agenda: 1) neutrinos 2) dark matter, axions, lfv search. 3) kaons and b-mesons

87
NDA: Neutrinos Dark matter, Axions, LFV search. Kaons and B-mesons LEP,Hera and the Tevatron Hints of new physics? M.Calvetti INFN-Laboratori Nazionali di Fras and Università di Firenze MORIOND 2005 What to answer if you are ask …….what’s new in Moriond?

Upload: gallia

Post on 14-Jan-2016

35 views

Category:

Documents


0 download

DESCRIPTION

MORIOND 2005. AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons 4) LEP,Hera and the Tevatron 5) Hints of new physics?. What to answer if you are ask: …….what’s new in Moriond?. M.Calvetti INFN-Laboratori Nazionali di Frascati and Università di Firenze. 7. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

AGENDA:

1) Neutrinos

2) Dark matter, Axions, LFV search.

3) Kaons and B-mesons

4) LEP,Hera and the Tevatron

5) Hints of new physics?

M.Calvetti INFN-Laboratori Nazionali di Frascati

and Università di Firenze

MORIOND 2005

What to answer if you are ask:…….what’s new in Moriond?

Page 2: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Super-Kamiokande atmospheric ’s

For 13~0 and m2~0, a very simple formula fits all SK data (+ MACRO & Soudan2)

1st oscillation dip still visibledespite large L & E smearing

Strong constraints on the parameters (m2, 23)

7

E.Lisi

……

..NEUTRIN

OS……

……

Page 3: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

L.Sulak Super-Kamiokande atmospheric ’s

Page 4: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

SNO’s Three Reactions

-eppd (CC) eCharged Current:

Neutral Current:

npd (NC) xx

Elastic Scattering:

-- ee (ES) xx

•Detect the e-

• energy spectrum

• Weak directional sensitivity

e

•Detect the n through secondary capture

• No directional or neutrino energy info

•Detect the e-

•Mainly sensitive to

•Highly directional

e

K.Miknaitis

Page 5: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

20

Energy Isotropy

Direction Radius

K.Miknaitis

Page 6: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

)syst.()stat.( 35.2

)syst.()stat.( 94.4

)syst.()stat.( 68.1

15.015.0

22.022.0

38.034.0

21.021.0

08.009.0

06.006.0

ES

NC

CC

391- day salt results!

)scm10

of units(In 126

029.0031.0)stat.(023.0340.0

NC

CC

K.Miknaitis

Page 7: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Ratio of the measured CC,ES,NC reaction rates to the SSM prediction, assuming undistorted CC, ES energy spectra.

SOLARSOLAR SNOSNO

K.Miknaitis

Page 8: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Exercise: (1) Change MSW potential “by hand,” V aMSWV

(2) Reanalyze all data with (m2,12,aMSW) free

(3) Project (m2,12) away and check if aMSW~1

(… a way of “measuring” GF through solar neutrino oscillations …)

Results: with 2004 data, aMSW~1 confirmed within factor of ~2and aMSW~0 excluded Evidence for MSW effects in the Sun

But: expected subleading effect in the Earth (day-night difference) still below experimental uncertainties.

14

What about the neutrino masses? We have only limits…..E.Lisi

Page 9: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Day-Night Asymmetries (II)

ACC= -0.037 ± 0.063(stat.) ±0.032(syst.)

AES= 0.153 ± 0.198(stat.) ±0.030(syst.)

Constraining ANC to be zero:

In the pure-D2O phase,

(shape constrained, ANC constrained)

013.0012.0e 049.0070.0A

DN

DNA

)(2

Combine with analogous ACC from the salt phase:

Convert Super-Kamiokande AES to Ae, and combine with SNO:

040.0037.0A OD salt 2

027.0035.0A SK SNO

K.Miknaitis

Page 10: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

…..but …do neutrinos oscillate also on earth?

Page 11: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Bruce Berger

Rencontres de Moriond – March 6, 2005 11

First Reactor Antineutrino Result• Observed neutrino disappearance:

(Nobs–NBG)/Nno-osc = 0.611 0.085 (stat) 0.041 (syst)• “Standard” e propagation ruled out at the 99.95% confidence

level

Rate!

Energy

Page 12: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Bruce Berger

Rencontres de Moriond – March 6, 2005 12

L0/E Plot

Goodness of fit:0.7% - decay1.8% - decoherence

11.1% - oscillation(0.4% - constant suppression)

• Data prefer oscillation to otherhypotheses

Data vs.No-oscillationexpectation

Direct observation of the oscillation

Page 13: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

C.Mariani@XLth Rencontres de Moriond (6th March 2005)

K2K experiment

monitormonitor

Near detectors(ND)

+

Target+Horn200m

decay pipe

SK

100m ~250km

12GeV protons

~1011/2.2sec(/10m10m)

~106/2.2sec(/40m40m)

~1 event/2days

Signal of oscillation at K2K Reduction of events Distortion of energy spectrum

(monitor the beam center)

C.Mariani

Page 14: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

C.Mariani@XLth Rencontres de Moriond (6th March 2005)

1KT Flux measurement The same detector technology as Super-K. Sensitive to low energy neutrinos.

KT

SK

KT

SK

KT

SKobsKTSK M

M

dEEE

dEEENN

)()(

)()(exp

Far/Near Ratio (by MC)~1×10-6

M: Fiducial mass MSK=22,500Kton, MKT=25ton: efficiency SK-I(II)=77.0(78.2)%, KT=74.5%

expSKN =150.9 N =107+12

-10obsSK

C.Mariani

Page 15: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

C.Mariani@XLth Rencontres de Moriond (6th March 2005)

Erec[GeV]

Best FitKS prob.=36%

m2[e

V2]

sin22

Data are consistent with the oscillation.

preliminary

With 8.9×1019 POT, K2K has confirmedhas confirmed neutrino oscillations at 4.04.0(hep-ex/0411038)(hep-ex/0411038). Disappearance of 3.03.0 Distortion of E spectrum 2.62.6

C.Mariani

Page 16: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Gordon McGregor

Introducing MiniBooNE:The Booster Neutrino Experiment

•The goal: to check the LSND result.

8GeVBooster

?

magnetic hornand target

decay pipe25 or 50 m

LMC

450 m dirt detectorabsorber

νμ→νeK+ +

+

Page 17: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Gordon McGregor

Conclusions

• MiniBooNE is running well. • Currently 4.57×1020 protons on target.• νμ νe appearance results by hopefully late 2005.

Page 18: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

3 degenerate massive neutrinos Σmν = 3m0

Neutrino masses in 3-neutrino schemes

eV

From present evidences of atmospheric and solar neutrino oscillations

atmatm

solar

solar

eV 0.009 m

eV 0.05m

2sun

2atm

eV

m0

S.Pastor

Page 19: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Bounds on the sum of neutrino masses from CMB + 2dFGRS or SDSS, and other

cosmological data (best Σmν<0.42 eV, conservative Σmν<1 eV)

Conclusions

Sub-eV sensitivity in the next future (0.1-0.2 eV and better) Test degenerate

mass region and eventually the IH case

ν

Cosmological observables efficiently constrain some properties of (relic) neutrinos

S.Pastor

Page 20: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Future sensitivities to Σmν: new ideas

galaxy weak lensing and CMB lensing

sensitivity of future weak lensing survey(4000º)2 to mν

σ(mν) ~ 0.1 eV

Abazajian & DodelsonPRL 91 (2003) 041301

sensitivity of CMB(primary + lensing) to mν

σ(mν) = 0.15 eV (Planck)

σ(mν) = 0.04 eV (CMBpol)

Kaplinghat, Knox & SongPRL 91 (2003) 241301

S.Pastor

Page 21: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Numerical ±2 ranges (95% CL for 1dof), 2004 data:

19

Note: Precise values for 12 and 23 relevant for model building (see talk by Tanimoto) E.Lisi

See the c

ontributio

n from

B.Kayser

on “neutri

no future”

Page 22: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Experiments measuring……zero’s

Double Beta DecayProton decay searchDark matter searchAxionsVacuum polarizationLepton Flavour Violation

Page 23: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

R&D: Cleaning test R&D: Cleaning test (September-November (September-November

2004)2004)

Cu: etching, electropolishing and passivationTeO2: etching and lapping with clean powders

Assembling with clean materials

S.Capelli

Page 24: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

CUORICINOCUORICINO resultsresults

Total Statistics: 10.85 kgxy

DBD0 result: T1/2

130Te

<m> < [0.2÷1.1] eV

Background (@DBD0):

0.18 ± 0.01 c/keV/kg/y => reduction of ~ 2 (4) with respect to MiDBD-II (I)

130Te (DBD0)

arXiv:hep-ex/0501034 v1

> 1.8 x 1024 y

<m> < 0.07 - 0.5 eV

In 5 years…S.Capelli

Page 25: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

CUORE sensitivityCUORE sensitivity

Sensitivity (1):

b=0.01 c/keV/kg/y=5 keV F0=9.2x1025√t y <m>=0.02÷0.1 eV

b=0.001 c/keV/kg/y=5 keV F0=2.9x1026√t y <m>=0.01÷0.06 eV

CUORE bkg goal: 0.001 ÷ 0.01 c/keV/kg/y

5 years

S.Capelli

eV 0.009 m

eV 0.05m

2sun

2atm

…very interesting……

Page 26: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

LFV in the Standard ModelNeutrino oscillations flavour mixing in lepton sector

•Extensions of SM with massive Dirac neutrinos allow LFV also with charged leptons (e , e , eee , e

55

2

2

22 102sin

2

)e(

)e(

WM

m

not observable!

larger mass scale needed

SUSY

D.Nicolò

Page 27: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Conclusions are sensitive probes of physics beyond the Standard Model

• SUSY-SUGRA theories predicts LFV not far from present existing upper limits

• Strong case for experimental searches in all channels

+e+ results are expected in 2007 (10-13)

-e- conversion search is planned at the level of 10-16

-e- conversion is not accidental background limited could benefit of new high intensity pulsed beams

D.Nicolò…….to work hard…..

Page 28: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

L.Sulak

Proton life time ….a lower limit…

PROTONS (do not) DECAY……..

Page 29: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

IMB limits 45 decay modes

...S-K 7 times bigger than IMB,

limits generally 7 times better

...mass is everything!!!

MEGATON is needed,

20 times bigger than S-K

L.Sulak

P life-time

Page 30: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

CAST: Principle of detection

• Expected number of photons in the x-ray detector:

L

Transverse magnetic field (B)

X-ray detector

X-ray (same energy and momentum)Axion

[Sikivie PRL 51 (1983)]

aγaa

aγ dEtSP

dE

dΦN a

a

dE

γaP

S

t

Differential axion flux at the Earth(cm-2 s -1 keV -1 )

Conversion probability of an axion into photon ( (B×L)2)Magnet bore area (cm2)

Measurement time (s)

For gaγγ =1×1O-10 GeV-

1

t=100 h , S=15 cm2

N γ ≈ 30 events

Page 31: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

CAST 2003 resultAxion exclusion plot

• Combined upper limit obtained (95% C.L.):

gaγγ<1.16×10-10 GeV-1

Page 32: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

CRESST-II Detector Concept

Discrimination of nuclear recoils from radioactive + backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light

Separate calorimeter as light detector

light reflectorW-thermometer

W-thermometer

300 g scintillatingCaWO4 crystal

proof of principle

En

erg

y in

lig

ht

chan

nel

keV

ee]

Energy in phonon channel [keV]

DMnuclei

DARK MATTER SEARCH

Page 33: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Ionization Yield EQ/ER

Y~ 1 for electron recoils

Nuclear Recoils (252Cf)

Nuclear Recoils (252Cf)

WIMPS (and neutrons) scatter off nuclei

Identify nuclear recoils event by event!

Y~ 0.3 (Ge) for nuclear recoils

• Events occuring near the surface (<~10 m) have an incomplete charge collection (“dead layer”) and can be misidentified as nuclear recoils

Nuclear Recoils (252Cf)

Nuclear Recoils (252Cf)

• Surface events:

Electrons produced by radioactive beta decays from surface contamination

Electrons ejected from nearby material by high energy x-rays

Gammas interacting within ~10 m of the surface

Most background sources (electrons, photons) scatter off electrons

Measure simultaneously ionization and athermal phonons

CDMS II Overview

Bulk Electron Recoils (133Ba)

Bulk Electron Recoils (133Ba)

Page 34: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

WIMPs search data with Ge detectors (Run118) Yellow points from neutron calibration

Ch

arg

e Y

ield

Prior to timing cutsAfter timing cuts

Blue points from WIMP search data (Z2, Z3, Z5)

Recoil energy (keV) Recoil energy (keV)

Ch

arg

e Y

ield

Expected background : 0.7 ± 0.35 mis-identified surface electron recoils

Event

Page 35: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

DAMA

CDMS

ZEPLIN

Edelweiss

CDMS_Projections CRESST

Egret

Page 36: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

…..….discoveries?..........

1) Egret excess signal…….

2) PVLAS…………

Page 37: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons
Page 38: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 38

DM annihilation in Supersymmetry

Dominant diagram for WMAPcross section in MSSM: + A b bbar quark pair

B-fragmentation well studied at LEP!Yield and spectra of positrons,gammas and antiprotons well known!

f

f

f

f

f

f

Z

Z

W

W 0

f~

A Z

Galaxy = SUPER-B-factory with luminosity some 40 orders of magnitude above man-made B-factories

≈ 37 gammas

Page 39: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 39

Excess of Diffuse Gamma Rays has same spectrum in all directions compatible with WIMP mass of 50-100 GeV

Important: if experiment measures gamma rays down to 0.1 GeV, then normalizations of DM annihilation and background can both be left free, so one is not sensitive to abso- lute background estimates, BUT ONLY TO THE SHAPE, which is much better known.

Egret Excess aboveextrapolated backgroundfrom data below 0.5 GeV

Excess same shape in all regions implying same source everywhere

Statistical errors only

WIMP MASS50 - 100 GeV

65100

Bremsstr.

Extragal.

ICWIM

PS

0

Page 40: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 40

Diffuse Gamma Rays for different sky regions Good Fits for WIMP masses between 50 and 100 GeV

3 components: galactic background + extragalactic bg + DM annihilation fittedsimultaneously with same WIMP mass and DM normalization in all directions.Boost factor around 70 in all directions and statistical significance > 10 !

A: inner Galaxy B: outer disc C: outer Galaxy

D: low latitude E: intermediate lat. F: galactic poles

Page 41: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 41

Page 42: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Instead of conclusions

nonthermal leptogenesis in inflaton decay

masses of 2 singlet neutrinos

degenerate at the GUT scale

(kt,2004)

enhancement of 1 from small mass splittings of singlet neutrinos partly compensated due to

consistency conditions, but leptogenesis OK

e unobservable

large neutrino Yukawa couplings

cancelling out in the seesaw formula(Raidal et al.,2005)

successful leptogenesis from small M1 due to

overcoming DI bound

sneutrino-driven chaotic inflation

e probably observable in the next

round of exps. (Chankowski et al.,2004)

r=1 for m0=100 GeV, M1/2=200 GeV

‘It is a capital mistake to

theorize

before one has data’

K.Turzynski

Page 43: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

March. 7, 2005 Moriond Electroweak, 2005, W. de Boer, Univ. Karlsruhe 43

……new results coming……..

…interesting….but……

Is it a capital m

istake

to theorize (too much)

when one has data?

Page 44: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons
Page 45: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Laser lightPVLAS….big discovery!!!...….but…do we belive to it….

U.Gastaldi

Page 46: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Observed dichroism of Vacuumwith infrared Laser light 1eV

0 -+

m=10-3 eV

M=5 105 GeV

…..Spin 0 boson……

Axion????Dark matter???

….to be confirmed……..

….to be young …< 60 …..

U.Gastaldi

Page 47: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Nice good results…….from

LEP

Page 48: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

LEP Result

00

ln)(

)()(

t

tba

tN

tNtf

MC

data

δ Δα

ln2

39.1...2 fod8.02

602

372

182

incompatible

b = (726 96 70) 10-5

OPAL fit

OPAL fit

G.Abbiendi

Page 49: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Slope b = (726 96 70 50) 10-5

Significance: 5.6 including all errors for the total running

5

22

10)304358440(

)GeV811()GeV076(

. .

5

22

10)304358237(

)GeV811()GeV076(

. . hadhad

Hadronic contribution to the running: First Direct Experimental evidence with Significance of 3.0 including all errors

510202 lepsubtracting the precisely calculable leptonic contribution:

SM : 460 10-5 using the Burkhardt-Pietrzyk parameterization

LEP Results

tb

ln

2

contributions to the slope b in our t range are predicted to be in the proportion: e : : hadron ≈ 1 : 1 : 2.5

Most significant direct observation of the running of QED ever achieved

G.Abbiendi

Page 50: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

|Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN 30

-kaons-kaons-kaons-kaons-kaons-

KLOE KTeV NA48 E949

Page 51: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

|Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

ctLL

LLLLL

K

KK

/

cos2 222

L Lγ

LK e+ e-

π+

π -

solved for the two variables Lγ, LK

We use KLπ0π0π0 events tagged by KSπ+π- events: “tagging” and “tagged” events are fully decoupled. trigger efficiency is 100%, almost flat in the fiducial volume The KL vertex is reconstructed by TOF, using cluster time/position and KL momentum (from K S π+π-) .

(Xγ,Yγ,Zγ,Tγ)

KKLL lifetime: direct measurement lifetime: direct measurement

Page 52: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

KKLL lifetime: final result lifetime: final result

τL (KLOE) = (50.87 ±0.16 (stat) ± 0.26 (syst)) ns

|Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

14 x 106 events Fit region = 6 -26 ns ( 40% τL)

t*= LK/βγc (ns)

+ dataYes, it’s going down!!

Eve

nts

/0.3

ns

Page 53: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

KKLL lifetime: comparison lifetime: comparison

|Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

KLOE direct

KLOE indirect

Vosburgh et al, PRD 6 (1972), 1834

average: τL = (50.98 ± 0.21) ns

PDG 2004 = (51.8 ± 0.4) ns

I took my degreein physics in 1972…

Page 54: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

3 Br KL

L

GF

2 mK5

384 3

SEW f

2 t 0 1 Vus

2 ˆ f 2

Step 4: Get the branching ratio

KL KL nice Ordinarily, would measure something like

where the “nice” mode has high statistics, a well-known rate, and is

similar to K3 in the detector. Sadly, there is no “nice” mode.

Measure these 5 ratios, use = 1 constraintto get Br

K3

Ke3

0Ke 3

000Ke3

Ke3

00000

KTeV- L.Bellantoni

Page 55: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

KKLL dominant BR’s: comparison dominant BR’s: comparison

KL e (no PDG) 0.4045±0.0009 χ2 = 5.1

KL 0.2702±0.0007 χ2 = 0.3

KL 30

(no PDG)0.1968±0.0012 χ2=1.9

KL π+π-0

0.1255±0.0006χ2= 0.4

KLOE

NA48

KTeV

PDG04

KLOE

KTeV

PDG04

KLOE

NA48*

KTeV

PDG04

KLOE

KTeV

PDG04

* Presented by L.Litov @ICHEP04 15

Page 56: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

|Vus|f+Kπ(0)

KLOE results: |Vus

|f+

K(0) (KSe3

) = 0.2169 0.0017

|Vus

|f+

K(0) (KLe3

) = 0.2164 0.0007 |V

us|f

+K(0)(K

L3) = 0.2174 0.0009

From Unitarity: (1-|Vud

|2)1/2f+

K(0) = 0.2177 0.0028

|V|Vusus| from K| from Kl3l3 decays decays and and ττLL::

PRD 6 (1972), 1834 KLOE

Page 57: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

The KLOE KThe KLOE KSS “beam”: “beam”:

|Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

KL “crash”βγ 0.22 , TOF 30 ns

KKSS ππee

KS tagged by KL interaction in EmC: efficiency 30 % KS angular resolution: 1 (0.3 in ) KS momentum resolution: 1 MeV 3 · 105 tags/pb-1

KKSS ππee

Page 58: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Observation of 0+-

With 9 events from ‘99 dataset,no background events seen in wrong sign, or in 10x MC sample -

Normalized to 00, p

KTeV- L.Bellantoni

Page 59: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

|Vus| and KS decays from KLOE G. Lanfranchi – LNF/INFN

KKSS ππ00ππ00ππ00 upper limit: final result upper limit: final result

Using the PDG values and our limit we have:

KLOE

90 % CL

Nbkg = 3.13 ± 0.82stat± 0.37sys

Nobs = 2

(events with KL tag) = 24.3%

BR(KSπ0π0π0) < 1.2 10-7 @ 90% CL

A(KS 000)

A(KL 000) |000| = < 1.8 10-2 , 90% CL

NA48 (hep-ex/0408053)

A factor 5 better than the previous limit!

Page 60: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

2003 run: ~ 50 days2004 run: ~ 60 days

Total statistics in 2 years:

K +: ~4x109

K 00: ~2x108

~ 200 TB of data recorded

Search for direct CP-violationin K± ±+– decays by NA48/2

Ivan Mikulec

Page 61: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Comparison K±±+-

NA48/2 prelim.: 2003 data

10-6

|Ag|

10-5

10-4

10-3

10-2

SMSM SUSYSUSY

Ford et al. (1970)

HyperCP prelim. (2000)

NA48/2 goal:2003-04 data

NewNewphysicsphysics

This preliminary

result is already an

order of magnitude better than previous

experiments

Ivan Mikulec

Page 62: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Observation of scattering effect in K→3 decays

1 bin = 0.00015 GeV2

MC (no rescattering)

Data

K±±00

M(00) GeV/c 2

4mπ+2

Charge exchange process +00 not negligible under 2m threshold,destructive interference generates a cusp in the Dalitz plot,

not seen earlier by lower precision experiments

30M events

4mπ+2

Ivan Mikulec

Page 63: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

VERY (very) RARE K-DECAYS

A.Ceccucci

Page 64: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Some BSM Predictions

SM 8.0 ± 1.1 3.0 ± 0.6

MFVhep-ph/0310208

19.1 9.9

EEWPNP B697 133

7.5 ± 2.1 31 ± 10

EDSQhep-ph/0407021

15 10

MSSMhep-ph/0408142

40 50

0 0 11L( ) 10BR K 11( ) 10BR K

Compiled by S. Kettel

A.Ceccucci

Page 65: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

K+→+ : State of the art

BR(K+ → + ) = 1.47+1.30-0.89 × 10-10

•Compatible with SM within errors

hep-ex/0403036 PRL93 (2004)

Stopped K~0.1 % acceptance

AGS

A.Ceccucci

Page 66: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

KTeVBR(KL → 0 ee ) < 2.8 × 10-10 @90%CL

A.Ceccucci

BR(K0L ) 3.8 10-10 (90% C.L.) [PRL 86, 5425 (2001)]

BR(KS→0ee) =(5.8 +2.8-2.3(stat) ± 0.8(syst)) 10-9

BR(KS→0) = (2.9 +1.4-1.2(stat) ± 0.2(syst)) 10-9

NA48

K0L→0ee and K0

L→0

K0S→0ee and K0

S→0

Similar physics interest asK0

L→0 Complicated by long distance contibutions and radiative backgrounds

Page 67: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Isidori, Unterdorfer, Smith:

Fleischer et al*:

Ratios of Bd → modes could be explained by enhanced electroweak penguins which, in turn, would enhance the KL BR’s:

•A. J. Buras, R. Fleischer, S. Recksiegel,

F. Schwab, hep-ph/0402112, NP B697 (2004)

0 0L

0 0L

1.6 111.6

0.7 110.7

9.0 10

4.3 10

NP

K e e

NP

K

B

B

0 12L(K ) 10Br

0 12L( ) 10Br e e

K0L→0ee (): Sensitivity to NP

~ SES of KTeVsearch

A.CeccucciKopio-NA48/x-KLOE-KEK (next generation?)

Page 68: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Tevatron-Tevatron-Tevatron-Tevatron-Tevatron

Page 69: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Gregorio Bernardi / LPNHE-Paris

CDFTevatron Long Term Luminosity

PlanCurrently expecting

delivered luminosity to each

experiment

4 - 8 fb-1

by the end of 2009 Integrated Weekly Luminosity (pb-1)

0

10

20

30

40

50

60

10/1/03 9/30/04 9/30/05 9/30/06 9/30/07 9/29/08 9/29/09

electron cooling

stacktail bandwidth upgradeDesign

Base

Total Luminosity (fb-1)

0

1

2

3

4

5

6

7

8

9

10/1/03 9/30/04 9/30/05 9/30/06 9/30/07 9/29/08 9/29/09

Design

BaseToday

Increase in number of antiprotons

key for higher luminosity

Expected peak luminosity 3.1032 cm-2sec-1 by 2007

Page 70: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Cross Section SummaryCross Section Summary

SM curve: C.R. Hamberg, W.L van Neerven and T. Matsuura, Nucl. Phys.B359, 343 (1991)SM curve: C.R. Hamberg, W.L van Neerven and T. Matsuura, Nucl. Phys.B359, 343 (1991)

F.Deliot

Page 71: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Gregorio Bernardi / LPNHE-Paris

CDFSM “Heavy” Higgs: H WW

llSearch strategy:

2 high Pt leptons and missing Et

WW comes from spin 0 Higgs:leptons prefer to point in the same

directionW+ e+

W- e-

H

Main Background: WW ProductionGood agreement with NLO theory: 12.0-13.5 pb

Ohnemus, Campbell, R.K.EllisNow Measured at the Tevatron by both ExperimentsDØ: PRL/ hep-ex/0410062

Page 72: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Gregorio Bernardi / LPNHE-Paris

CDF (Z+b)/(Z+j)

Apply sec. vertex b-tag42 events with 1 tag8.3 from QCD

background (sideband)

Disentangle light, c, b contributions– Use light and b-tagging

efficiency from data– c-tagging efficiency from MC and

scaled for data/MC difference in b-tagging

– Nc=1.69Nb from theory

Cross checks with– Soft lepton tagging– Impact parameter tagging

0.0240.005(stat)0.005(syst)

– Theory predicts 0.018– Large part of systematic error

from tagging efficiency and background estimation

Sec. Vtx displacement/resolutionSubmitted to PRL - hep-ex/0410078

signal

Page 73: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

W’: additional charged heavy vector boson

appears in theories based on the extension of the gauge group

e.g. Left-right symmetric models: SU(2)R WR

assume: the neutrino from W’ decay is light and stable.

signature:

W’ search in e channel

MC onlyhigh pT electron + high ET

A.Lath

Page 74: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Moriond

Saverio D’Auria University of Glasgow

B-hadrons mass summary

New for Moriond EW 05

Bs oscillations….???? Wait and see…..

Page 75: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Gregorio Bernardi / LPNHE-Paris

CDF

Search in 3 channels: HWW*ll with l = ee,,e inclusive high pT lepton triggers: integrated luminosity 184 pb-1 (CDF), 147-177 pb-1(D0)

CDF: Obs: 8 evts; Bkgnd: 8.9 1 Signal: 0.17 0.02 (mH=180

GeV)

Search for H WW*

Data Selection: two isolated leptons with opposite charges with pT > 20 GeV, >25 GeV, ( , l or j) , veto on jets, light (<MH/2) invariant dilepton mass

TE TE

Maximum likelihood limit on the ll distributions for mH=140-180 GeV

*BR(H→WW)< 5.6pb For MH=160 GeV

95% CL for the 3 channels*BR(H→WW) < 5.7pb For MH=160 GeV

D: Obs: 9 evts; Bkgnd:11.1 3.2 Signal: 0.27 0.004 (mH=160

GeV)

x 20?

Page 76: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

AND B-PHYSICS…….

……the hunt to the new physics continue……..

Hints of new physics?

Page 77: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons
Page 78: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons
Page 79: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

H.Kakuno

Page 80: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

(1) New results on BF D+ and fD

(2) Exclusive BF of semileptonic decays coming (pretty) soon.• With just 60 pb-1, stastistical power of many decay modes already

at the world best.• The world first events of and

• We have two analysis options available: With and wo DTag

3 Inclusive BF of D Xeand D Xllcoming.

(4) Currently we are running at (3770) with 12 “8-pole” wigglers.

More data is coming on (3770), Ds threshold, etc.

VII: Summary and Future

MeV 1741202

106.04.15.3 4

Df

DB

0D e D e

fDs

D.Kim

CLEO

Page 81: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons
Page 82: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Polarization in B Polarization in B V V decay V V decayAngles in transversity basis

Physics implication and recent experimental results are reviewed here.

Differential cross section looks so complicated,but not, actually.

K.Snyo

Page 83: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

B B V V V V treetree decay decay

Yes, it is true for trees.fL~1

Diagrams and tables are from presentation of P.J. Clark@FPCP2004

K.Snyo

Page 84: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Polarization puzzle in pure penguin Polarization puzzle in pure penguin decays: decays: B B KK*±/0*±/0 and B and B KK*0*0

But, this is not true in B K* and K*0!!fL deviates from 1 in both Belle and BaBar.

Today

275

275

275

Diagrams and tables are from presentation of P.J. Clark@FPCP2004

Rescattering?An enhanced New Standard Model Amplitude?New Physics?

K.Snyo

Page 85: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons
Page 86: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons
Page 87: AGENDA: 1) Neutrinos 2) Dark matter, Axions, LFV search. 3) Kaons and B-mesons

Best wishes to you all !!

Conclusions:

A lot of work still to be done………

And…..arrivederci!