agglomeration of iron ores · 2020. 11. 30. · lomeration of iron ores authoredby rampravesh...

13
lomeration of Iron Ores Authored by Ram Pravesh Bhagat CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business

Upload: others

Post on 13-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • lomeration of Iron Ores

    Authored by

    Ram Pravesh Bhagat

    CRC PressTaylor& FrancisGroupBoca Raton London NewYork

    CRC Press is an imprint of the

    Taylor & Francis Group, an informa business

  • Table of Contents

    Preface xix

    Author Biography xxi

    Acknowledgment xxiii

    Chapter 1 Introduction 1

    1.1 Preamble 1

    1.2 Definition and Category 11.2.1 Agglomeration 11.2.2 Sintering 21.2.3 Peptizing 21.2.4 Briquetting 2

    1.3 Scope of Agglomeration 31.4 Need for Agglomeration 31.5 Raw Materials for Agglomeration 41.6 The Agglomeration Processes 5

    1.6.1 Sintering 51.6.2 Peptization 6

    1.7 Iron Making 61.8 R&D 7

    1.9 Techno-Economics 81.9.1 Sinter (Pellet) Plant Operation 81.9.2 Usage of Agglomerates 91.9.3 Reducing Operational Cost 91.9.4 Utilization of Slimes and Metallurgical

    Wastes 10

    1.10 Evolutionary Phases 101.10.1 Sintering 101.10.2 Peptization 11

    References 11

    Chapter 2 Raw Materials: Characterization and Preparation 13

    2.1 Categories and Specifications 132.1.1 Iron Ore 13

    2.1.2 Fluxes 14

    2.1.3 Solid Fuel 16

    2.1.4 Revert Materials/Metallurgical Wastes 162.1.5 Binders 17

    2.2 Characterization of Raw Materials 18

    2.3 Genesis of Iron Ore 18

    vii

  • viii Table of Contents

    2.4 Classification of Iron Ores 20

    2.4.1 Hematite Ores 20

    2.4.2 Magnetite Ore 21

    2.4.3 GoethiteOre 21

    2.4.4 Banded Hematite Quartzite/

    Jasper (BHQ/BHJ) 22

    2.5 Mineralogy of Iron Ores 23

    2.5.1 Iron Ore-Bearing Minerals 23

    2.5.2 Ores and Associated Minerals 24

    2.5.3 Mineralogical Characterization 24

    2.5.4 Liberation Characteristic of Minerals 26

    2.6 Preparation of Ores and Other Raw Materials 28

    2.6.1 Size Reduction and Size Classification 29

    2.6.2 Beneficiation Process 32

    2.6.3 Dewatering of Iron Ore Fines

    and Slimes 36

    2.7 Industrial Practice on Iron Ore Beneficiation

    and Process Flow Sheets 37

    2.7.1 Industrial Practice 37

    2.7.2 Process Flow-sheet 39

    2.7.3 Processing of Hematite Ores 42

    2.7.4 Processing of Goethite Ore 44

    2.7.5 Processing of Banded Hematite

    Quartzite (BHQ) 45

    2.7.6 Iron Ore Slimes 45

    2.8 Handling of Iron Ores 48

    References 49

    Chapter 3 Iron-Making Processes 53

    3.1 Preamble 53

    3.2 Reduction of Iron Oxide 54

    3.2.1 Sequential Steps of Reduction 54

    3.2.2 Reduction Chemical Reactions 55

    3.3 Direct Reduction Processes 56

    3.3.1 Coal-Based Direct Reduction 56

    3.3.2 Gas-Based Direct Reduction 57

    3.4 Blast Furnace (BF) Iron-Making Process 58

    3.4.1 Operation 59

    3.4.2 Material Handling and Charging 59

    3.4.3 Raw Materials 60

    3.4.4 Products 61

    3.5 Blast Furnace (BF) Iron-Making Reactions 63

    3.5.1 Blast Furnace Zones: Reactions and Burden

    Properties 63

    3.5.2 Solution Loss Reaction and Shaft Efficiency 66

  • Table of Contents »*

    3.6 Blast Furnace Performance: Factors Affecting 67

    3.6.1 Chemical Composition of Burden Materials 67

    3.6.2 Blast Furnace Burden 70

    3.6.3 Size of Burden Materials and its Distribution 70

    3.6.4 Cold Strength and Reduction Parameters of

    Agglomerates 71

    3.6.5 Permeability of the Stack Zone 72

    3.6.6 Permeability in Cohesive Zone 75

    3.6.7 Formation of Slag and its Characteristics 75

    References 77

    Chapter 4 Agglomerates in Iron-Making Processes 79

    4.1 Preamble 79

    4.2 Agglomerates in Iron-Making Processes 80

    4.2.1 Iron Ore Pellets in Direct Reduction (DR) 80

    4.2.2 Iron Ore Pellets in BF Iron Making 80

    4.2.3 Iron Ore Sinter in BF Iron Making 83

    4.3 Properties of Agglomerates 84

    4.3.1 Cold Strength 84

    4.3.2 Reduction Degradation Index (RDI) 84

    4.3.3 Reducibility 85

    4.3.4 Softening and Meltdown Characteristics 85

    4.4 Quantitative Effect on Blast Furnace Performance 86

    References 89

    Chapter 5 Process of Sintering 91

    5.1 Preamble 91

    5.2 The Sintering Process 92

    5.2.1 Description of a Sinter Plant 92

    5.2.2 Raw Mix Preparation 93

    5.2.3 Sintering Process 94

    5.2.4 Cooling of Sinter and Downstream

    Treatment 96

    5.2.5 Power Consumption 96

    5.3 Control of Sinter Plant Operation 97

    5.4 Pollution Control and Waste Heat Recovery 99

    5.4.1 Emission of Pollutants 99

    5.4.2 Measures to Reduce Pollutants 100

    5.4.3 Heat Recovery from Sinter Cooler 101

    5.4.4 Emissions Optimized Sintering (EOS®)Process 101

    5.5 Recycling of Steel Plant Solid Waste 103

    5.5.1 Scope for Recycling 103

    5.5.2 Characteristics of Metallurgical Wastes 103

  • X Table of Contents

    5.5.3 Mines and Metallurgical Wastes:

    Categories and Functions 104

    5.5.4 Economics of Recycling 107

    5.6 Nonconventional/Other Processes 107

    5.6.1 Hybrid Pelletized Sinter Process (HPS) 108

    5.6.2 Pellet-Sintering 109

    5.6.3 Composite AgglomerationProcess (CAP) 112

    5.6.4 Mebios Process 113

    5.6.5 New Charging Systems 114

    5.6.6 High-Pressure Sintering 114

    References 115

    Chapter 6 Sintering Fundamentals 117

    6.1 The Process of Sintering 117

    6.1.1 Preamble 117

    6.1.2 The Process 117

    6.1.3 Characteristics of Sintering Process 119

    6.2 Sintering Zones 119

    6.3 Air Flow and Permeability 122

    6.3.1 Permeability and Sintering Speed 122

    6.3.2 Bed Permeability and Ergun's Equation 124

    6.3.3 Application of Ergun's Equationto Sinter Mix Bed 125

    6.4 Structure and Porosity of Bed 128

    6.4.1 Bed Structure 128

    6.4.2 Bed Porosity 129

    6.5 Granules and Granulation 130

    6.5.1 Effect of Granule Characteristics

    on Productivity 130

    6.5.2 Characteristics of Sinter Mix Granules 131

    6.5.3 Granulation: Size Classification of Mix

    Particles 132

    6.5.4 The Granulation Process 134

    6.5.5 Granulation Index 136

    6.5.6 Granulation: Mechanism and Factors

    Affecting 137

    6.5.7 Moisture Content of Sinter Mix:

    Effect on Granulation and Permeability 140

    6.6 Thermal Characteristics During Sintering 141

    6.6.1 Heat Transfer and Sintering Reactions 141

    6.6.2 Heat Front and Flame Front 142

    6.6.3 Speed of Flame Front 143

    6.6.4 Gas Dynamics vis-a-vis Heat Patterns 144

  • Table of Contents Xl

    6.6.5 Heat Pattern in Sintering versus

    Sinter Quality 148

    6.6.6 Burn-Through Point 149

    6.7 Bonding in Sinter 150

    6.8 Assimilation and Coalescence 151

    6.8.1 Sintering of a Pseudo-Particle 151

    6.8.2 Assimilation of Iron Ore 153

    6.8.3 Assimilation of Fluxes 155

    6.9 Sintering Reactions 156

    6.9.1 Sintering: A Thermochemical Process 156

    6.9.2 Mechanism of Sintering Reactions 156

    6.9.3 Chemical Reactions (Basicity Effect) 158

    6.10 Sintering Reaction and Mineralogy 159

    6.10.1 Stages of Chemical Reactions 159

    6.10.2 Sinter Mineralogy 160

    6.10.3 Formation of SFCA 161

    6.11 Mass Balance 161

    6.11.1 Mass Balance in a Continuous

    Sinter Plant 161

    6.11.2 Charge Calculation 163

    6.12 Heat Balance 163

    6.13 Ignition 164

    6.14 Combustion of Solid Fuel in Sintering 167

    6.14.1 Effect of Combustion Behavior of Coke

    on Sintering Indices 167

    6.14.2 Combustion of Coke and Its Kinetics

    during Sintering 167

    6.14.3 Combustion of a Single Coke Particle 168

    6.14.4 Association of Coke in Sinter Mix 169

    6.14.5 Profile of Oxygen in Coke Combustion 170

    6.14.6 Characteristics of Coke and UpstreamProcesses that Influence Coke Combustion 170

    6.14.7 Combustion of Coke with Melts during

    Sintering 172

    6.14.8 Heating Value of Coke Combustion 173

    6.14.9 Combustion Efficiency in Sintering 174

    Annexures 175

    AnnexureVI.l 175

    Typical Calculation of Granule Characteristics

    using Ergun's Equation 175

    Annexure VI.2 177

    Calculation of Sinter Charge 177

    Annexure VI.3 179

    Typical Calculation of Ignition Intensity 179

    References 181

  • xii Table of Contents

    Chapter 7 Sinter Productivity: Theoretical Considerationand Plant Practice 185

    7.1 Sinter Productivity 185

    7.1.1 Definition and Computation 185

    7.1.2 Sintering Speed 186

    7.1.3 Return Fines Recirculated 186

    7.1.4 Parameters Affecting Sinter

    Productivity 1887.2 Bed Permeability and Bed Structure 188

    7.3 Iron Ores: Particle Size and Characteristics 190

    7.3.1 Particle Size of Ores 190

    7.3.2 Incorporation of Ultrafines 190

    7.3.3 Ores: Textural Parameters and Chemical

    Composition 191

    7.3.4 Blending of Ores 1917.4 Granulation 192

    7.4.1 Granule Size/Size Parameters

    of Mix Ingredients 192

    7.4.2 Bulk Density of Sinter Mix 192

    7.4.3 Selective Granulation 193

    7.4.4 Modification in Operational and MachineParameters 194

    7.4.5 Usage of Lime 194

    7.5 Moisture Content of the Sinter Mix 195

    7.5.1 Role of Moisture in Granulation 196

    7.5.2 Granulation with Low Moisture 197

    7.5.3 Preheating of Sinter Mix 1987.6 Sinter Basicity and Mgo Content 199

    7.6.1 Sinter Basicity 1997.6.2 Sinter MgO 199

    7.7 Coke and Fluxes: Content, Nature,

    and Particle Size 200

    7.7.1 Nature of Solid Fuel and its Content 200

    7.7.2 Particle Size of Coke and Flux 200

    7.7.3 Split Addition Flux and Coke 200

    7.8 Return Fines 201

    7.8.1 Return Fines Regime 201

    7.8.2 Return Fines Balance 202

    7.8.3 Ratio (RO/RI) 203

    7.8.4 Simulation of Return Fines Balance 204

    7.8.5 Optimum of Return Fines 205

    7.8.6 Carbon Equivalent of Return Fines 206

    7.9 Sinter Mean Size 207

    References 207

  • Table of Contents x'"

    Chapter 8 Sinter Mineralogy 211

    8.1 Preamble 211

    8.2 Major Constituents and Desired Mineralogyof Sinter 212

    8.3 Mineralogical Terminology 212

    8.4 Sintering Reaction and Mineralogy 213

    8.5 Composition and Mineralogical Characteristics

    of Fluxed Sinter 214

    8.5.1 Mineralogical Composition 214

    8.5.2 Mineralogical Characteristics 215

    8.6 Process Variables and Sinter Mineralogy 218

    8.6.1 Flame Front Speed (FFS) 218

    8.6.2 Cooling Rate 218

    8.6.3 Bed Height 219

    8.6.4 Return Fines 219

    8.7 Sinter Chemistry and Its Mineralogy 219

    8.7.1 Sinter Basicity 219

    8.7.2 Fe Content in Sinter 220

    8.7.3 Sinter Alumina 220

    8.7.4 Sinter MgO 221

    8.8 Sinter Mineralogy and Quality Parameters

    of Sinter 221

    8.8.1 Sinter Mineralogy 221

    8.8.2 Sinter Porosity 221

    8.8.3 Sinter Morphology 222

    References 223

    Chapter 9 Sinter Quality: Theoretical Consideration

    and Plant Practice 225

    9.1 Sinter Quality and Contributing Factors 2259.1.1 Quality Parameters 225

    9.1.2 Contributing Factors in Sinter Quality 226

    9.2 Sinter Mineralogy and Its Quality Parameters 228

    9.2.1 Sinter Mineralogy 228

    9.2.2 Sinter Porosity 230

    9.2.3 Pore Size 231

    9.2.4 Porous Morphology 231

    9.3 Cold Strength 232

    9.3.1 Strength of Sinter vis-A-vis Sintering

    Speed 2329.3.2 Sinter Chemistry and Strength 233

    9.3.3 Coke Addition 234

    9.3.4 Bed Height 234

  • xiv Table of Contents

    9.4 Sinter Reducibility 235

    9.4.1 Nature of Ore and its Size 235

    9.4.2 Sinter Chemistry 235

    9.4.3 Operating Practices 2379.5 Sinter Reduction-Degradation Index (RDI) 237

    9.5.1 Mechanism of Sinter RDI 237

    9.5.2 Sinter Chemistry 238

    9.5.3 Vertical Speed of Sintering 242

    9.6 Salient Ways to Improve Sinter RDI 242

    9.6.1 Sinter Alumina: Its Reduction

    and Neutralization 242

    9.6.2 Improving the Flux Size 2429.6.3 Split Addition of MgO-Bearing Fluxes 2439.6.4 Addition of Polymeric Additives 244

    9.6.5 Inert Gas Injection 244References 244

    Chapter 10 Process and Operational Variables with Respectto Sintering 249

    10.1 Preamble 249

    10.2 Iron Ore: Characteristics and Size Parameters 250

    10.2.1 Chemical Composition 25010.2.2 Mineralogical and Morphological

    Characteristics of Ores 251

    10.2.3 Properties of Ores at Higher Temperature 25110.2.4 Size Parameters of Ores 251

    10.2.5 Balling Characteristics of Ores 25110.3 Alumina Content of Ore 252

    10.3.1 Sinter Mineralogy 25210.3.2 Effect of Alumina on Sinter Quality 252

    10.3.3 Tackling the Adverse Effect of Alumina 25210.4 Sinter Basicity 255

    10.5 Mgo Content of Sinter 256

    10.5.1 Mineralogy and Quality of Sinter 256

    10.5.2 High MgO Sintering Practice 257

    10.5.3 Interinfluence of Sinter Basicity and Its

    MgO Content vis-A-vis Coke Content 257

    10.5.4 Alternate Resources of MgO 25 8

    10.6 Fluxes: Size Parameters, Calcination,

    and Assimilation 258

    10.6.1 Particle Size of Flux 259

    10.6.2 Calcination and Assimilation of Fluxes 259

    10.6.3 Optimization of Crushing Scheme 262

    10.7 Solid Fuel 263

    10.7.1 Thermal Effect 263

  • Table of Contents xv

    10.7.2 Size ofCoke and its Distribution 263

    10.7.3 Mode of Coke Addition 265

    10.7.4 Ash Content of Coke 266

    10.7.5 Reduction in Specific Coke Consumption 267

    10.7.6 Use of Alternate Fuels 269

    10.8 Newer Coating And Granulation Techniques 270

    10.8.1 Coating of Flux and Coke 270

    10.8.2 Selective Granulation 272

    10.9 Operating Practice 273

    10.9.1 Moisture Content 273

    10.9.2 Bed Height 274

    10.9.3 Suction Pressure 274

    10.9.4 Frequency of Machine Stoppages 27510.9.5 Stockpiling of Sinter 275

    References 275

    Chapter 11 Peptization Process 279

    11.1 Peptization Process 279

    11.2 Raw Materials and Their Preparation 279

    11.2.1 Iron Ore 280

    11.2.2 Fluxes 280

    11.2.3 Solid Fuel 281

    11.2.4 Binders 281

    11.3 Peptization Steps 282

    11.3.1 Mixing 282

    11.3.2 Peptization (Balling) 282

    11.3.3 Induration 283

    11.4 Pollution Control and Energy Conservation 283

    11.4.1 Emission of Pollutants 283

    11.4.2 Removal of Pollutants 284

    11.4.3 Energy Conservation 284

    11.5 Specifications of Pellet Plants 28511.6 Composite Pellets 285

    References 286

    Chapter 12 Green Peptization: Process and Mechanism 289

    12.1 Balling Process 28912.1.1 Peptizing Units: Description

    and Operation 28912.1.2 Operation of Rotating Device 292

    12.1.3 Material Movement in a Balling Unit 293

    12.1.4 Drum versus Disc Peptizer 295

    12.2 Formation of Green Balls and Growth 296

    12.2.1 Formation of Green Balls 296

  • icvi Table of Contents

    12.2.2 Growth of Balls 296

    12.2.3 Role of Moisture in Granulation 297

    12.2.4 Forces Involved in Formation

    of Green Balls 298

    12.2.5 Stages of Granulation in Green

    Pelletization 300

    12.3 Strength of Wet Agglomerates 302

    12.3.1 Capillary Theory for Wet Agglomerate

    Strength 302

    12.3.2 Rumpf's Equation for Agglomerate

    Strength 30312.3.3 Influencing Parameters for Agglomerate

    Strength 305

    12.4 Viscosity Effect and Binders 308

    12.4.1 Viscosity Effect 308

    12.4.2 Binders 308

    12.4.3 Requirements of Binders 31012.4.4 Bentonite (as Binder) 31012.4.5 Ball-Ability 313

    12.5 Elastic and Plastic Deformation of Green Pellets 313

    12.6 Stages of Pellet Formation and Growth 31512.7 Kinetics of Ball Growth 317

    12.7.1 Stages of Kinetics 31712.7.2 Kinetic Equation for Pellet Growth 319

    12.7.3 Factors Influencing the Ball Growth 320

    References 323

    Chapter 13 Quality of Green Pellets 327

    13.1 Preamble 327

    13.2 Size and Porosity of Pellets 328

    13.3 Drop Resistance (Number) 32913.4 Wet Compressive Strength 331

    References 333

    Chapter 14 Induration of Green Pellets 335

    14.1 Preamble 335

    14.2 Pellet Induration: Steps 33614.2.1 Drying 33614.2.2 Preheating 33814.2.3 Firing 33914.2.4 Cooling 340

    14.3 Process of Induration Using Shaft Furnace 34014.4 Straight-Grate Process of Pellet Induration 341

    14.4.1 Straight-Grate System 341

  • Table of Contents xvii

    14.4.2 Zones of Induration 343

    14.4.3 Characteristic Features of Straight-Grate

    System 344

    14.4.4 Heat Recovery in Straight-Grate System 345

    14.5 Grate-Kiln-Cooler Process 345

    14.5.1 Grate-Kiln-Cooler System 345

    14.5.2 Design Parameters 347

    14.5.3 Operation 348

    14.5.4 System of Heat Recuperation 350

    14.5.5 Deposit Formation 350

    14.5.6 Characteristic Features 351

    14.6 Comparison of Straight-Grate Process Vis-A-Vis

    Grate-Kiln Process 351

    14.7 Factors Influencing the Induration Process

    (and Pellet Quality) 353

    14.8 Fuel Substitution in Pellet Induration 356

    14.8.1 Coal Injection 35714.8.2 Nature of Carbonaceous Materials 357

    14.8.3 Utilization of DR Coal Fines 357

    14.8.4 Developed Technologies 358

    14.8.5 Problems and Solutions 358

    References 358

    Chapter 15 Reactions and Formation of Phases During Induration

    of Pellet 361

    15.1 Preamble 361

    15.2 Induration of Magnetite-Bearing Pellets

    and Phases Formed 362

    15.2.1 Reactions with Magnetite Concentrate 362

    15.2.2 Phases Formed 363

    15.3 Induration of Hematite-Bearing Pellets andPhases Formed 364

    15.4 Induration: Magnetite Vis-A-Vis Hematite

    Concentrate 365

    15.5 Phases and Pores in Indurated Pellets 366

    15.5.1 Bonding and Phases 36615.5.2 Formation of Pores 367

    15.6 Parameters Influencing the Mineral Phases

    in Indurated Pellets 367

    15.6.1 Pellet Basicity 367

    15.6.2 Addition of Coke 369

    15.6.3 Bentonite Dosage 36915.7 Parameters Influencing the Porosity in Indurated

    Pellets 370

    15.7.1 Effect of Pellet Basicity and MgO Content 370

  • xviii Table of Contents

    15.8 Duplex Structure 371

    15.8.1 Formation of Duplex Structure 371

    15.8.2 Mechanism of Formation 372

    15.8.3 Ways to Minimize the Duplex Structure 373

    References 373

    Chapter 16 Quality of Indurated Pellets 375

    16.1 Preamble: Pellet Properties and Factors Influencing 375

    16.1.1 Pellet Properties 375

    16.1.2 Textural Characteristics and Pellet Properties 375

    16.1.3 Factors Affecting Pellet Properties 376

    16.2 Pellet Chemistry 376

    16.3 Bulk Density and Angle of Repose 377

    16.4 Crushing Strength 377

    16.4.1 Raw Materials (Including Binders)and Their Characteristics 377

    16.4.2 Induration Conditions 382

    16.5 Porosity 384

    16.6 Swelling Index 385

    16.7 Pellet Reducibility 388

    16.8 Reduction-Degradation Index (RDI) 389

    16.9 Softening And Meltdown Characteristics 389

    References 390

    Annexures 393

    Annexure 1 393

    Annexure II 394

    Test Methods for Quality Parameters of Sinter

    and Pellets 394

    Preamble 394

    Sampling and Sample Preparation 394

    Green Pellets 395

    Indurated Pellets 395

    Swelling Index (SI) 396

    Clustering Index 397

    Sinter/Pellets 398

    Organizations of Standards Referred 403

    References 403

    Index 405