ageing resistance (12 years) of hard and oxidation...

28
Ageing Resistance (12 years) of Hard and Oxidation Resistant SiBCN Coatings Jiri Houska Department of Physics and NTIS - European Centre of Excellence, University of West Bohemia, Czech Republic Acknowledgment Grant Agency of the Czech Republic through Project No. 15-00859Y 1/14

Upload: others

Post on 19-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Ageing Resistance (12 years) of Hard and Oxidation Resistant SiBCN Coatings

    Jiri HouskaDepartment of Physics and NTIS - European Centre of Excellence,

    University of West Bohemia, Czech Republic

    Acknowledgment

    Grant Agency of the Czech Republic through Project No. 15-00859Y

    1/14

  • SiBCN coatingsin as-deposited state studied for years

    Pulsed reactive magnetron sputtering of high-temperature Si-B-C-N films with high optical transparency2013Surf. Coat. Technol. 226, 34J. Vlcek et al.

    Development of a new generation of amorphous hard coatings based on the Si-B-C-N-O system for ...2013Surf. Coat. Technol. 223, 52H. Abu Samra et al.

    Amorphous boron containing silicon carbo-nitridescreated by ion sputtering2011Surf. Coat. Technol. 206, 149V.M. Vishnyakov et al.

    Amorphous-SiCBN-based metal-semiconductor-metal photodetector for high-temperature applications2007IEEE Electron Device Lett. 28, 713A. Vijayakumar et al.

    Silicoboron–carbonitride ceramics: A class of high-temperature, dopable electronic materials2001Appl. Phys. Lett. 78, 3076P.A. Ramakrishnan et al.

    PACVD-Derived Thin Films in the System Si-B-C-N1999Chem. Vap. Deposition 5, 61D. Hegemann et al.

    Surface Studies of Potentially Oxidation Protective Si-B-N-C Films for Carbon Fibers1997Chem. Mater. 9, 285M.A. Rooke et al.

    Other labs (examples)

    Ageing resistance of SiBCN ceramics2015Ceram. Int. 41, 7921J. Houska et al.

    Microstructure characterization of high-temperature, oxidation-resistant Si-B-C-N films2013Thin Solid Films 542, 167J. He et al.

    Thermal conductivity of high-temperature Si-B-C-N thin films2011Surf. Coat. Technol. 206, 2030J.J. Gengler et al.

    Effect of nitrogen content on electronic structure and properties of SiBCN materials2011Acta Materialia 59, 2341V. Petrman et al.

    Thermal stability of magnetron sputtered Si-B-C-N materials at temperatures up to 1700 °C2010Thin Solid Films 519, 306P. Zeman et al.

    SiBCN materials for high-temperature applications: Atomistic origin of electrical conductivity2010J. Appl. Phys. 108, 083711J. Houska et al.

    High-temperature stability of the mechanical and optical properties of Si-B-C-N films prepared by ...2009Thin Solid Films 518, 174J. Kalas et al.

    Effect of the gas mixture composition on high temperature behavior of magnetron suttered Si-B-C-N ...2008Surf. Coat. Technol. 203, 466J. Capek et al.

    Magnetron sputtered Si-B-C-N films with high oxidation resistance and thermal stability in ...2008J. Vac. Sci. Technol. A26, 1101J. Vlcek et al.

    Mechanical and optical properties of quaternary Si-B-C-N films prepared by reactive magnetron sputtering2008Thin Solid Films 516, 7286J. Cizek et al.

    Effect of implanted argon on hardness of novel magnetron sputtered Si-B-C-N materials: ...2007J. Phys.: Condens. Matter 19, 196228J. Houska et al.

    Bonding statistics and electronic structure of novel Si-B-C-N materials: ab-initio calculations and ...2007J. Vac. Sci. Technol. A 25, 1411J. Houska et al.

    Influence of substrate bias voltage on structure and properties of hard Si-B-C-N films prepared by ...2007Diamond Relat. Mater. 16, 29J. Houska et al.

    Effect of B and the Si/C ratio on high-temperature stability of novel Si-B-C-N materials2006Europhys. Lett. 76, 512J. Houska et al.

    New quaternary Si-B-C-N films prepared by reactive magnetron sputtering2006Trans. Mater. Res. Soc. Jpn 31, 447J. Vlcek et al.

    The effect of argon on the structure of amorphous SiBCN materials: an experimental and ab initio study2006J. Phys.: Condens. Matter 18, 2337J. Houska et al.

    Ab initio simulations of nitrogen evolution in quenched CNx and SiBCN amorphous materials2005Phys. Rev. B 72, 054204J. Houska et al.

    Reactive magnetron sputtering of hard Si-B-C-N films with a high-temperature oxidation resistance2005J. Vac. Sci. Technol. A 23, 1513J. Vlcek et al.

    University of West Bohemia

    2/14

  • SiBCN coatingsin as-deposited state studied for years

    2/14

    Pulsed reactive magnetron sputtering of high-temperature Si-B-C-N films with high optical transparency2013Surf. Coat. Technol. 226, 34J. Vlcek et al.

    Development of a new generation of amorphous hard coatings based on the Si-B-C-N-O system for ...2013Surf. Coat. Technol. 223, 52H. Abu Samra et al.

    Amorphous boron containing silicon carbo-nitridescreated by ion sputtering2011Surf. Coat. Technol. 206, 149V.M. Vishnyakov et al.

    Amorphous-SiCBN-based metal-semiconductor-metal photodetector for high-temperature applications2007IEEE Electron Device Lett. 28, 713A. Vijayakumar et al.

    Silicoboron–carbonitride ceramics: A class of high-temperature, dopable electronic materials2001Appl. Phys. Lett. 78, 3076P.A. Ramakrishnan et al.

    PACVD-Derived Thin Films in the System Si-B-C-N1999Chem. Vap. Deposition 5, 61D. Hegemann et al.

    Surface Studies of Potentially Oxidation Protective Si-B-N-C Films for Carbon Fibers1997Chem. Mater. 9, 285M.A. Rooke et al.

    Other labs (examples)

    Ageing resistance of SiBCN ceramics2015Ceram. Int. 41, 7921J. Houska et al.

    Microstructure characterization of high-temperature, oxidation-resistant Si-B-C-N films2013Thin Solid Films 542, 167J. He et al.

    Thermal conductivity of high-temperature Si-B-C-N thin films2011Surf. Coat. Technol. 206, 2030J.J. Gengler et al.

    Effect of nitrogen content on electronic structure and properties of SiBCN materials2011Acta Materialia 59, 2341V. Petrman et al.

    Thermal stability of magnetron sputtered Si-B-C-N materials at temperatures up to 1700 °C2010Thin Solid Films 519, 306P. Zeman et al.

    SiBCN materials for high-temperature applications: Atomistic origin of electrical conductivity2010J. Appl. Phys. 108, 083711J. Houska et al.

    High-temperature stability of the mechanical and optical properties of Si-B-C-N films prepared by ...2009Thin Solid Films 518, 174J. Kalas et al.

    Effect of the gas mixture composition on high temperature behavior of magnetron suttered Si-B-C-N ...2008Surf. Coat. Technol. 203, 466J. Capek et al.

    Magnetron sputtered Si-B-C-N films with high oxidation resistance and thermal stability in ...2008J. Vac. Sci. Technol. A26, 1101J. Vlcek et al.

    Mechanical and optical properties of quaternary Si-B-C-N films prepared by reactive magnetron sputtering2008Thin Solid Films 516, 7286J. Cizek et al.

    Effect of implanted argon on hardness of novel magnetron sputtered Si-B-C-N materials: ...2007J. Phys.: Condens. Matter 19, 196228J. Houska et al.

    Bonding statistics and electronic structure of novel Si-B-C-N materials: ab-initio calculations and ...2007J. Vac. Sci. Technol. A 25, 1411J. Houska et al.

    Influence of substrate bias voltage on structure and properties of hard Si-B-C-N films prepared by ...2007Diamond Relat. Mater. 16, 29J. Houska et al.

    Effect of B and the Si/C ratio on high-temperature stability of novel Si-B-C-N materials2006Europhys. Lett. 76, 512J. Houska et al.

    New quaternary Si-B-C-N films prepared by reactive magnetron sputtering2006Trans. Mater. Res. Soc. Jpn 31, 447J. Vlcek et al.

    The effect of argon on the structure of amorphous SiBCN materials: an experimental and ab initio study2006J. Phys.: Condens. Matter 18, 2337J. Houska et al.

    Ab initio simulations of nitrogen evolution in quenched CNx and SiBCN amorphous materials2005Phys. Rev. B 72, 054204J. Houska et al.

    Reactive magnetron sputtering of hard Si-B-C-N films with a high-temperature oxidation resistance2005J. Vac. Sci. Technol. A 23, 1513J. Vlcek et al.

    University of West Bohemia

    This workageing resistance (12yr) of coatings prepared in 2002-3

  • SiBCN coatingsin as-deposited state studied for years

    2/14

    Pulsed reactive magnetron sputtering of high-temperature Si-B-C-N films with high optical transparency2013Surf. Coat. Technol. 226, 34J. Vlcek et al.

    Development of a new generation of amorphous hard coatings based on the Si-B-C-N-O system for ...2013Surf. Coat. Technol. 223, 52H. Abu Samra et al.

    Amorphous boron containing silicon carbo-nitridescreated by ion sputtering2011Surf. Coat. Technol. 206, 149V.M. Vishnyakov et al.

    Amorphous-SiCBN-based metal-semiconductor-metal photodetector for high-temperature applications2007IEEE Electron Device Lett. 28, 713A. Vijayakumar et al.

    Silicoboron–carbonitride ceramics: A class of high-temperature, dopable electronic materials2001Appl. Phys. Lett. 78, 3076P.A. Ramakrishnan et al.

    PACVD-Derived Thin Films in the System Si-B-C-N1999Chem. Vap. Deposition 5, 61D. Hegemann et al.

    Surface Studies of Potentially Oxidation Protective Si-B-N-C Films for Carbon Fibers1997Chem. Mater. 9, 285M.A. Rooke et al.

    Other labs (examples)

    Ageing resistance of SiBCN ceramics2015Ceram. Int. 41, 7921J. Houska et al.

    Microstructure characterization of high-temperature, oxidation-resistant Si-B-C-N films2013Thin Solid Films 542, 167J. He et al.

    Thermal conductivity of high-temperature Si-B-C-N thin films2011Surf. Coat. Technol. 206, 2030J.J. Gengler et al.

    Effect of nitrogen content on electronic structure and properties of SiBCN materials2011Acta Materialia 59, 2341V. Petrman et al.

    Thermal stability of magnetron sputtered Si-B-C-N materials at temperatures up to 1700 °C2010Thin Solid Films 519, 306P. Zeman et al.

    SiBCN materials for high-temperature applications: Atomistic origin of electrical conductivity2010J. Appl. Phys. 108, 083711J. Houska et al.

    High-temperature stability of the mechanical and optical properties of Si-B-C-N films prepared by ...2009Thin Solid Films 518, 174J. Kalas et al.

    Effect of the gas mixture composition on high temperature behavior of magnetron suttered Si-B-C-N ...2008Surf. Coat. Technol. 203, 466J. Capek et al.

    Magnetron sputtered Si-B-C-N films with high oxidation resistance and thermal stability in ...2008J. Vac. Sci. Technol. A26, 1101J. Vlcek et al.

    Mechanical and optical properties of quaternary Si-B-C-N films prepared by reactive magnetron sputtering2008Thin Solid Films 516, 7286J. Cizek et al.

    Effect of implanted argon on hardness of novel magnetron sputtered Si-B-C-N materials: ...2007J. Phys.: Condens. Matter 19, 196228J. Houska et al.

    Bonding statistics and electronic structure of novel Si-B-C-N materials: ab-initio calculations and ...2007J. Vac. Sci. Technol. A 25, 1411J. Houska et al.

    Influence of substrate bias voltage on structure and properties of hard Si-B-C-N films prepared by ...2007Diamond Relat. Mater. 16, 29J. Houska et al.

    Effect of B and the Si/C ratio on high-temperature stability of novel Si-B-C-N materials2006Europhys. Lett. 76, 512J. Houska et al.

    New quaternary Si-B-C-N films prepared by reactive magnetron sputtering2006Trans. Mater. Res. Soc. Jpn 31, 447J. Vlcek et al.

    The effect of argon on the structure of amorphous SiBCN materials: an experimental and ab initio study2006J. Phys.: Condens. Matter 18, 2337J. Houska et al.

    Ab initio simulations of nitrogen evolution in quenched CNx and SiBCN amorphous materials2005Phys. Rev. B 72, 054204J. Houska et al.

    Reactive magnetron sputtering of hard Si-B-C-N films with a high-temperature oxidation resistance2005J. Vac. Sci. Technol. A 23, 1513J. Vlcek et al.

    University of West Bohemia

    This workageing resistance (12yr) of coatings prepared in 2002-3

    Important (for obvious reasons) but rarely studied (also for obvious reasons)

  • Motivation: examples of as-deposited propeties of S iBCN

    Si-Ta-NSi-Zr-NSi-Mo-N

    Musil et al.

    500 700 900 1100 1300 1500 1700-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    nc-TiN/a-Si3N

    4

    Veprek et al. Si-Al-N Musil et al.

    1900

    Si-B-C-N Vlcek et al.

    Si-Ti-N Musil et al.

    Temperature (°C)

    Mas

    s ch

    ange

    (m

    g/cm

    2)

    TiAlN/CrNWadsworth et al.

    TiAlCrYNDonohue et al.

    TiAlZrNMünz et al.

    TiCMünz et al.

    TiAlNMünz et al.TiN

    Donohue et al.

    1900

    300 700 1100 1500 1900

    calorimetry in Ar

    Hea

    t flo

    w (

    a.u.

    )

    Temperature (°C)

    50% N2

    25% N2

    Thermal stability and oxidation resistance up to ~1 500 °C (thin surf. oxide at 1700 °C)

    3/14

  • Motivation: examples of as-deposited propeties of S iBCN

    Si-Ta-NSi-Zr-NSi-Mo-N

    Musil et al.

    500 700 900 1100 1300 1500 1700-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    nc-TiN/a-Si3N

    4

    Veprek et al. Si-Al-N Musil et al.

    1900

    Si-B-C-N Vlcek et al.

    Si-Ti-N Musil et al.

    Temperature (°C)

    Mas

    s ch

    ange

    (m

    g/cm

    2)

    TiAlN/CrNWadsworth et al.

    TiAlCrYNDonohue et al.

    TiAlZrNMünz et al.

    TiCMünz et al.

    TiAlNMünz et al.TiN

    Donohue et al.

    1900

    300 700 1100 1500 1900

    calorimetry in Ar

    Hea

    t flo

    w (

    a.u.

    )

    Temperature (°C)

    50% N2

    25% N2

    0 10 20 30 100

    0

    1

    2

    3

    4

    N2 fraction in the gas mixture

    Opt

    ical

    gap

    (eV

    )

    Si83

    B14

    C3

    (108Ωm)

    Thermal stability and oxidation resistance up to ~1 500 °C (thin surf. oxide at 1700 °C)

    10152025303540455055

    50mN

    30mN

    Har

    dnes

    s (G

    Pa)

    -3

    -2

    -1

    0

    Str

    ess

    (GP

    a)

    0 100 200 300 400 500

    150

    200

    250

    300

    350

    400

    E/(

    1-ν2

    ) (G

    Pa)

    0 100 200 300 400 50030

    40

    50

    60

    70

    80

    90

    100

    Ela

    stic

    rec

    over

    y (%

    )

    Negative substrate bias (V)

    0 100 200 300 400 500

    30mN100

    Tailored mechanical properties(H up to ~35 GPa, E >300 GPa, ...)

    Tailored electronic structure ⇒ optical & electrical prop.

    3/14

  • Motivation: examples of as-deposited propeties of S iBCN

    Si-Ta-NSi-Zr-NSi-Mo-N

    Musil et al.

    500 700 900 1100 1300 1500 1700-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    nc-TiN/a-Si3N

    4

    Veprek et al. Si-Al-N Musil et al.

    1900

    Si-B-C-N Vlcek et al.

    Si-Ti-N Musil et al.

    Temperature (°C)

    Mas

    s ch

    ange

    (m

    g/cm

    2)

    TiAlN/CrNWadsworth et al.

    TiAlCrYNDonohue et al.

    TiAlZrNMünz et al.

    TiCMünz et al.

    TiAlNMünz et al.TiN

    Donohue et al.

    1900

    300 700 1100 1500 1900

    calorimetry in Ar

    Hea

    t flo

    w (

    a.u.

    )

    Temperature (°C)

    50% N2

    25% N2

    0 10 20 30 100

    0

    1

    2

    3

    4

    N2 fraction in the gas mixture

    Opt

    ical

    gap

    (eV

    )

    Si83

    B14

    C3

    (108Ωm)

    0 500 1000 150010

    20

    30

    40

    50 20 mN 30 mN 50 mN

    Har

    dnes

    s (G

    Pa)

    Temperature (°C)

    400 600 800 1000 1200 1400 1600

    10-4

    10-3

    10-2

    10-1

    1150°C in He

    Ext

    inct

    ion

    coef

    ficie

    nt

    Wavelength (nm)

    1400°C in He

    asdeposited

    Thermal stability and oxidation resistance up to ~1 500 °C (thin surf. oxide at 1700 °C)

    10152025303540455055

    50mN

    30mN

    Har

    dnes

    s (G

    Pa)

    -3

    -2

    -1

    0

    Str

    ess

    (GP

    a)

    0 100 200 300 400 500

    150

    200

    250

    300

    350

    400

    E/(

    1-ν2

    ) (G

    Pa)

    0 100 200 300 400 50030

    40

    50

    60

    70

    80

    90

    100

    Ela

    stic

    rec

    over

    y (%

    )

    Negative substrate bias (V)

    0 100 200 300 400 500

    30mN100

    Tailored mechanical properties(H up to ~35 GPa, E >300 GPa, ...)

    Tailored electronic structure ⇒ optical & electrical prop.

    High-temperature stability of mechanical propertiesand optical properties

    3/14

  • Motivation: examples of as-deposited propeties of S iBCN

    Si-Ta-NSi-Zr-NSi-Mo-N

    Musil et al.

    500 700 900 1100 1300 1500 1700-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    nc-TiN/a-Si3N

    4

    Veprek et al. Si-Al-N Musil et al.

    1900

    Si-B-C-N Vlcek et al.

    Si-Ti-N Musil et al.

    Temperature (°C)

    Mas

    s ch

    ange

    (m

    g/cm

    2)

    TiAlN/CrNWadsworth et al.

    TiAlCrYNDonohue et al.

    TiAlZrNMünz et al.

    TiCMünz et al.

    TiAlNMünz et al.TiN

    Donohue et al.

    1900

    300 700 1100 1500 1900

    calorimetry in Ar

    Hea

    t flo

    w (

    a.u.

    )

    Temperature (°C)

    50% N2

    25% N2

    0 10 20 30 100

    0

    1

    2

    3

    4

    N2 fraction in the gas mixture

    Opt

    ical

    gap

    (eV

    )

    Si83

    B14

    C3

    (108Ωm)

    0 500 1000 150010

    20

    30

    40

    50 20 mN 30 mN 50 mN

    Har

    dnes

    s (G

    Pa)

    Temperature (°C)

    400 600 800 1000 1200 1400 1600

    10-4

    10-3

    10-2

    10-1

    1150°C in He

    Ext

    inct

    ion

    coef

    ficie

    nt

    Wavelength (nm)

    1400°C in He

    asdeposited

    0 1 2 3 4 5 6 70

    1

    2

    3

    0

    1

    2

    3

    0

    1

    2

    3

    0

    1

    2

    3

    40 % Si

    Com

    pres

    sive

    str

    ess

    (GP

    a)

    Ar content (%)

    20 % Si

    5 % Si

    0 % Si

    Thermal stability and oxidation resistance up to ~1 500 °C (thin surf. oxide at 1700 °C)

    10152025303540455055

    50mN

    30mN

    Har

    dnes

    s (G

    Pa)

    -3

    -2

    -1

    0

    Str

    ess

    (GP

    a)

    0 100 200 300 400 500

    150

    200

    250

    300

    350

    400

    E/(

    1-ν2

    ) (G

    Pa)

    0 100 200 300 400 50030

    40

    50

    60

    70

    80

    90

    100

    Ela

    stic

    rec

    over

    y (%

    )

    Negative substrate bias (V)

    0 100 200 300 400 500

    30mN100

    Tailored mechanical properties(H up to ~35 GPa, E >300 GPa, ...)

    Tailored electronic structure ⇒ optical & electrical prop.

    Si relaxes stress caused (in BCN) by implanted Ar

    High-temperature stability of mechanical propertiesand optical properties

    3/14

  • Motivation: examples of as-deposited propeties of S iBCN

    Si-Ta-NSi-Zr-NSi-Mo-N

    Musil et al.

    500 700 900 1100 1300 1500 1700-0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    nc-TiN/a-Si3N

    4

    Veprek et al. Si-Al-N Musil et al.

    1900

    Si-B-C-N Vlcek et al.

    Si-Ti-N Musil et al.

    Temperature (°C)

    Mas

    s ch

    ange

    (m

    g/cm

    2)

    TiAlN/CrNWadsworth et al.

    TiAlCrYNDonohue et al.

    TiAlZrNMünz et al.

    TiCMünz et al.

    TiAlNMünz et al.TiN

    Donohue et al.

    1900

    300 700 1100 1500 1900

    calorimetry in Ar

    Hea

    t flo

    w (

    a.u.

    )

    Temperature (°C)

    50% N2

    25% N2

    0 10 20 30 100

    0

    1

    2

    3

    4

    N2 fraction in the gas mixture

    Opt

    ical

    gap

    (eV

    )

    Si83

    B14

    C3

    (108Ωm)

    0 500 1000 150010

    20

    30

    40

    50 20 mN 30 mN 50 mN

    Har

    dnes

    s (G

    Pa)

    Temperature (°C)

    400 600 800 1000 1200 1400 1600

    10-4

    10-3

    10-2

    10-1

    1150°C in He

    Ext

    inct

    ion

    coef

    ficie

    nt

    Wavelength (nm)

    1400°C in He

    asdeposited

    0 1 2 3 4 5 6 70

    1

    2

    3

    0

    1

    2

    3

    0

    1

    2

    3

    0

    1

    2

    3

    40 % Si

    Com

    pres

    sive

    str

    ess

    (GP

    a)

    Ar content (%)

    20 % Si

    5 % Si

    0 % Si

    Thermal stability and oxidation resistance up to ~1 500 °C (thin surf. oxide at 1700 °C)

    10152025303540455055

    50mN

    30mN

    Har

    dnes

    s (G

    Pa)

    -3

    -2

    -1

    0

    Str

    ess

    (GP

    a)

    0 100 200 300 400 500

    150

    200

    250

    300

    350

    400

    E/(

    1-ν2

    ) (G

    Pa)

    0 100 200 300 400 50030

    40

    50

    60

    70

    80

    90

    100

    Ela

    stic

    rec

    over

    y (%

    )

    Negative substrate bias (V)

    0 100 200 300 400 500

    30mN100

    Tailored mechanical properties(H up to ~35 GPa, E >300 GPa, ...)

    Tailored electronic structure ⇒ optical & electrical prop.

    Si relaxes stress caused (in BCN) by implanted Ar

    High-temperature stability of mechanical propertiesand optical properties

    Explanations by ab-initio calculation of structures and electronic structures

    (clustering of Si around Ar, doping role of C atoms and CC bonds, ...) 500 1000 1500 2000

    0.0

    0.5

    1.0

    1.5

    C=C

    C-C

    cBN

    B-CN-N

    Wavenumber (cm-1)

    cBN

    Si-Si

    hBN

    C-N

    C=N

    Si-C

    hBN

    Si-N

    Abs

    orpt

    ion

    coef

    . (10

    4 cm

    -1)

    Experiment (IR)

    500 1000 1500 2000

    0

    20

    40

    60

    80

    100

    120

    Wavenumber (cm-1)

    Simulation

    N

    umbe

    r of

    bon

    ds

    3/14

  • Deposition technique

    DC magnetron sputtering of Six(B4C)1-x in N2+Ar at 350 °C(selected compositions: cross-check using dc pulsed magnetron sputtering)

    Three main control parameters� sputter target composition� discharge gas mixture compositon� substrate bias voltage

    DCMagnetron

    Gas inlet MatchingNetwork

    13.56 MHzGenerator

    Heater

    Thermocouple

    Cryopump

    Substrateholder

    Ub

    Ts

    ImS

    N

    N

    4/14

  • Main characterization technique

    Ageing resistance expressed in terms of the thickness of the surface oxide layer measured by spectroscopic ellipsometry

    Example of measured and fitted raw ellipsometric data: (change of light polarization after its reflection from the coating)

    clear optical boundary between thin surface oxide (low n) and thick bulk nitride (high n) 1 2 3 4

    0

    20

    40

    60

    80

    Energy (eV)

    Exp. Fit

    Ψ (

    °)

    2200 nm bulk 214 nm oxide

    5/14

  • SiBCN coatings studied

    5 Six(B4C)1-x sputter target comp.[Si target ] = 5, 20, 40, 60, 75%

    ×4 N2+Ar gas mixture comp.

    [Ar plasma ] = 0, 25, 50, 75%×

    2 substrate bias valuesUb = -100 or -500 V

    ×2 storage conditions (open air

    or in polyethylene bags)⇓

    80 coatings studied

    6/14

  • SiBCN coatings studied

    controlling elementalcomposition

    controlling ion bombardment (densification)

    5 Six(B4C)1-x sputter target comp.[Sitarget] = 5, 20, 40, 60, 75%

    ×4 N2+Ar gas mixture comp.

    [Arplasma] = 0, 25, 50, 75%×

    2 substrate bias valuesUb = -100 or -500 V

    ×2 storage conditions (open air

    or in polyethylene bags)⇓

    80 coatings studied

    6/14

  • SiBCN coatings studied

    5 Six(B4C)1-x sputter target comp.[Sitarget] = 5, 20, 40, 60, 75%

    ×4 N2+Ar gas mixture comp.

    [Arplasma] = 0, 25, 50, 75%×

    2 substrate bias valuesUb = -100 or -500 V

    ×2 storage conditions (open air

    or in polyethylene bags)⇓

    80 coatings studied

    6/14

    (a) ≤50% Ar + ≥50% N2

    (b) 75% Ar + 25% N 2

  • SiBCN coatings studied

    2002-2003 : 80 coatings deposited, as-deposited properties measured

    2005+ : as-deposited properties published

    2003-2015 : storage of 40 coatings under open air + 40 coatings in polyethylene bags

    2015 : ageing resistance (surface oxide thickness) studied

    DCMagnetron

    Gas inlet MatchingNetwork

    13.56 MHzGenerator

    Heater

    Thermocouple

    Cryopump

    Substrateholder

    Ub

    Ts

    ImS

    N

    N

    7/14

  • Ageing resistance for Si 5(B4C)95 target

    � oxidation barrier formed in all cases� effect of gas mixture composition qualitatively depends on Ub� perfect ageing resistance at high |Ub| and low [Arplasma]

    Si5(B4C)95

    8/14

  • Si5(B4C)95 Si20(B4C)80

    ------ : complete oxidation (down to substrate)

    Ageing resistance for Si 20(B4C)80 target

    � least optimum target composition: frequent complete oxidation down to a substrate

    � ageing resistance at strong Ar+ bomb. (highest [Arplasma])

    8/14

  • Si5(B4C)95 Si20(B4C)80 Si40(B4C)60 Si60-75(B4C)25-40

    resistant(no oxidation beyond surf. roughness)

    ------ : complete oxidation (down to substrate)

    Ageing resistance for Si 40(B4C)60 target

    � overall improvement compared to Si20(B4C)80 target� perfect ageing resistance at high [Arplasma]� even higher Si content: even better (only resistant samples)

    8/14

  • ------ : complete oxidation (down to substrate)

    100% N2 + 0% Ar

    Ageing resistance for 100% N 2 + 0% Ar plasma(⇒ "saturation" N content in SiBCN)

    � ageing at medium [Sitarget] = 20-40%� stronger dependence on [Sitarget] at high |Ub| = 500 V

    9/14

  • ------ : complete oxidation (down to substrate)

    100% N2 + 0% Ar 25% N2 + 75% Ar

    Ageing resistance for 25% N 2 + 75% Ar plasma(⇒ "sub-saturation" N content in SiBCN)

    � better - or even perfect - ageing resistance at higher [Sitarget] � again, stronger dependence on [Sitarget] at high |Ub| = 500 V

    9/14

  • SiBCN ageing resistance maptwo information in one box: effect of substrate bias

    Six(B4C)1-xsputter target composition

    N2+Ar discharge gas mixture composition10/14

  • SiBCN ageing resistance maptwo information in one box: effect of substrate bias

    Six(B4C)1-xsputter target composition

    N2+Ar discharge gas mixture composition

    SiO2 can protect bulk material

    B2O3 can protect bulk material

    SixByOz(silicon constitutes impurities, not oxide in its own right) can NOT protect bulk material

    10/14

  • SiBCN ageing resistance maptwo information in one box: effect of substrate bias

    Six(B4C)1-xsputter target composition

    N2+Ar discharge gas mixture composition

    best high-temperature (~1500 °C) stability and oxidation resistance

    10/14

  • SiBCN ageing resistance mapsubstrate bias leading to better performance

    Six(B4C)1-xsputter target composition

    N2+Ar discharge gas mixture composition11/14

  • Explanation of some trends shown: densification

    Densification expressed(despite compositional changes with [Arplasma])

    in terms of hardnessin terms of refractive index

    � Higher [Arplasma]: densification of SiBCN coatings(steeper trends at higher [Sitarget] and lower |Ub|)

    � Other words: transition from Ub = -500 V to -100 V is more beneficial / less harmful at higher [Arplasma]

    � Yet other words: do not combine high |Ub| + high [Arplasma]

    12/14

  • Explanation of some trends shown: densification

    ageingresistance

    (densification in terms of)hardness

    (densificationin terms of)refractive index

    Performance of Si-rich films- steeply dependent on [Arplasma]

    - the best at high [Arplasma] and low |Ub|

    13/14

  • Explanation of some trends shown: densification

    ageingresistance

    (densification in terms of)hardness

    (densificationin terms of)refractive index

    Performance of Si-rich films- steeply dependent on [Arplasma]

    - the best at high[Arplasma] and low |Ub|

    Performance of Si-poor films- more weakly dependent on [Arplasma]

    - the best at low [Arplasma] and high |Ub|

    13/14

  • Conclusions

    14/14

    SiBCN coatings prepared in a wide range of compositions (⇒ properties)

    Ageing expressed in terms of surface oxide thickness (ellipsometry) after 12 yr

    Optimization of process parameters for each composition ⇒ ageing resistance(and densification)

    Si-rich compositions resistant, prefered preparation in Ar-rich plasma at low |Ub|

    B4C-rich compositions resistant, prefered preparation in Ar-poor plasma at high |Ub|

    [ J. Houska, Ceram. Int. 41, 7921 (2015) ]