advancements and challenges in multiloop scattering ... · advancements and challenges in multiloop...

38
Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes Edinburgh, 11 July 2017 In collaboration with A. Primo, A. von Manteuffel, E. Remiddi, J. Lindert, K. Melnikov, C. Wever Lorenzo Tancredi TTP KIT Karlsruhe

Upload: others

Post on 06-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

Advancements and Challenges in MultiloopScattering Amplitudes for the LHC

Amplitudes – Edinburgh,11July2017

IncollaborationwithA.Primo,A.vonManteuffel,E.Remiddi,J.Lindert,K.Melnikov,C.Wever

LorenzoTancrediTTPKITKarlsruhe

Page 2: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

What are we interested in? (Or what are we looking for?)

TheLHC hasdiscoveredtheHiggsBosonandhasopenedawindowontheElectroWeakSymmetryBreakingmechanism,aboutwhichweadmittedlydon’tknowmuch

Beyondanydoubts,thereisstillalotwedon’tunderstandaboutfundamentalparticlephysics andourbestchanceistheLHC

• Higgswidth• Higgscouplingstofermions• Higgsself-couplings• TheHiggspotential• … (notonlyHiggs!)

• Higgs𝒑𝑻 distributioncanbeusedtoconstraincouplingstolightquarks

• 𝝈𝒈𝒈→𝒁𝒁 athighenergytoconstraintheHiggswidth

• Newobservableswillbecrucial

Page 3: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

The fascination of precision calculationsPrecisioniscoolbecauseitallowsustopinpointevensmallhintstonewphysics,but(formanyofus)thisisnottheonlyreason!

Astheorists,precisionrequireshigherordercalculationsanddeepunderstandingofthephysicsthatwearesearchingfor

• GoinghigherinperturbationtheoryallowsustoexposefascinatingmathematicalstructuresofQFT

• Anditcanpointustothelimitationsofourcurrentapproach

0 20 40 60 80 100

0.8

1.0

1.2

1.4

pT,h [GeV]

(1/

d/d

pT

,h)/(1/

d/d

pT

,h) S

M

c = -10

c = -5

c = 0

c = 5

[Bishara,Haisch,Monni,Re’16]

Page 4: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

We still need to compute Feynman Diagrams!(is a “revolution” finally due?)

Modulorevolutions,westillneedtoputtogetherourphysicalquantitiesstartingfromnotverywellbehavingbuildingblocks…

LO

NLO

NNLO

+

+

+

Page 5: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

LHCenergiesgiveustheopportunitytostudyprocessesatveryhighenergyandtransversemomentum

Intheseregimes,weprobehighmassresonances andinparticularthetop-quark,whoseinteractionsarecrucialtostudytheHiggsmechanism

Forrealisticdescription,wecannotneglectheavyvirtualparticlesintheloops!

Weneedawaytohandle(multi-)loopscatteringamplitudeswhichdependonmanyscalesand,crucially,allowmassiveinternalstates!

Page 6: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

How do we proceed (and can we do better?)

AnyscatteringamplitudeisacollectionofscalarFeynmanIntegrals

Cuts and Feynman Integrals beyond multiple polylogarithms

Z lY

j=1

d

dkj

(2⇡)dS

�1

1

... S�ss

D

↵1

1

...D↵nn

, Sr = ki · pj

+

Z lY

j=1

d

dkj

(2⇡)d

@

@kµj

vµS

�1

1

... S�ss

D

↵1

1

...D↵nn

!= 0 v

µ = k

µj , p

µk

+

@@ xk

Ii (d ; xk) =NX

j=1

cij(d ; xk) Ij(d ; xk)

1 / 1

Page 7: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

How do we proceed (and can we do better?)

AnyscatteringamplitudeisacollectionofscalarFeynmanIntegrals

Cuts and Feynman Integrals beyond multiple polylogarithms

Z lY

j=1

d

dkj

(2⇡)dS

�1

1

... S�ss

D

↵1

1

...D↵nn

, Sr = ki · pj

+

Z lY

j=1

d

dkj

(2⇡)d

@

@kµj

vµS

�1

1

... S�ss

D

↵1

1

...D↵nn

!= 0 v

µ = k

µj , p

µk

+

@@ xk

Ii (d ; xk) =NX

j=1

cij(d ; xk) Ij(d ; xk)

1 / 1

Cuts and Feynman Integrals beyond multiple polylogarithms

Z lY

j=1

d

dkj

(2⇡)dS

�1

1

... S�ss

D

↵1

1

...D↵nn

, Sr = ki · pj

+

Z lY

j=1

d

dkj

(2⇡)d

@

@kµj

vµS

�1

1

... S�ss

D

↵1

1

...D↵nn

!= 0 v

µ = k

µj , p

µk

+

@@ xk

Ii (d ; xk) =NX

j=1

cij(d ; xk) Ij(d ; xk)

1 / 1

Integralsarenotallindependent– thereareIntegration-by-partsidentities(IBPs)

Cuts and Feynman Integrals beyond multiple polylogarithms

NX

j=1

Cj(d ; xk) Ij(d ; xk)

2 / 1

NMasterIntegrals

[Chetyrkin,Tkachov‘81]

Page 8: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

MIsareallknown!Spaceoffunctionsisunderstoodateveryorderin𝜀 weonlyneedMPLs!

Cuts and Feynman Integrals beyond multiple polylogarithms

A revolution in multi-loop calculations has started when physicists have

re-discovered the so-called multiple polylogarithms

[E.Remiddi, J.Vermaseren ’99; T. Gehrmann, E.Remiddi ’00; ....]

G(0; x) = ln (x) , G(a; x) = ln

⇣1� x

a

⌘for a 6= 0

G(0, ..., 0| {z }n

; x) =

1

n!

ln

n

(x) , G(a, ~w ; x) =

Zx

0

dy

y � a

G(

~w ; y) .

+

Multiple polylogarithms are special because they satisfy

first order di↵erential equations with rational coe�cients

@@ x

G(a, ~w ; x) =

1

x � a

G(

~w ; x) ! purely non-homogeneous equation!

3 / 2

Forfinitepiecein𝑑 = 4only𝑳𝒊𝟐 functions!

@ 1 loop everything is clear now

Reductionisunderstood,weareactuallyabletowriteamplitudesascombinationof4MasterIntegrals intermsof on-shellquantities

one-loop N-point amplitude:

+R

most complicated functions are dilogarithms

“master integrals”: boxes, triangles, bubbles, tadpoles

Cin can be obtained by numerical reduction at integrand level

“rational part”

very different at two loops (and beyond)master integrals/function basis not a priori known

=X

i

Ci4 +

X

i

Ci3 +

X

i

Ci2 +

X

i

Ci1

(and pentagons in D-dim.)

Page 9: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

@ 2 loops and beyondit is an entirely different story

Weneedrealisticprocesseswithmasses andmanyscales

Classicexamplesofprocessesweneed

• H+jet productionwithatopquark

• VVproductionabovetopthreshold

4scales,3ratios

5 scales,4ratios

NoideaingeneralwhatMis are,andwhatisthespaceoffunctionsneeded,weonlyknowthatMPLsaresurelynotenough

Page 10: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

We made a lot of progress in the last years

Mostimportantdevelopmentisprobablythedifferentialequationsmethod

Cuts and Feynman Integrals beyond multiple polylogarithms

Z lY

j=1

d

dkj

(2⇡)dS

�1

1

... S�ss

D

↵1

1

...D↵nn

, Sr = ki · pj

+

Z lY

j=1

d

dkj

(2⇡)d

@

@kµj

vµS

�1

1

... S�ss

D

↵1

1

...D↵nn

!= 0 v

µ = k

µj , p

µk

+

@@ xk

Ii (d ; xk) =NX

j=1

cij(d ; xk) Ij(d ; xk)

1 / 1

FromtheIBPs

[Kotikov ’91;Remiddi ’97;Gehrmann,Remiddi ’00]

WewanttocomputetheMIsasLaurentseries in𝜀 = (4 − 𝑑)/2

Page 11: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

We made a lot of progress in the last years

Mostimportantdevelopmentisprobablythedifferentialequationsmethod

Cuts and Feynman Integrals beyond multiple polylogarithms

Z lY

j=1

d

dkj

(2⇡)dS

�1

1

... S�ss

D

↵1

1

...D↵nn

, Sr = ki · pj

+

Z lY

j=1

d

dkj

(2⇡)d

@

@kµj

vµS

�1

1

... S�ss

D

↵1

1

...D↵nn

!= 0 v

µ = k

µj , p

µk

+

@@ xk

Ii (d ; xk) =NX

j=1

cij(d ; xk) Ij(d ; xk)

1 / 1

FromtheIBPs

[Kotikov ’91;Remiddi ’97;Gehrmann,Remiddi ’00]

WewanttocomputetheMIsasLaurentseries in𝜀 = (4 − 𝑑)/2

ThereasonwhyDEQsaresousefulisbecauseverytheyoftenbecometriangularInthelimit𝑑 → 4 (bychoosingwisely basisofMIs)

CoefficientsofLaurentserieseffectivelysatisfyFirstorderlinearDEQs!

TheycanexpressedaswellintermsofMPLs

Cuts and Feynman Integrals beyond multiple polylogarithms

A revolution in multi-loop calculations has started when physicists have

re-discovered the so-called multiple polylogarithms

[E.Remiddi, J.Vermaseren ’99; T. Gehrmann, E.Remiddi ’00; ....]

G(0; x) = ln (x) , G(a; x) = ln

⇣1� x

a

⌘for a 6= 0

G(0, ..., 0| {z }n

; x) =

1

n!

ln

n

(x) , G(a, ~w ; x) =

Zx

0

dy

y � a

G(

~w ; y) .

+

Multiple polylogarithms are special because they satisfy

first order di↵erential equations with rational coe�cients

@@ x

G(a, ~w ; x) =

1

x � a

G(

~w ; x) ! purely non-homogeneous equation!

3 / 2

Page 12: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

We discovered canonical bases[Henn’13]

Beautifulsystematizationoftheproceedureabove,i.e.integralsexpressedasMPLsoriteratedintegralsoverdlogschooseMIswithunitleadingsingularities

Theconceptofunitleadingsingularity isunderstood(?)forintegralsthatfulfilthisrequirement [Arkani-Hamedetal’10]

Cuts and Feynman Integrals beyond multiple polylogarithms

NX

j=1

C

j

(d ; x

k

) I

j

(d ; x

k

)

The equations become

d

~I (d ; x) = (d � 4) A(x)

~I (d ; x)

2 / 3

Differentialequationstakeverysimpleform

A(x)isind-logform

ResultsaretriviallyMultiplePolylogarithms

Thesymbol canbereadoffdirectlyfromA(x)!

Ifsuchabasisexists,itmustbepossibletofinditbytransformationsonDEQsonly [Lee’14]

Page 13: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

Wealsohavealmostfullcontrolonanalytical andalgebraic propertiesofMultiplePolylogarithms

Wehavenumericalroutines toevaluateMultiplePolylogarithmswitharbitraryprecison

Two other developments are at least as important…

[Goncharov,Spradlin,Volovich‘10][Duhr,Gangle,Rodes’11][Duhr‘12]

[Vollinga,Weinzierl‘05]

Aslongasweconsidercasesinthissubset,wecandoalot!

Wecancomputescatteringamplitudesefficiently,andgettheminaformthatisusefultodorealphysicswiththem!

Page 14: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

Wealsohavealmostfullcontrolonanalytical andalgebraic propertiesofMultiplePolylogarithms

Wehavenumericalroutines toevaluateMultiplePolylogarithmswitharbitraryprecison

Two other developments are at least as important…

[Goncharov,Spradlin,Volovich‘10][Duhr,Gangle,Rodes’11][Duhr‘12]

[Vollinga,Weinzierl‘05]

Aslongasweconsidercasesinthissubset,wecandoalot!

Wecancomputescatteringamplitudesefficiently,andgettheminaformthatisusefultodorealphysicswiththem!

BeautifulExample(abitbiased):

𝑞𝑞 → 𝑉6𝑉7 @2loopinQCD

withouttop-masseffectsbutfullVoff-shellnesseffects

[Caola,Henn,Melnikov,Smirnov,Smirnov‘14,‘15][Gehrmann,vonManteuffel,Tancredi‘15]

Usealltechniquesabovetoputamplitudeinausableformforpheno!

Page 15: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

All this works so nicely without masses in the loops…

Whatchangesotherwise?MultiplePolylogsareNOTenoughtospanallspaceoffunctionsneeded@2loops!EllipticFunctionsandpossiblymore…

Intermsof DEQs,theycannotbedecoupledanymorein𝑑 = 4LaurentcoefficientsofMIsfulfillirreducible higherorderdifferentialequations

Cuts and Feynman Integrals beyond multiple polylogarithms

Let’s look more in detail - we should recall that equations are in block form

I

j

(d ; x

k

) = (m

j

(d ; x

k

) , sub

j

(d ; x

k

))

+

@@ x

k

m

i

(d ; x

k

) =

NX

j=1

h

ij

(d ; x

k

)m

j

(d ; x

k

) +

MX

j=1

nh

ij

(d ; x

k

) sub

j

(d ; x

k

) .

4 / 3

Page 16: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

All this works so nicely without masses in the loops…

Whatchangesotherwise?MultiplePolylogsareNOTenoughtospanallspaceoffunctionsneeded@2loops!EllipticFunctionsandpossiblymore…

Intermsof DEQs,theycannotbedecoupledanymorein𝑑 = 4LaurentcoefficientsofMIsfulfillirreducible higherorderdifferentialequations

Cuts and Feynman Integrals beyond multiple polylogarithms

Let’s look more in detail - we should recall that equations are in block form

I

j

(d ; x

k

) = (m

j

(d ; x

k

) , sub

j

(d ; x

k

))

+

@@ x

k

m

i

(d ; x

k

) =

NX

j=1

h

ij

(d ; x

k

)m

j

(d ; x

k

) +

MX

j=1

nh

ij

(d ; x

k

) sub

j

(d ; x

k

) .

4 / 3

HomogeneouspartoftheequationremainscoupledConceptofunitleadingsingularityunclear

Page 17: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

All this works so nicely without masses in the loops…

Whatchangesotherwise?MultiplePolylogsareNOTenoughtospanallspaceoffunctionsneeded@2loops!EllipticFunctionsandpossiblymore…

Intermsof DEQs,theycannotbedecoupledanymorein𝑑 = 4LaurentcoefficientsofMIsfulfillirreducible higherorderdifferentialequations

Cuts and Feynman Integrals beyond multiple polylogarithms

Let’s look more in detail - we should recall that equations are in block form

I

j

(d ; x

k

) = (m

j

(d ; x

k

) , sub

j

(d ; x

k

))

+

@@ x

k

m

i

(d ; x

k

) =

NX

j=1

h

ij

(d ; x

k

)m

j

(d ; x

k

) +

MX

j=1

nh

ij

(d ; x

k

) sub

j

(d ; x

k

) .

4 / 3

HomogeneouspartoftheequationremainscoupledConceptofunitleadingsingularityunclear

Cuts and Feynman Integrals beyond multiple polylogarithms

We know a more and more examples now

m

-

&%'$

p

��

@@

-

-

-p

p

1

p

2

����

AA

AA

What all these examples have in common is a bulk 2⇥ 2 (or 3⇥ 3)

irreducible system of di↵erential equations

5 / 4

Cuts and Feynman Integrals beyond multiple polylogarithms

We know a more and more examples now

m

-

&%'$

p

��

@@

-

-

-p

p

1

p

2

����

AA

AA

What all these examples have in common is a bulk 2⇥ 2 (or 3⇥ 3)

irreducible system of di↵erential equations

5 / 4

Page 18: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

DEQs for 2-loop sunrise as an example

Hastwomasterintegrals𝑆6 and𝑆7 plusonesubtopology.𝑢 = 𝑝7/𝑚7

Cuts and Feynman Integrals beyond multiple polylogarithms

Let’s see how this works for the sunrise graph (with u = p

2/m2

)

p

m

m

m

= S(d ; u) =

ZD d

k

1

D d

k

2

[k

2

1

� m

2

][k

2

2

� m

2

][(k

1

� k

2

� p)

2 � m

2

]

,

For ✏ = (2 � d)/2 the sunrise fulfils a 2 system of di↵. equations

d

du

✓S

1

(u)

S

2

(u)

◆= B(u)

✓S

1

(u)

S

2

(u)

◆+ ✏ D(u)

✓S

1

(u)

S

2

(u)

◆+

✓N

1

(u)

N

2

(u)

We need to find a matrix of 2 ⇥ 2 independent homogeneous solutions!

7 / 6

Cuts and Feynman Integrals beyond multiple polylogarithms

Let’s see how this works for the sunrise graph (with u = p

2/m2

)

p

m

m

m

= S(d ; u) =

ZD d

k

1

D d

k

2

[k

2

1

� m

2

][k

2

2

� m

2

][(k

1

� k

2

� p)

2 � m

2

]

,

For ✏ = (2 � d)/2 the sunrise fulfils a 2 system of di↵. equations

d

du

✓S

1

(u)

S

2

(u)

◆= B(u)

✓S

1

(u)

S

2

(u)

◆+ ✏ D(u)

✓S

1

(u)

S

2

(u)

◆+

✓N

1

(u)

N

2

(u)

We need to find a matrix of 2 ⇥ 2 independent homogeneous solutions!

7 / 6

Dispersion relations and di↵erential equations for Feynman Integrals

The di↵erential equations can be put in the form above

d

du

✓h1

h2

◆= B(u)

✓h1

h2

◆+ (d � 4)D(u)

✓h1

h2

◆+

✓01

◆.

where the two matrices B(u),D(u) are defined as

B(u) =1

6 u(u � 1)(u � 9)

✓3(3 + 14u � u

2) �9(u + 3)(3 + 75u � 15u2 + u

3) �3(3 + 14u � u

2)

D(u) =1

6 u(u � 9)(u � 1)

✓6 u(u � 1) 0

(u + 3)(9 + 63u � 9u2 + u

3) 3(u + 1)(u � 9)

Four regular singular points: u = 0, 1, 9,±1

13 / 31

Page 19: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

Analytic solutions reloaded

Ingeneral,givenacoupledsystemofequations,nogeneralmethodtodetermineallhomogeneoussolutions.BUT wecanuseadditionalinformationfromMaximalCut

Acompletesolutioninseriesexpansionin𝜀 requiressolvinghomogeneousequationsin 𝜀 = 0,i.e.findingamatrix2x2suchthat

Cuts and Feynman Integrals beyond multiple polylogarithms

Other two solutions by di↵erentiation [or cutting the second master integral]

J1(u) /I

C1

dbpR4(b, u)

I1(u) /I

C2

dbp�R4(b, u)

J2(u) /I

C1

db b

2

pR4(b, u)

I2(u) /I

C2

db b

2

p�R4(b, u)

And by construction we find

d

du

✓I1(u) J1(u)I2(u) J2(u)

◆= B(u)

✓I1(u) J1(u)I2(u) J2(u)

15 / 15

Cuts and Feynman Integrals beyond multiple polylogarithms

Matrix of solutions can be therefore written as the matrix of the maximal cuts

G(u) =

✓I1(u) J1(u)I2(u) J2(u)

◆=

✓Cut

C1 (S1(u)) CutC2 (S1(u))

CutC1 (S2(u)) Cut

C2 (S2(u))

and recall that

G

�1(u) =1

W (u)

✓J2(u) �J1(u)�I2(u) I1(u)

◆! W (u) = det (G(u)) = I1(u)J2(u)�I2(u)J1(u)

where W (u) is the Wronskian of the solutions!

8 / 15

Cuts and Feynman Integrals beyond multiple polylogarithms

Let’s look more in detail - we should recall that equations are in block form

I

j

(d ; x

k

) = (m

j

(d ; x

k

) , sub

j

(d ; x

k

))

+

@@ x

k

m

i

(d ; x

k

) =

NX

j=1

h

ij

(d ; x

k

)m

j

(d ; x

k

) +

MX

j=1

nh

ij

(d ; x

k

) sub

j

(d ; x

k

) .

4 / 3

Page 20: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

Analytic solutions reloadedAcompletesolutioninseriesexpansionin𝜀 requiressolvinghomogeneousequationsin 𝜀 = 0,i.e.findingamatrix2x2suchthat

Cuts and Feynman Integrals beyond multiple polylogarithms

Other two solutions by di↵erentiation [or cutting the second master integral]

J1(u) /I

C1

dbpR4(b, u)

I1(u) /I

C2

dbp�R4(b, u)

J2(u) /I

C1

db b

2

pR4(b, u)

I2(u) /I

C2

db b

2

p�R4(b, u)

And by construction we find

d

du

✓I1(u) J1(u)I2(u) J2(u)

◆= B(u)

✓I1(u) J1(u)I2(u) J2(u)

15 / 15

Cuts and Feynman Integrals beyond multiple polylogarithms

Matrix of solutions can be therefore written as the matrix of the maximal cuts

G(u) =

✓I1(u) J1(u)I2(u) J2(u)

◆=

✓Cut

C1 (S1(u)) CutC2 (S1(u))

CutC1 (S2(u)) Cut

C2 (S2(u))

and recall that

G

�1(u) =1

W (u)

✓J2(u) �J1(u)�I2(u) I1(u)

◆! W (u) = det (G(u)) = I1(u)J2(u)�I2(u)J1(u)

where W (u) is the Wronskian of the solutions!

8 / 15

Cuts and Feynman Integrals beyond multiple polylogarithms

The Maximal Cut provides us with ONE solution of the homogeneous system![A. Primo, L. T. ’16]

+

@@ x

k

Cut (mi

(d ; xk

)) =NX

j=1

h

ij

(d ; xk

)Cut (mj

(d ; xk

))

11 / 15

MaximalCutprovidessolutionofhomogeneousequation [A.Primo,L.Tancredi‘16]

Ingeneral,givenacoupledsystemofequations,nogeneralmethodtodetermineallhomogeneoussolutions.BUT wecanuseadditionalinformationfromMaximalCut

ComputedefficientlyusingBaikovrepresentation[C.Papadopoulos,H.Frellesvig‘17]

Page 21: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

How to get all independent solutions

Cuts and Feynman Integrals beyond multiple polylogarithms

But cutting the graph maximally we find

m

p=

I

C

dbq±b (b � 4)

�b � (

pu � 1)2

� �b � (

pu + 1)2

=

I

C

dbp±R4(b, u)

We want to get independent homogeneous solutions

by integrating along di↵erent contours

The problem of how many independent contours exist is acohomology problem, recent renewed interest from physics community

[... ; Abreu, Britto, Duhr, Gardi ’17 ]

13 / 15

Computemaxcutalongallindependentcontours

[Bosma,Sogaard,Zhang‘17][A.Primo,L.Tancredi‘17][Harley,Moriello,Schabinger‘17]

Im(b)

Re(b)

0 0

Im(b)

Re(b)

Cuts and Feynman Integrals beyond multiple polylogarithms

Other two solutions by di↵erentiation [or cutting the second master integral]

J1(u) /I

C1

dbpR4(b, u)

I1(u) /I

C2

dbp�R4(b, u)

J2(u) /I

C1

db b

2

pR4(b, u)

I2(u) /I

C2

db b

2

p�R4(b, u)

And by construction we find

d

du

✓I1(u) J1(u)I2(u) J2(u)

◆= B(u)

✓I1(u) J1(u)I2(u) J2(u)

15 / 15

Cuts and Feynman Integrals beyond multiple polylogarithms

Other two solutions by di↵erentiation [or cutting the second master integral]

J1(u) /I

C1

dbpR4(b, u)

I1(u) /I

C2

dbp�R4(b, u)

J2(u) /I

C1

db b

2

pR4(b, u)

I2(u) /I

C2

db b

2

p�R4(b, u)

And by construction we find

d

du

✓I1(u) J1(u)I2(u) J2(u)

◆= B(u)

✓I1(u) J1(u)I2(u) J2(u)

15 / 15

Page 22: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

We obtain at once all solutions from the two master integrals

Cuts and Feynman Integrals beyond multiple polylogarithms

Other two solutions by di↵erentiation [or cutting the second master integral]

J1(u) /I

C1

dbpR4(b, u)

I1(u) /I

C2

dbp�R4(b, u)

J2(u) /I

C1

db b

2

pR4(b, u)

I2(u) /I

C2

db b

2

p�R4(b, u)

And by construction we find

d

du

✓I1(u) J1(u)I2(u) J2(u)

◆= B(u)

✓I1(u) J1(u)I2(u) J2(u)

15 / 15

CuttingthesecondMI

Cuts and Feynman Integrals beyond multiple polylogarithms

Matrix of solutions can be therefore written as the matrix of the maximal cuts

G(u) =

✓I1(u) J1(u)I2(u) J2(u)

◆=

✓Cut

C1 (S1(u)) CutC2 (S1(u))

CutC1 (S2(u)) Cut

C2 (S2(u))

and recall that

G

�1(u) =1

W (u)

✓J2(u) �J1(u)�I2(u) I1(u)

◆! W (u) = det (G(u)) = I1(u)J2(u)�I2(u)J1(u)

where W (u) is the Wronskian of the solutions!

8 / 15

ItisthematrixofMaximalCuts!

Page 23: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

Basis of unit leading singularity?

Cuts and Feynman Integrals beyond multiple polylogarithms

Let’s rotate the system to a more convenient form

G(u) =

✓I1(u) J1(u)I2(u) J2(u)

◆!

✓S1(u)S2(u)

◆= G(u)

✓m1(u)m2(u)

Such that

d

du

✓m1(u)m2(u)

◆= ✏ G

�1(u)D(u)G(u)| {z }

✓m1(u)m2(u)

◆+ G

�1(u)

✓N1(u)N2(u)

+

Iterated integrals over products of two elliptic integrals and rational functions!

9 / 15

RotateoriginalbasisUsingmatrixG(u)

Page 24: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

Basis of unit leading singularity?

Cuts and Feynman Integrals beyond multiple polylogarithms

Let’s rotate the system to a more convenient form

G(u) =

✓I1(u) J1(u)I2(u) J2(u)

◆!

✓S1(u)S2(u)

◆= G(u)

✓m1(u)m2(u)

Such that

d

du

✓m1(u)m2(u)

◆= ✏ G

�1(u)D(u)G(u)| {z }

✓m1(u)m2(u)

◆+ G

�1(u)

✓N1(u)N2(u)

+

Iterated integrals over products of two elliptic integrals and rational functions!

9 / 15

Cuts and Feynman Integrals beyond multiple polylogarithms

You see what is happening here...

Remember, given a system of di↵erential equations, the matrix of the maximalcuts is the matrix of the homogeneous solutions!

What about our new basis? For ✏ = 0 it’s homogeneous equations is

d

du

✓m1(u)m2(u)

◆= 0

And indeed

✓Cut

C1 (m1(u)) CutC2 (m1(u))

CutC1 (m2(u)) Cut

C2 (m2(u))

◆=

✓1 00 1

◆! The identity !!!!

Unit leading singularity!!! Generalization (?) of [Henn ’13]

17 / 15

Cuts and Feynman Integrals beyond multiple polylogarithms

Physical intepretation of this rotation

0

@m1(u)

m2(u)

1

A = G

�1(u)

0

@S1(u)

S2(u)

1

A =1

W (u)

0

@J2(u)S1(u) � J1(u)S2(u)

�I2(u)S1(u) + I1(u)S2(u)

1

A

Let maximal-cut it along the two independent contours that we found earlier

CutC1

2

4

0

@m1(u)

m2(u)

1

A

3

5 =1

W (u)

0

@J2(u)I1(u) � J1(u)I2(u)

�I2(u)I1(u) + I1(u)I2(u)

1

A =

0

@1

0

1

A

CutC2

2

4

0

@m1(u)

m2(u)

1

A

3

5 =1

W (u)

0

@J2(u)J1(u) � J1(u)J2(u)

�I2(u)J1(u) + J1(u)I2(u)

1

A =

0

@0

1

1

A

16 / 15

Newbasis’maxcutsalongtwocontoursgiveidentitymatrix

RotateoriginalbasisUsingmatrixG(u)

Page 25: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

Basis of unit leading singularity?

ForSunrise,entriesofmatrixG(u)areproportionaltocomplete ellipticintegrals

Cuts and Feynman Integrals beyond multiple polylogarithms

Let’s rotate the system to a more convenient form

G(u) =

✓I1(u) J1(u)I2(u) J2(u)

◆!

✓S1(u)S2(u)

◆= G(u)

✓m1(u)m2(u)

Such that

d

du

✓m1(u)m2(u)

◆= ✏ G

�1(u)D(u)G(u)| {z }

✓m1(u)m2(u)

◆+ G

�1(u)

✓N1(u)N2(u)

+

Iterated integrals over products of two elliptic integrals and rational functions!

9 / 15

Cuts and Feynman Integrals beyond multiple polylogarithms

You see what is happening here...

Remember, given a system of di↵erential equations, the matrix of the maximalcuts is the matrix of the homogeneous solutions!

What about our new basis? For ✏ = 0 it’s homogeneous equations is

d

du

✓m1(u)m2(u)

◆= 0

And indeed

✓Cut

C1 (m1(u)) CutC2 (m1(u))

CutC1 (m2(u)) Cut

C2 (m2(u))

◆=

✓1 00 1

◆! The identity !!!!

Unit leading singularity!!! Generalization (?) of [Henn ’13]

17 / 15

Cuts and Feynman Integrals beyond multiple polylogarithms

Physical intepretation of this rotation

0

@m1(u)

m2(u)

1

A = G

�1(u)

0

@S1(u)

S2(u)

1

A =1

W (u)

0

@J2(u)S1(u) � J1(u)S2(u)

�I2(u)S1(u) + I1(u)S2(u)

1

A

Let maximal-cut it along the two independent contours that we found earlier

CutC1

2

4

0

@m1(u)

m2(u)

1

A

3

5 =1

W (u)

0

@J2(u)I1(u) � J1(u)I2(u)

�I2(u)I1(u) + I1(u)I2(u)

1

A =

0

@1

0

1

A

CutC2

2

4

0

@m1(u)

m2(u)

1

A

3

5 =1

W (u)

0

@J2(u)J1(u) � J1(u)J2(u)

�I2(u)J1(u) + J1(u)I2(u)

1

A =

0

@0

1

1

A

16 / 15

Newbasis’maxcutsalongtwocontoursgiveidentitymatrix

RotateoriginalbasisUsingmatrixG(u)

Page 26: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

Iterated integrals over new kernels

Cuts and Feynman Integrals beyond multiple polylogarithms

Let’s rotate the system to a more convenient form

G(u) =

✓I1(u) J1(u)I2(u) J2(u)

◆!

✓S1(u)S2(u)

◆= G(u)

✓m1(u)m2(u)

Such that

d

du

✓m1(u)m2(u)

◆= ✏ G

�1(u)D(u)G(u)| {z }

✓m1(u)m2(u)

◆+ G

�1(u)

✓N1(u)N2(u)

+

Iterated integrals over products of two elliptic integrals and rational functions!

9 / 15

Thenewbasisfulfilssimpledifferentialequations– homogeneouspartfactorizedin𝜀

Whatarethesefunctions(intheSunrisecase)?

§ EllipticPolylogarithms[Bloch,Vanhove‘13]§ ELifunctions[Adams,Bogner,Weinzierl‘14,’15]§ Iteratedintegralsovermodularforms[Adams,Weinzierl‘17]§ …

Unclearhowtoextendthemtoothertopologieswithmorecomplicatedkinematics

Page 27: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

The method is much more general!Weknowafewexamplesat2loops(thenumberisincreasing…)

Differentkinematics(2,3,4-pointfunctions),allreducedto2x2coupledsystemwhosesolutionsgivenbycompleteellipticintegrals

Page 28: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

The method is much more general!Weknowafewexamplesat2loops(thenumberisincreasing…)

Differentkinematics(2,3,4-pointfunctions),allreducedto2x2coupledsystemwhosesolutionsgivenbycompleteellipticintegrals

First3x3caseknownhappensat3loops

Bananagraph– 3MIs,3coupledDEQs p

m

m

m

m

Cuts and Feynman Integrals beyond multiple polylogarithms

d

dx

0

@I1(✏; x)I2(✏; x)I3(✏; x)

1

A =B(x)

0

@I1(✏; x)I2(✏; x)I3(✏; x)

1

A + ✏D(x)

0

@I1(✏; x)I2(✏; x)I3(✏; x)

1

A +

0

@00

� 12(4x�1)

1

A

where B(x) and D(x) are 3 ⇥ 3 matrices, with x = 4m2/p2

B(x) =

0

@1x

4x

0� 1

4(x�1)1x

� 2x�1

3x

� 3x�1

18(x�1)

� 18(4x�1)

1x�1

� 32(4x�1)

1x

� 64x�1

+ 32(x�1)

1

A

D(x) =

0

@3x

12x

0� 1

x�12x

� 6x�1

6x

� 6x�1

12(x�1)

� 12(4x�1)

3x�1

� 92(4x�1)

1x

� 124x�1

+ 3x�1

1

A

19 / 17

[A.Primo,L.Tancredi‘17]

Page 29: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

The method is much more general!Weknowafewexamplesat2loops(thenumberisincreasing…)

Differentkinematics(2,3,4-pointfunctions),allreducedto2x2coupledsystemwhosesolutionsgivenbycompleteellipticintegrals

First3x3caseknownhappensat3loops

Bananagraph– 3MIs,3coupledDEQs p

m

m

m

m

Cuts and Feynman Integrals beyond multiple polylogarithms

d

dx

0

@I1(✏; x)I2(✏; x)I3(✏; x)

1

A =B(x)

0

@I1(✏; x)I2(✏; x)I3(✏; x)

1

A + ✏D(x)

0

@I1(✏; x)I2(✏; x)I3(✏; x)

1

A +

0

@00

� 12(4x�1)

1

A

where B(x) and D(x) are 3 ⇥ 3 matrices, with x = 4m2/p2

B(x) =

0

@1x

4x

0� 1

4(x�1)1x

� 2x�1

3x

� 3x�1

18(x�1)

� 18(4x�1)

1x�1

� 32(4x�1)

1x

� 64x�1

+ 32(x�1)

1

A

D(x) =

0

@3x

12x

0� 1

x�12x

� 6x�1

6x

� 6x�1

12(x�1)

� 12(4x�1)

3x�1

� 92(4x�1)

1x

� 124x�1

+ 3x�1

1

A

19 / 17

3x3coupledhomogeneoussystemNeedamatrixof3x3independentsolutions!

[A.Primo,L.Tancredi‘17]

Page 30: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

Same idea applied hereWestudythemaxcutofthethreeloopbananagraphalongallindependentcontoursboundedbybranchcutsandfindallindependentsolutions!

Cuts and Feynman Integrals beyond multiple polylogarithms

We choose as three independent functions

H1(x) =x K⇣k2

+

⌘K⇣k2�

⌘,

J1(x) =x K⇣k2

+

⌘K⇣1 � k2

⌘,

I1(x) =x K⇣1 � k2

+

⌘K⇣k2�

⌘,

where the remaining rows of the matrix G(x) can be obtained bydi↵erentiation. With this choice we have

W (x) = � ⇡3x3

512p

(1 � 4x)3(1 � x)

24 / 17

Cuts and Feynman Integrals beyond multiple polylogarithms

Interestingly enough, with some e↵ort, and following:[Bailey, Borwein, Broadhurst ’08]

f V1 (x) = 2x K(k2

�) K(k2+)

f V2 (x) = 4x

⇣K(k2

�) K(1 � k2+) + K(k2

+) K(1 � k2�)

⌘,

k± =

p(� + ↵)2 � �2 ±p

(� � ↵)2 � �2

2�with k� =

✓↵�

◆1k+

=2↵k+

↵ =

px +

px(1 � x)

2, � =

px �p

x(1 � x)

2, � =

12

Result expected from studies of Joyce ’73 on cubic lattice Green functions!Elliptic Tri-Log by [Bloch, Kerr, Vanhove ’14]

23 / 17

Generalizationofcompleteellipticintegralsin2x2case

Homogeneoussolutionsareproductsofcompleteellipticintegrals!

Besselmoments[Bailey,Borwein,Broadhurst‘08]

AlreadyJ.Joycecouldsolvethisequationin1973 incontextofcubiclatticeGreenfunctions

MorerecentlyBlochandVanhovewrotethegraphind=2asanEllipticTrilog!

Page 31: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

Is this the only approach worth trying?

Verypromisingdevelopments:wehavenowawaytotacklecomplicatedMIsbysolvingdifferentialequationseveniftheyarecoupled!

Wearemakingfastprogressontheclassificationsofthespecialfunctionsinvolved!

Still,amajorissueremains.Calculationswithmanyscalesandinternalmassesgeneratetypicallyhugealgebraiccomplexity.

Complexityofamplitudesforrealisticprocesses,evenwhenwrittenintermsofindependentstructures,increasesfactorially.

Theybecomeaproblemalreadyfor𝟐 → 𝟐 evenforlargestcomputers. Allourmachinerybreaksdown!

Page 32: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

Is this the only approach worth trying?

Verypromisingdevelopments:wehavenowawaytotacklecomplicatedMIsbysolvingdifferentialequationseveniftheyarecoupled!

Wearemakingfastprogressontheclassificationsofthespecialfunctionsinvolved!

Still,amajorissueremains.Calculationswithmanyscalesandinternalmassesgeneratetypicallyhugealgebraiccomplexity.

Complexityofamplitudesforrealisticprocesses,evenwhenwrittenintermsofindependentstructures,increasesfactorially.

Theybecomeaproblemalreadyfor𝟐 → 𝟐 evenforlargestcomputers. Allourmachinerybreaksdown!

Verypromisingnumericalapproaches:• ttbar@NNLO[Czakonetal.‘13]• HH@NLO[Borowkaetal.‘16]

Maybeweneedtorethinkentirelywhatwearedoing?

Page 33: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

We should remember that we are physicists (mainly!) and that most of our calculations are performed in some sort of approximation…

TakeforexampleH+jetproduction withamassivebottomquark

Importantsourceofuncertainty :

Interferencetop-bottom@NLOinQCDForlarge𝑝= ofHiggs,largelog

ABCD

, log AFAB

Page 34: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

We should remember that we are physicists (mainly!) and that most of our calculations are performed in some sort of approximation…

TakeforexampleH+jetproduction withamassivebottomquark

Importantsourceofuncertainty :

Interferencetop-bottom@NLOinQCDForlarge𝑝= ofHiggs,largelog

ABCD

, log AFAB

ProgresstowardsanalyticcomputationofplanarMIs[Bonciani,DelDuca,Frellesvig,Henn,Moriello,Smirnov‘16]

Impressivecalculation,butresultsarenotreallyinaniceshape,noteventheMPLspart!

• Uptotwo-foldintegralrepresentations• Noanalyticcontinuation• ~200MBlargefilesandNPLintegralsarestillmissing

Page 35: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

MI with DE method for small 𝑚𝑏 (1/2)DE method

8

• System of partial differential equations (DE) in 𝒎𝒃, 𝒔, 𝒕,𝒎𝒉

𝟐

with IBP relations

• Solve 𝑚𝑏 DE with following ansatz

• Plug into 𝑚𝑏 DE and get constraints on coefficients 𝑐𝑖𝑗𝑘𝑛

• 𝑐𝑖000 is 𝑚𝑏 = 0 solution (hard region) and has been computed before

Step 1: solve DE in 𝒎𝒃

• Interested in 𝑚𝑏 expansion of Master integrals 𝐼𝑀𝐼

expand homogeneous matrix 𝑀𝑘 in small 𝑚𝑏

[Gehrmann & Remiddi ’00]

Inordertocapturethiseffect,noneedofcomputingexactmassdependence!WecanexpandallMIs(andthewholeamplitude)forsmallbottommass!

DeriveDEQsforcoefficientsOnelessscale,nomass,muchsimpler!

[J.Lindert,K.Melnikov,L.Tancredi,C.Wever‘16,’17]

Page 36: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

MI with DE method for small 𝑚𝑏 (1/2)DE method

8

• System of partial differential equations (DE) in 𝒎𝒃, 𝒔, 𝒕,𝒎𝒉

𝟐

with IBP relations

• Solve 𝑚𝑏 DE with following ansatz

• Plug into 𝑚𝑏 DE and get constraints on coefficients 𝑐𝑖𝑗𝑘𝑛

• 𝑐𝑖000 is 𝑚𝑏 = 0 solution (hard region) and has been computed before

Step 1: solve DE in 𝒎𝒃

• Interested in 𝑚𝑏 expansion of Master integrals 𝐼𝑀𝐼

expand homogeneous matrix 𝑀𝑘 in small 𝑚𝑏

[Gehrmann & Remiddi ’00]

Inordertocapturethiseffect,noneedofcomputingexactmassdependence!WecanexpandallMIs(andthewholeamplitude)forsmallbottommass!

DeriveDEQsforcoefficientsOnelessscale,nomass,muchsimpler!

Messageis:

Sometimesdoingeverythinganalyticallycanbeoverkill

Ifwefindtherightapproximation,DEQsareverypowerfulalsotogetapproximateresults

Usedalreadyinsimilarcontext

[J.Lindert,K.Melnikov,L.Tancredi,C.Wever‘16,’17]

[R.Mueller,G.Öztürk‘16]

Page 37: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

Conclusions§ Scatteringamplitudesneededforrealisticphysicalprocesses@LHCare

(appeartobe?)immenselycomplicated

§ Thankstoprogressintheoreticalunderstanding,alimitedsubsetoftheseamplitudesisnowundermuchbettercontrol(MPLs!)

§ Alsoinmoregeneralcases,westarthavinganideaofhowtoproceedtotackletheproblem(Maxcut,EPLs andModularForms)

§ Still,remainsproblemofenormousalgebraiccomplexity(it’sjustsimplecombinatorics!)

§ Giventhiscomplexity,itisunclearwhetherapurelyanalyticalapproachwillbefeasibleinthenearfuture.

§ HybridNumerical/Analytical(seriesexpansions?)mightbethewaytogo…?

Page 38: Advancements and Challenges in Multiloop Scattering ... · Advancements and Challenges in Multiloop Scattering Amplitudes for the LHC Amplitudes–Edinburgh, 11 July 2017 In collaboration

THANKS!