advanced wireless communications lecture notes: section 3

34
Advanced Wireless Communications lecture notes: section 3 Andrea M. Tonello Double Master Degree in Electrical Engineering University of Udine, Italy and Information and Communication Engineering University of Klagenfurt, Austria Note: these lecture notes have been prepared as part of the material for the joint class “Advanced wireless communications” and “Comunicazioni Wireless” by A. Tonello. The class has been offered in the Spring 2015 term, by means of video conferencing in time sharing between two locations.

Upload: others

Post on 15-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Advanced Wireless Communications lecture notes: section 3

Advanced Wireless Communications

lecture notes: section 3

Andrea M. Tonello

Double Master Degree in Electrical Engineering ‐ University of Udine, Italy 

and Information and Communication Engineering ‐ University of Klagenfurt, Austria

Note: these lecture notes have been prepared as part of the material for the joint class “Advanced wireless communications” and “Comunicazioni Wireless” by A. Tonello. The class has been offered in the Spring 2015 term, by 

means of video conferencing in time sharing between two locations.   

Page 2: Advanced Wireless Communications lecture notes: section 3

A. Tonello 2

Section Content Topics

oDiversity

oReceive antenna diversity

o Selection combining

oMaximal ratio combining

oMIMO: multiple input – multiple output systems

Page 3: Advanced Wireless Communications lecture notes: section 3

A. Tonello 3

Diversity

Page 4: Advanced Wireless Communications lecture notes: section 3

A. Tonello 4

System Model

Page 5: Advanced Wireless Communications lecture notes: section 3

A. Tonello 5

System Model

Page 6: Advanced Wireless Communications lecture notes: section 3

A. Tonello 6

System Model

Page 7: Advanced Wireless Communications lecture notes: section 3

A. Tonello 7

Combining

Page 8: Advanced Wireless Communications lecture notes: section 3

A. Tonello 8

Distribution of the SNR at the Combiner Output

Page 9: Advanced Wireless Communications lecture notes: section 3

A. Tonello 9

SNR for SC

Page 10: Advanced Wireless Communications lecture notes: section 3

A. Tonello 10

SNR for SC

Page 11: Advanced Wireless Communications lecture notes: section 3

A. Tonello 11

Average SNR in SC (Proof)

Page 12: Advanced Wireless Communications lecture notes: section 3

A. Tonello 12

Combining in MRC

Page 13: Advanced Wireless Communications lecture notes: section 3

A. Tonello 13

Receiver Structure in MRC

Page 14: Advanced Wireless Communications lecture notes: section 3

A. Tonello 14

SNR in MRC

Page 15: Advanced Wireless Communications lecture notes: section 3

A. Tonello 15

SNR in MRC

Page 16: Advanced Wireless Communications lecture notes: section 3

A. Tonello 16

SNR in MRC (Derivation)

Page 17: Advanced Wireless Communications lecture notes: section 3

A. Tonello 17

Comparison of SNR in SC and MRC

Page 18: Advanced Wireless Communications lecture notes: section 3

A. Tonello 18

Comparison of SNR in SC and MRCF S

NR(a)

F SNR(a)

a‐Es/N0 (dB) a‐Es/N0 (dB)

SC MRC

This shows the probability that the SNR is less than a certain desired value

Page 19: Advanced Wireless Communications lecture notes: section 3

A. Tonello 19

BER Analysis

Page 20: Advanced Wireless Communications lecture notes: section 3

A. Tonello 20

Chernov Bound for SC

Page 21: Advanced Wireless Communications lecture notes: section 3

A. Tonello 21

Chernov Bound for SC

Page 22: Advanced Wireless Communications lecture notes: section 3

A. Tonello 22

Chernov Bound for MRC

Page 23: Advanced Wireless Communications lecture notes: section 3

A. Tonello 23

Chernov Bound for MRC

Page 24: Advanced Wireless Communications lecture notes: section 3

A. Tonello 24

BER Comparison

Page 25: Advanced Wireless Communications lecture notes: section 3

A. Tonello 25

MIMO

Adaptive AntennasReceive antenna combining to gain spatial diversityand cancel co-channel interference.

RX

MS MS

MS

RX

MS

MS

MS

MS Smart AntennasGenerate beams with phased arrays to sectorizecoverage.

Space-Time CodingMultiple transmit and receive antennas to increasecapacity.

RX

TX

Page 26: Advanced Wireless Communications lecture notes: section 3

A. Tonello 26

MIMO Channel Capacity

The received signal is the superposition of the NT transmitted signals

All antenna links experience independent fading “in rich scattering”

We keep the average transmitted energy constant

,

1 1,...,

TNr r t t rsk k k k R

tT

Ey x n r N

N

transmitted complex signal by antenna t

channel weight link antenna (t-r)

TX RX

1

NT

1

NR

white Gaussian noise

Page 27: Advanced Wireless Communications lecture notes: section 3

A. Tonello 27

MIMO Channel Capacity

The channel capacity conditioned on a channel realization reads

1,1 1,1 1 1

,1 ,

...... ... ... ... ... ...

T

R R R T T R

N

s

N N N N N NT

y x nEN

y x n

+s

T

EN

y Hx n

†02

/log det / /S

HT

E NC bit s Hz

N

I HH

We assume H to have independent complex Gaussian entries (Rayleigh fading)

The Outage Capacity is the distribution of CH

The Ergodic Capacity is the average of CH

HC P C K

HC E C

Page 28: Advanced Wireless Communications lecture notes: section 3

A. Tonello 28

Mean Capacity

2 4 6 8 10 12 14 16 18 20 22 240

20

40

60

80

100

120

Cap

acity

(bit/

s/H

z)

Number of Antennas (NT=NR)

0 dB

5 dB

10 dB

SNR=15 dB

20 dB

30 dB

25 dB

Ergodic Capacity is used to characterize fast fading channels

Outage Capacity is used to characterize quasi-static fading channels

Fundamental contribution by Foschini (1996 Bell Labs)

Capacity increases linearly with the number of TX antennas if NR≥ NT

C < 3 bit/s/Hz with NT=NR=1

Page 29: Advanced Wireless Communications lecture notes: section 3

A. Tonello 29

Space‐Time Coding

To approach the Shannon Capacity we need to design powerful space-time codes:

joint channel coding, modulation, with transmission over multiple antennas.

Fundamental contribution by Tarokh, Seshadri, and Calderbank (1998 AT&T Labs)

Page 30: Advanced Wireless Communications lecture notes: section 3

A. Tonello 30

ST Code Class Three Main ST Coding Aproaches

ST Trellis Codes: extension of the TCM (trellis coded modulation) concept.

ST Block Codes: M-QAM block codes with orthogonal structure.

ST Bit-interleaved Codes

Diversity Gains and Coding Gains are determined by the rank and determinant of certain

matrices constructed from complex codewords:

2

1 1~ LL

T RPe L N NSNR

SNR

Diversity Gain

~ LSNR

SNR

Coding Gain

2~L

Page 31: Advanced Wireless Communications lecture notes: section 3

A. Tonello 31

Space‐Time Bit Interleaved Coded Modulation

ST-BICM comprises

coder (block, convolutional, turbo)

bit interleaver space-time mapper (M-PSK / M-QAM)

Page 32: Advanced Wireless Communications lecture notes: section 3

A. Tonello 32

Turbo Decoding Principle

The receiver has to separate the overlapping signals and recover the information bits

Iterative (turbo) decoding procedure:

MIMO Demapping at the Detector: A Posteriori Probability Calculator for Each Coded Bit.

Maximum a Posteriori Channel Decoder: Improved Extrinsic Information for the Coded Bits.

,

1( ) ( ) ( ) ( )

TNr t t r

CHt m

y nT x mT g nT mT nT

Page 33: Advanced Wireless Communications lecture notes: section 3

A. Tonello 33

Example for GSM‐EDGE1 Bit/s/Hz 2 Bit/s/Hz 3 Bit/s/Hz

1 TX

2 TX

1 TX

2 TX

1 TX

2 TX

Page 34: Advanced Wireless Communications lecture notes: section 3

A. Tonello 34

Remarks

Spectral efficiency of wireless channels is significantly increased with MIMO  technology

It is fundamental to

Study and model the MIMO channel

Design good Space‐time codes

Develop simplified decoding algorithms 

Turbo (iterative) processing is the state‐of the art detection/decoding approach