A BC D

¸

E−1 =

·F−1 −F−1BD−1

−DCF−1 D−1 +D−1CF−1BD−1

¸

E−1 =

·A−1 +A−1BG−1CA−1 −A−1BG−1

−G−1CA−1 G−1

¸F = A−BD−1C

G = D−CA−1B

Page 31: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

LU Decomposition

Every invertible matrix A can be written as the product of a lower triangular matrix L and an upper triangular matrix U

Application: Solution of linear equation systemwith constant coefficient matrix A for different right hand sides Inversion of triangular matrices easy solve and then

Calculation of LU decomposition by Gaussian elimination Forward elimination: L contains factors from the elimination steps

Direct calculation of LU decomposition (example: matrix)

Calculation order:

31Part 1: Linear Algebra

3 3

A = LU

Ax = LUx = b

Ux = yLy = b

[A = LU | I]⇒ [U|L−1]li,j = a

(j−1)i,j /a

(j−1)j,j

⎡⎣ a1,1 a1,2 a1,3a2,1 a2,2 a2,3a3,1 a3,2 a3,3

⎤⎦ =⎡⎣ 1 0 0l2,1 1 0l3,1 l3,2 1

⎤⎦·⎡⎣ r1,1 r1,2 r1,3

0 r2,2 r2,30 0 r3,3

⎤⎦ =⎡⎣ r1,1 r1,2 r1,3l2,1r1,1 l2,1r1,2 + r2,2 l2,1r1,3 + r2,3l3,1r1,1 l3,1r1,2 + l3,2r2,2 l3,1r1,3 + l3,2r2,3 + r3,3

⎤⎦r1,1 → r1,2 → r1,3 → l2,1 → l3,1 → r2,2 → r2,3 → l3,2 → r3,3

Page 32: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Cholesky Decomposition

Let A be hermitian positive definite

then A is fully characterized by a lower triangularmatrix L

Cholesky decomposition

Similar to LU decomposition But computational complexity reduced by factor 2

Example: 3 × 3 matrix

Calculation order:

32Part 1: Linear Algebra

AlgorithmAH = A

xHAx > 0∀x

A = LLH

l1,1 → l2,1 → l3,1 → l2,2 → l3,2 → l3,3

⎡⎢⎢⎢⎣a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

⎤⎥⎥⎥⎦ =⎡⎢⎢⎢⎣|l1,1|2 l1,1l

∗2,1 l1,1l

∗3,1

l2,1l∗1,1 |l2,1|2 + |l2,2|2 l2,1l

∗3,1 + l2,2l

∗3,2

l3,1l∗1,1 l3,1l

∗2,1l3,2l

∗2,2 |l3,1|2 + |l3,2|2 + |l3,3|2

⎤⎥⎥⎥⎦

A(0) := A

for k := 1 to n do

lk,k =qa(k−1)k,k

for i := k + 1 to n do

li,k = a(k−1)i,k /l∗k,k

for j := k + 1 to i do

a(k)i,j = a

(k−1)i,j − li,k · l∗j,k

end

end

end

Page 33: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

QR Decomposition (1)

Every m × n matrix A can be written as where Q is a m × n matrix with orthonormal columns

R is an upper triangular n × n matrix Columns of A are represented in the orthonormal base defined by Q

Illustration for the m × 2 case

33Part 1: Linear Algebra

A = QR

QHQ = I⇔qHi qj =

(1, for i = j

0 for i 6= j

ak =

kXi=1

ri,kqi

q2

a1 = r1,1q1

£a1 a2

¤=£q1 q2

¤ · r1,1 r1,20 r2,2

¸=£r1,1q1 r1,2q1 + r2,2q2

¤r2,2q2

q1 r1,2q1

a2 = r1,2q1 + r2,2q2

Page 34: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

QR Decomposition (2)

Calculation of QR decomposition by modified Gram-Schmidt algorithm Calculate length (Euclidean norm) of a1 r1,1

Normalize a1 to have unit length q1

Projection of a2,...,an onto q1 r1,j

Subtract components of a2,...,an parallel to q1

Continue with next column Q is computed column by column from left to right R is computed row by row from top to bottom

Illustration for the m × 2 case

34Part 1: Linear Algebra

q(1)j

for k := 1 to n do

rk,k = kakkqk = ak/rk,k

for i := k + 1 to n do

rk,i = qHk ai

ai = ai − rk,iqkend

endq2

a1 = r1,1q1

£a1 a2

¤=£q1 q2

¤ · r1,1 r1,20 r2,2

¸=£r1,1q1 r1,2q1 + r2,2q2

¤r2,2q2

q1 r1,2q1

a2 = r1,2q1 + r2,2q2

Page 35: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

QR Decomposition (3)

Householder reflection for real valued signals Reflection of vector x across the plain surface whose normal vector is u (||u||=1) is

achieved by orthonormal matrix

Reflected vector with ||y|| = ||x||

Householder matrix is symmetric (Θ = ΘT ) and orthogonal (Θ-1 = ΘT ) Reflection into specific direction

Reflected vector should contain only one non-diminishing element reflection creates n-1 elements equal to zero

Application with respect to matrix A

35Part 1: Linear Algebra

with

Θ = I− 2 · uuT

Θ = I− 2 · uuT

kuk = uTu = 1u

x

y = Θx

αu

αu

α

y = Θx = x− 2 · uuTx|{z}α

= x− 2α · u

y =

·kxk0

¸u =

x− ykx− yk

ΘA = Θ ·

⎡⎣ ∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗

⎤⎦ =⎡⎣ ka1k ∗ ∗

0 ∗ ∗0 ∗ ∗

⎤⎦

Page 36: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

QR Decomposition (4)

Householder reflections for complex valued signals

Special case: create zeros in a vector

Application to QR decomposition of m × n matrix A

36Part 1: Linear Algebra

Loop through all columnsInitialization

Create zeros below the maindiagonal in k-th column of R

Update unitary matrix Q

Θ = I− (1 + w) · uuH with u =x− ykx− yk and w =

xHu

uHxu x

y = Hx

uuHx

uuHyy = [kxk 0]T

R := A, Q := Imfor k := 1 to n dox = R(k : m, k)y = [kxk 0]T

calculate u, w,ΘR(k : m, k : n) = Θ ·R(k : m, k : n)Q(:, k : m) = Q(:, k : m) ·ΘH

end

Page 37: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

QR Decomposition (5)

QR decomposition of 3 x 3 matrix A

37

Step 2:Create zeros in second

column of R

Step 3:Create real-valued

lower right element in R

Step 1:Create zeros in first

column of R

Step 0: Initialization of Q and RA =

⎡⎣ 1 0 00 1 00 0 1

⎤⎦ ·⎡⎢⎣ a

(0)1,1 a

(0)1,2 a

(0)1,3

a(0)2,1 a

(0)2,2 a

(0)2,3

a(0)3,1 a

(0)3,2 a

(0)3,3

⎤⎥⎦ = Q0 ·R0

Q0 ·ΘH1 ·Θ1 ·R0 =

⎡⎣ ∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗

⎤⎦ ·⎡⎢⎣ a

(1)1,1 a

(1)1,2 a

(1)1,3

0 a(1)2,2 a

(1)2,3

0 a(1)3,2 a

(1)3,3

⎤⎥⎦ = Q1 ·R1

Q1 ··1 00 ΘH

2

¸··1 00 Θ2

¸·R1 =

⎡⎣ ∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗

⎤⎦ ·⎡⎢⎣ a

(1)1,1 a

(2)1,2 a

(2)1,3

0 a(2)2,2 a

(2)2,3

0 0 a(2)3,3

⎤⎥⎦ = Q2 ·R2

Q2 ··I2 00 ΘH

3

¸··I2 00 Θ3

¸·R2 =

⎡⎣ ∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗

⎤⎦ ·⎡⎢⎣ a

(1)1,1 a

(2)1,2 a

(3)1,3

0 a(2)2,2 a

(3)2,3

0 0 a(3)3,3

⎤⎥⎦ = Q3 ·R3

Page 38: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

QR Decomposition (6)

Givens rotations Let equal an identity matrix except for is unitary and describes a rotation

Special choices for c and s:

Linear transformation Givens rotation can create zero while changing only one other element

Example

38Part 1: Linear Algebra

( , , )i k G( , , )i k G

31 2 (2,3, )(2,3, ) (1,2, )

* * * * * * * * * * * ** * * * * * 0 * * 0 * ** * * 0 * * 0 * * 0 0 *

GG GA R

g∗i,i = gk,k = cos θ = c

−g∗i,k = gk,i = sin θ = s

c =xip

|xi|2 + |xk|2and s =

−xkp|xi|2 + |xk|2

y = G(i, k, θ) · x ⇒ yi =p|xi|2 + |xk|2, yk = 0, yj = xj∀j 6= i, k

⇒ Q = G(2, 3, θ1)HG(1, 2, θ2)

HG(2, 3, θ3)HR = G(2, 3, θ3)G(1, 2, θ2)G(2, 3, θ1)A

Page 39: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Example for Givens Rotation

Application of rotation matrix to vector x R4

39

with

y = G(2, 4, θ) · x

=

⎡⎢⎢⎣1 0 0 00 c∗ 0 −s∗0 0 1 00 s 0 c

⎤⎥⎥⎦ ·⎡⎢⎢⎣x1x2x3x4

⎤⎥⎥⎦ =⎡⎢⎢⎣

x1c∗x2 − s∗x4

x3sx2 + cx4

⎤⎥⎥⎦ =⎡⎢⎢⎣

x1c∗x2 − s∗x4

x3sx2 + cx4

⎤⎥⎥⎦ =⎡⎢⎢⎣

x1p|x2|2 + |x4|2

x30

⎤⎥⎥⎦

c∗x2−s∗x4 =x∗2x2p

|x2|2 + |x4|2− −x∗4x4p

|x2|2 + |x4|2=

|x2|2 + |x4|p|x2|2 + |x4|2

=p|x2|2 + |x4|2

sx2 + cx4 =−x4x2p|x2|2 + |x4|2

+x2x4p

|x2|2 + |x4|2= 0

Page 40: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Eigenvalues and Eigenvectors (1)

Special eigenvalue problem for arbitrary n × n matrices

Condition for existence of nontrivial solutions x ≠ 0 Characteristic polynomial of degree n has to be zero

Zeros i of polynomial are the eigenvalues of A with algebraic multiplicity ki

Eigenvectors Solve linear equation systems for all eigenvalues i

Dimension of solution space is called geometric multiplicity gi (1 ≤ gi ≤ ki) Eigenvectors belonging to different eigenvalues are linearly independent

Diagonalization of a matrix A Define the matrix X = [x1 xn] and the diagonal matrix = diag(1, …, n)

Only possible for linearly independent eigenvectors

40Part 1: Linear Algebra

Ax = λx (A− λI)x = 0⇔

pA(λ) = det (A− λI) = (λ− λ1)k1 · . . . · (λ− λl)

kl = 0

(A− λiI)xi = 0

AX = XΛ⇒ X−1AX = Λ

Page 41: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Eigenvalues and Eigenvectors (2)

Some useful general properties

Properties for hermitian matrices, i.e. AH = A All eigenvalues are real Eigenvectors belonging to different eigenvalues are orthogonal Algebraic and geometric multiplicities are identical Consequence: all eigenvectors can be chosen to be mutually orthogonal A hermitian matrix A can be diagonalized by a unitary matrix V

41Part 1: Linear Algebra

Eigenvalue decomposition

AT → λiAH → λiαA → αλi,xi

Am → λmi ,xiA+ βI → λi + β,xiX−1AX → λi,X

−1xi

detA =nQi=1

λi

traceA =nPi=1

λi

VHAV = Λ⇔ A = VΛVH

A invertible ⇔ all λ 6= 0A positive definite ⇔ all λ > 0

Page 42: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Singular Value Decomposition (SVD) (1)

Every m × n matrix A of rank r can be written as

Singular values i of A = square roots of nonzero eigenvalues of AHA or AAH

Unitary m × m matrix U contains left singular vectors of A = eigenvectors of AAH

Unitary n × n matrix V contains right singular vectors of A = eigenvectors of AHA Verification with eigenvalue decomposition

Four fundamental subspaces: the vectors u1,...,ur span the column space of A ur+1,...,um span the left nullspace of A v1,...,vr span the row space of A vr+1,...,vn span the right nullspace of A

42Part 1: Linear Algebra

with the matrix of singular values

orthogonal

orthogonal

A = UΣVH = U

⎡⎣ Σ0 0

0 0

⎤⎦VH =

rXi=1

σiui · vHiΣ0 = diag(σ1, · · · ,σr)

= diag(S1, · · · , Sr)

AHA = VΣHUHUΣVH = V

⎡⎣ Σ20 0

0 0

⎤⎦VH AAH = UΣVHVΣUH = U

⎡⎣ Σ20 0

0 0

⎤⎦UH

Page 43: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Singular Value Decomposition (SVD) (2)

Illustration of the fundamental subspaces Consider linear mapping with orthogonal decomposition

43Part 1: Linear Algebra

x→ Ax x = xr + xn

xr

xn

x0 Axn = 0

Ax = Axr

Page 44: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Pseudo Inverse and Least Squares Solution (1)

Inverse A-1 exists only for square matrices with full rank Generalization: (Moore-Penrose) pseudo inverse A+

Special cases for full rank matrices

Application: Least squares solution of a linear equation system Problem: find vector x that minimizes the euclidean distance between Ax and b Solution: project b onto the column space of A and solve Ax=bc

If no unique solution exists take solution vector with shortest length

44Part 1: Linear Algebra

b

span{A}

e

bc

A = UΣVH = U

⎡⎣ Σ0 0

0 0

⎤⎦VH A+ = UΣ+VH= V

⎡⎣ Σ−10 0

0 0

⎤⎦UH⇒

A+A = AA+ = I

A+ =

(AH(AAH)−1 for rank{A} = m(AHA)−1AH for rank{A} = n

minxkAx− bk x = A+b

Page 45: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Pseudo Inverse and Least Squares Solution (2)

Illustration of the least squares solution of a linear equation system

45Part 1: Linear Algebra

x = A+b

bc = Ax

0A+bn = 0

b

bn

Page 46: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Condition Number

Condition number is an indicator for the “orthogonality” of a matrix A

Solution of the linear equation system b=Ax is given by x=A-1b The condition number cond(A) describes the impact of an error b in the

observation data b (e.g. measurement errors, noise, …) to the solution

Using two estimations the following relation is achieved

Relative error

46

cond (A) =1 for unitary matrix

error

Example: cond(A)=100 and b/b= 0.1% x/x = 100ꞏ0.01=10%

Part 1: Linear Algebra

cond(A) = kAk2 · kA−1k2 =σmax(A)

σmin(A)cond(A) ≥ 1

x+ δx = A−1(b+ δb) δx = A−1 · δb

δx = A−1 · δbb = A · x

kδxk ≤ kA−1k2 · kδbk = kδbk/σmin(A)

kbk ≤ kAk2 · kxk = σmax(A)kxkkδxkkbk ≤ kδbk

σmin(A)σmax(A)kxk

kδxkkxk ≤ σmax(A)

σmin(A)

kδbkkbk = cond(A) · kδbkkbk

Page 47: Advanced Topics in Digital Communications …...Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for

Selected Literature

Online: Gutknecht: Lineare Algebra Hefferon: Elementary Linear Algebra Matthews: Elementary Linear Algebra Wedderburn: Lectures on matrices The Matrix Cookbook

Printed: B. Bradie: A Friendly Introduction to Numerical Analysis, Pearson 2006 G. Strang: Linear Algebra and its Applications, Hardcourt 1988 Johnson, Riess, Arnold: Introduction to Linear Algebra, Addison Wesley 2002 K. Hardy: Linear Algebra for Engineers and Scientists using Matlab, Pearson

2005

47Part 1: Linear Algebra