agilent e4416a/e4417a epm-p series power meters and e

50
Data Sheet Agilent E4416A/E4417A EPM-P Series Power Meters and E-Series E9320 Peak and Average Power Sensors

Upload: others

Post on 17-Mar-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Data Sheet

AgilentE4416A/E4417A EPM-P Series

Power Meters and E-Series E9320Peak and Average Power Sensors

2

EPM-P power meter specificationsSpecifications describe the instrument’s warranted perfor-mance and apply after a 30 minute warm-up. These speci-fications are valid over its operating and environmentalrange unless otherwise stated and after performing a zeroand calibration procedure.

Supplemental characteristics are intended to provide addi-tional information; useful in applying the instrument bygiving typical (expected), but not warranted performanceparameters. These characteristics are shown in italics orlabeled as ‘typical’, ‘nominal’ or ‘approximate’.

Measurement uncertainties information can be found in,Fundamentals of RF and Microwave Power Measurements- Application Note 64-1, literature number 5965-6630E.

Compatibility, the EPM-P series power meters operatewith the E-series E9320 family of power sensors for peak,average and time-gated power measurements. The EPM-Pseries also operates with the existing 8480 and N8480series, E-series CW and the E9300 range of power sensorsfor average power measurements. For specifications per-taining to the 8480 and E-series CW and E9300 power sen-sors, please refer to the EPM Series Power Meters, E-Series and 8480 Series Power Sensors, TechnicalSpecifications, literature number 5965-6382E. For specifi-cations pertaining to the N8480 series power sensors, pleaserefer to the N8480 Series Thermocouple Power Sensors,Technical Specifications, literature number 5989-9333EN.

Measurement modes, the EPM-P series power metershave two measurement modes:

1. Normal mode (default mode using E9320 sensors)for peak, average and time-related measurements,and

2. Average only mode. This mode is primarily foraverage power measurements on low-level signals,when using E9320 sensors, and is the mode usedwith 8480 and N8480 series sensors, E-series CWsensors and E-series E9300 sensors.

Frequency range: 9 kHz to 110 GHz,sensor dependent

Power range: -70 to +44 dBm,sensor dependent

Single sensor dynamic rangeE-series E9320 peak and average power sensors:

70 dB maximum (normal mode);85 dB maximum (average only mode)

E-series CW power sensors: 90 dBE-series E9300 average power sensors:

80 dB maximum8480 series sensors: 50 dB maximumN8480 series sensors: 55 dB maximum

Display unitsAbsolute: Watts or dBmRelative: Percent or dB

Display resolution: Selectable resolution of 1.0,0.1, 0.01, 0.001 dB in logarithmic mode, or 1 to 4 significant digits in linear mode.

Offset range: ±100 dB in 0.001 dB increments, to compensate forexternal loss or gain

Video bandwidth: 5 MHz (set by meter and issensor dependent)

Note that the video bandwidth represents the ability ofthe power sensor and meter to follow the power envelopeof the input signal. The power envelope of the input signalis, in some cases, determined by the signal's modulationbandwidth, and hence video bandwidth is sometimesreferred to as modulation bandwidth.

Video bandwidth/dynamic range optimization

The power measurement system, comprising the sensorand meter, has its maximum video bandwidth defined bythe E9320 sensor. To optimize the system’s dynamic rangefor peak power measurements, the video bandwidth inthe meter can be set to High, Medium and Low, asdetailed in the following table. The filter video bandwidthsstated in the table are not the 3 dB bandwidths as thevideo bandwidths are corrected for optimal flatness. Referto figures 6 to 8 for information on the sensor’s peak flat-ness response. A filter OFF mode is also provided.

Table 1. Video bandwidth versus peak power dynamic range

Sensor model Video bandwidth/maximum peak power dynamic range

OFF High Medium Low

E9321A 300 kHz/ 300 kHz/ 100 kHz/ 30 kHz/E9325A -40 dBm to +20 dBm -42 dBm to +20 dBm -43 dBm to +20 dBm -45 dBm to +20 dBmE9322A 1.5 MHz/ 1.5 MHz/ 300 kHz/ 100 kHz/E9326A -36 dBm to +20 dBm -37 dBm to +20 dBm -38 dBm to +20 dBm -39 dBm to +20 dBmE9323A 5 MHz/ 5 MHz/ 1.5 MHz/ 300 kHz/E9327A -32 dBm to +20 dBm -32 dBm to +20 dBm -34 dBm to +20 dBm -36 dBm to +20 dBm

3

Accuracy

InstrumentationPlease add the corresponding power sensor linearity per-centage; see Tables 6a and 6b for the E9320 sensors.

Average only mode:Absolute Logarithmic: ±0.02 dB

Linear: ±0.5%Relative Logarithmic: ±0.04 dB

Linear: ±1.0%

Normal mode:

Time Base Accuracy 0.01%

1 mW power referencePower output: 1.00 mW (0.0 dBm). Factory

set to ±0.4% traceable to theNational Physical Laboratories(NPL), UK2

Accuracy: For two years±0.5% (23 ± 3 °C)±0.6% (25 ± 10 °C)±0.9% (0 to 55 °C)

Frequency: 50 MHz nominal

SWR: 1.06 maximum (1.08 maximumfor Option E41xA-003)

Connector type: Type N (f), 50 ohms

Measurement characteristics:Measurements: Average power

Peak powerPeak-to-average ratioMeasurements between two timeoffsets (time-gating)

Averaging: Averaging over 1 to 1024 readingsis available for reducing noise

Measurement speed (GPIB)Over the GPIB, three measurement speeds are available(normal, x 2 and fast). The typical maximum speed isshown in the table below.

Table 2. Measurement speed for different sensor types

Channel functions A, B, A/B, B/A, A-B, B-A andRelative

Storage registers 10 instrument states can besaved via the Save/Recall menu.

Predefined setupsFor common wireless standards (GSM900, EDGE, NADC,iDEN, Bluetooth, IS-95 CDMA, W-CDMA and cdma2000),predefined setups are provided.

Calibration temperature1 Temperature±5 °C 0 to 55 °C

Absolute accuracy (log) ±0.04 dB ±0.08 dBAbsolute accuracy (linear) ±0.8% ±1.7%Relative accuracy (log) ±0.08 dB ±0.16 dBRelative accuracy (linear) ±1.6% ±3.4%

1. Power meter is within ±5 °C of its calibration temperature.2. National metrology institutes of member states of the Metre Convention, such as the

National Institute of Standards and Technology in the USA, are signatories to theComitÈ International des Poids et Mesures Mutual Recognition Arrangement. Furtherinformation is available from the Bureau International des Poids et Mesures, athttp://www.bipm.fr/

3. Fast speed is not available for 8480 and N8480 series sensors.4. Maximum measurement speed is obtained by using binary output in free run trigger.5. For E9320 sensors, maximum speed is achieved using binary output in free run

acquisition.

Sensor type Measurement speed(readings/second)

Normal x 2 Fast3,4

E-Series E9320 Average only mode 20 40 400peak and averagesensors Normal mode5 20 40 1000

E-Series CW and E9300 average power 20 40 400sensors

8480 and N8480 Series sensor 20 40 N.A.

4

TriggerSources: Internal, External TTL,

GPIB, RS232/422,

Time resolution: 50 ns

Delay range: ±1.0 s

Delay resolution: 50 ns for delays < ±50 ms;otherwise 200 ns

Hold-off:Range: 1 us to 400 msResolution: 1% of selected value

(minmum of 100 ns)

Internal trigger:Range: -20 to +20 dBmLevel accuracy: ±0.5 dBResolution: 0.1 dBLatency: 500 ns ± 100 ns

Latency is defined as the delay between the applied RFcrossing the trigger level and the meter switching intothe triggered state.

External trigger range: High > 2.0 V, Low < 0.8 V;BNC connector; rising or falling edge triggered; inputimpedance > 1 kW.

Trigger out: Output provides TTL compatible levels(high > 2.4 V, low < 0.4 V) and uses a BNC connector

Sampling characteristicsSampling rate: 20 Msamples/second

Sampling technique: Continuous sampling

Rear panel inputs/outputsRecorder output(s): Analog 0 to 1 V, 1 kW outputimpedance, BNC connector. Two outputs are availableon E4417A (channels A and B).

Remote input/output:TTL output: used to signal when mea

surement has exceeded adefined limit.

TTL input: initiates zero and calibrationcycle.

Connector type: RJ-45 series shielded modular jack assembly.

TTL output: high = 4.8 V max;low = 0.2 V max.

TTL input: high = 3.5 V min, 5 V max;low = 1 V max, -0.3 V min.

RS-232/422 interface: Serial interface for communi-cation with an external controller. Male plug 9-pinD-subminiature connector.

Trigger in: Accepts a TTL signal for initiating measure-ments, BNC connector.

Trigger out: Outputs a TTL signal for synchronizingwith external equipment, BNC connector.

Ground: Binding post accepts 4 mm plug or bare wireconnection

Line powerInput voltage range 85 to 264 Vac,

automatic selectionInput frequency range 47 to 440 HzPower requirement approximately 50 VA

(14 Watts)Remote programmingInterface: GPIB interface operates to IEEE 488.2 andIEC-625. RS-232 and RS-422 serial interfaces supplied asstandard

Command language: SCPI standard interfacecommands

GPIB compatibility: SH1, AH1, T6, TE0, L4, LE0, SR1,RL1, PP1, DC1, DT1, C0.

Environmental specificationsOperating environment

Temperature 0° to 55 °CMaximum humidity 95% at 40 °C,

(non-condensing)Minimum humidity 15% at 40 °CMaximum altitude 3,000 meters

(9,840 feet)

Storage conditions:Storage temperature -20 to +70°CNon-operating maximumhumidity: 90% at 65 °C

(non-condensing)Non-operating maximumaltitude: 15,420 meters

(50,000 feet)

Regulatory informationElectromagnetic compatibility: This productconforms with the protection requirements of EuropeanCouncil Directive 89/336/EEC for ElectromagneticCompatibility (EMC). The conformity assessmentrequirements have been met using the technicalConstruction file route to compliance, using EMC testspecifications EN 55011:1991 (Group 1, Class A) and EN50082-1:1992. In order to preserve the EMC performanceof the product, any cable which becomes worn or dam-aged must be replaced with the same type and specifica-tion.

Product safety: This product conforms to the require-ments of European Council Directive 73/23/EEC, andmeets the following safety standards:

IEC 61010-1(1990) + A1 (1992) + A2 (1995) /EN 61010-1 (1993)IEC 825-1 (1993) / EN 60825-1 (1994)Canada / CSA C22.2 No. 1010.1-93

5

Physical specificationsDimensions: The following dimensions exclude frontand rear panel protrusions: 212.6 mm W x 88.5 mmH x 348.3 mm D (8.5 in x 3.5 in x 13.7 in)

WeightNet:E4416A: 4.0 kg (8.8 lbs) approximateE4417A: 4.1 kg (9.0 lbs) approximate

Shipping:E4416A: 7.9 kg (17.4 lbs) approximateE4417A: 8.0 kg (17.6 lbs) approximate

Ordering informationAccessories supplied

Power sensor cableE9288A 1.5 meter (5 ft). One per E4416A, two

per E4417A

Power cordOne 2.4 meter (7.5 ft) cable. Power plug matchesdestination requirements.

ANSI/NCSL Z540-1-1994 certificate of calibrationsupplied as standard.

Installation guideUsers Guide and Programming Guide (CD-ROM format)

Power meter options

ConnectorsE441xA-002 Parallel rear panel sensor input

connector(s) and front panel referencecalibrator connector

E441xA-003 Parallel rear panel sensor inputconnector(s) and rear panel referencecalibrator connector

Calibration documentationE441xA-A6J ANSI Z540 compliant calibration test

data including measurement uncertainties

DocumentationA hard copy of the Installation Guide and CD1 of theEnglish language User’s Guide and Programming Guideis provided with the EPM-P power meter as standard. Aselection can be made to delete the hard copy.E441xA-0B0 Delete manual set

Additional documentationSelections can be made for the localization of the User’sGuide, an English language Programming Guide andService Manual.E441xA-0B3 English language Service ManualE441xA-0BK English language manual set (hardcopy

User’s Guide and English ProgrammingGuide)

E441xA-ABD German localization (hard copy User’sGuide and English Programming Guide)

E441xA-ABE Spanish localization (hard copy User’sGuide and English Programming Guide)

E441xA-ABF French localization (hard copy User’sGuide and English Programming Guide)

E441xA-ABJ Japanese localization (hard copy User’sGuide and English Programming Guide)

E441xA-ABZ Italian localization (hard copy User’sGuide and English Programming Guide)

Power sensor cablesE441xA-004 Delete power sensor cable

For operation with the E9320 power sensors:E9288A Power sensor cable, length 5 ft (1.5 m)E9288B Power sensor cable, length 10 ft (3 m)E9288C Power sensor cable, length 31 ft (10 m)

Note: The E9288A, B, and C sensor cables will alsooperate with 8480, N8480 and E-series power sensors.

For operation with 8480, N8480, E-series CW and E9300power sensors:11730A Power sensor and SNS noise source

cable, length 5 ft (1.5 m)11730B Power sensor and SNS noise source

cable, length 10 ft (3 m)11730C Power sensor and SNS noise source

cable, length 20 ft (6.1 m)11730D Power sensor cable, length 50 ft (15.2

m)11730E Power sensor cable, length 100 ft (30.5

m)11730F Power sensor cable, length 200 ft (61.0

m)

Other sensor cable lengths can be supplied on request.

AccessoriesE441xA-908 Rack mount kit (one instrument)E441xA-909 Rack mount kit (two instruments)34131A Transit case for half-rack 2U high instruments34141A Yellow soft carry / operating case34161A Accessory pouch

Service options

WarrantyIncluded with each EPM-P series power meter is a stan-dard 36-month, return-to-Agilent warranty and serviceplan. For warranty and service of 5 years, please order 60months of R-51B.

1. CD includes EPM-P analyzer software.

6

R-51B Return-to-Agilent warranty and serviceplan

Calibration1

For 3 years, order 36 months of the appropriate calibra-tion plan shown below. For 5 years, specify 60 months.R-50C-001 Standard calibration planR-50C-002 Standard compliant calibration plan

E-series E9320 power sensorspecifications

The E9320 peak and average power sensors are designedfor use with the EPM-P series power meters. The E9320sensors have two measurement modes:

Normal mode (default mode for E9320 sensors) forpeak, average and time-related measurements

Average only mode is designed primarily for averagepower measurements on low-level signals. This mode isthe only mode used with 8480 and N8480 series sensors,E-series CW sensors and E-series E9300 sensors.

The following specifications are valid after zero and cali-bration of the power meter.

Note: E9320 power sensors MUST be used with anE9288A, B or C cable.

Table 3. Sensor specifications

Sensormodel

E9321A

E9325A

E9322A

E9326A

E9323A

E9327A

Videobandwidth

300 kHz

1.5 MHz

5 MHz

Frequency range

50 MHz to 6 GHz

50 MHz to 18 GHz

50 MHz to 6 GHz

50 MHz to 18 GHz

50 MHz to 6 GHz

50 MHz to 18 GHz

Power range

Average only mode Normal mode2

-65 dBm to +20 dBm -50 dBm to +20 dBm

-60 dBm to +20 dBm -45 dBm to +20 dBm

-60 dBm to +20 dBm -40 dBm to +20 dBm

Maximum power

+23 dBm average;+30 dBm peak(< 10 msec duration)

Connectortype

Type N (m)

1. Options not available in all countries.2. For average power measurements, free run acquisition.

7

The E9320 power sensors have two measurement ranges(lower and upper) as detailed in Table 4.

Table 4. Lower and upper measurement ranges

Lower range(min. power)

Lower range(max. power)Lower to upperauto range point

Upper to lowerauto range point

Upper range(min. power)

Upper range(max. power)

E9321A/E9325A

Normal Average only

-50 dBm -65 dBm

+0.5 dBm -17.5 dBm1

-9.5 dBm -18.5 dBm

-35 dBm -50 dBm

+20 dBm +20 dBm1

E9322A/E9326A

Normal Average only

-45 dBm -60 dBm

-5 dBm -13.5 dBm1

-15 dBm -14.5 dBm

-35 dBm -45 dBm

+20 dBm +20 dBm1

E9323A/E9327A

Normal Average only

-40 dBm -60 dBm

-5 dBm -10.5 dBm1

-15 dBm -11.5 dBm

-30 dBm -35 dBm

+20 dBm +20 dBm1

1. Applies to CW and constant amplitude signals only above –20 dBm.

Table 5. Power sensor maximum SWR

Sensor model

E9321A,E9325A

E9322A,E9326A

E9323A,E9327A

Maximum SWR (< = 0 dBm)

50 MHz to 2 GHz: 1.122 GHz to 10 GHz: 1.1610 GHz to 16 GHz: 1.2316 GHz to 18 GHz: 1.28

50 MHz to 2 GHz: 1.122 GHz to 12 GHz: 1.1812 GHz to 16 GHz: 1.2116 GHz to 18 GHz: 1.27

50 MHz to 2 GHz: 1.142 GHz to 16 GHz: 1.2216 GHz to 18 GHz: 1.26 Figure 2. Typical SWR for the E9322A and E9326A sensors at various power

levels

Figure 1. Typical SWR for the E9321A and E9325A sensors at various powerlevels

Figure 3. Typical SWR for the E9323A and E9327A sensors at various powerlevels

8

Sensor linearity

If the sensor temperature changes after calibration, andthe meter and sensor is not re-calibrated, then the followingadditional linearity errors should be added to the linearityfigures in Tables 6a and 6b.

Figure 5 shows the typical uncertainty in making a relativepower measurement, using the same power meter channeland the same power sensor to obtain the reference and themeasured values. It also assumes that negligible change infrequency and mismatch error occurs when transitioningfrom the power level used as the reference to the powerlevel measured.

Table 6a. Power sensor linearity, normal mode(upper and lower range).

Sensor model Temperature Temperature( 25 ± 10 °C) (0 to 55 °C)

E9321A and E9325A ±4.2% ±5.0%E9322A and E9326A ±4.2% ±5.0%E9323A and E9327A ±4.2% ±5.5 %

Table 6b. Power sensor linearity, average only mode(upper and lower range).

Sensor model Temperature Temperature( 25 ± 10 °C) (0 to 55 °C)

E9321A and E9325A ±3.7% ±4.5%E9322A and E9326A ±3.7% ±4.5%E9323A and E9327A ±3.7% ±5.0 %

Table 6c. Additional linearity error (normal and average only modes).

Sensor model Temperature Temperature( 25 ± 10 °C) (0 to 55 °C)

E9321A and E9325A ±1.0% ±1.0%E9322A and E9326A ±1.0% ±1.5%E9323A and E9327A ±1.0% ±2.0 %

Figure 4. Typical power linearity at 25 °C for the E9323A andE9327A 5 MHz bandwidth sensors, after zero and calibration, withassociated measurement uncertainty.

Power range –30 to –20 to –10 to 0 to +10 to–20 dBm –10 dBm 0 dBm +10 dBm +20 dBm

Measurement ±0.9% ±0.8% ±0.65% ±0.55% ±0.45%uncertainty

Figure 5. Relative mode power measurement linearity with anEPM-P series power meter, at 25 °C (typical).

9

Peak flatnessThe peak flatness is the flatness of a peak-to-average ratiomeasurement for various tone-separations for an equalmagnitude two-tone RF input. Figures 6, 7 and 8 refer tothe relative error in peak-to-average measurement as thetone separation is varied. The measurements were per-formed at –10 dBm average power using an E9288A sensorcable (1.5 m).

Calibration Factor (CF) andReflection Coefficient (Rho)Calibration Factor and Reflection Coefficient data are pro-vided at frequency intervals on a data sheet included withthe power sensor. This data is unique to each sensor. If youhave more than one sensor, match the serial number onthe data sheet with the serial number of the power sensoryou are using. The CF corrects for the frequency responseof the sensor. The EPM-P series power meter automaticallyreads the CF data stored in the sensor and uses it to makecorrections.

For power levels greater than 0 dBm, add to the calibra-tion factor uncertainty specification:±0.1%/dB (for E9321A and E9325A sensors),±0.15%/dB (for E9322A and E9326A sensors) and±0.2%/dB (for E9323A and E9327A sensors).

Reflection Coefficient (Rho) relates to the SWR accordingto the formula:SWR = (1 + Rho) / (1 – Rho)

Maximum uncertainties of the CF data are listed in Table 7.The uncertainty analysis for the calibration of the sensorswas done in accordance with the ISO Guide. The uncer-tainty data, reported on the calibration certificate, is theexpanded uncertainty with a 95% confidence level and acoverage factor of 2.

Figure 6. E9321A and E9325A Error in peak-to-average measurements for atwo-tone input (high, medium, low and off filters).

Figure 7. E9322A and E9326A error in peak-to-average measurements for atwo-tone input (high, medium, low and off filters).

Figure 8. E9323A and E9327A error in peak-to-average measurements for atwo-tone input (high, medium, low and off filters).

Table 7. Calibration factor uncertainty at 0.1 mW (-10 dBm).

Frequency

50 MHz100 MHz300 MHz500 MHz800 MHz1.0 GHz1.2 GHz1.5 GHz2.0 GHz3.0 GHz4.0 GHz5.0 GHz6.0 GHz7.0 GHz8.0 GHz9.0 GHz

10.0 GHz11.0 GHz12.0 GHz12.4 GHz13.0 GHz14.0 GHz15.0 GHz16.0 GHz17.0 GHz18.0 GHz

Uncertainty (%)(25 ±10°C)

Reference±1.8±1.8±1.8±1.8±2.1±2.1±2.1±2.1±2.1±2.1±2.1±2.1±2.3±2.3±2.3±2.3±2.3±2.3±2.3±2.3±2.5±2.5±2.5±2.5±2.5

Uncertainty (%)(0 to 55°C)

Reference±2.0±2.0±2.0±2.0±2.3±2.3±2.3±2.3±2.3±2.3±2.3±2.3±2.5±2.5±2.5±2.5±2.5±2.5±2.5±2.5±2.8±2.8±2.8±2.8±2.8

Zero setThis specification applies to a ZERO performed when thesensor input is not connected to the POWER REF.

Zero drift and measurement noise

Effect of averaging on noise: Averaging over 1 to 1024readings is available for reducing noise. Table 9 providesthe measurement noise for a particular sensor. Use thenoise multipliers in Table 10, for the appropriate speed(normal or x 2) or measurement mode (normal or averageonly) and the number of averages, to determine the totalmeasurement noise value.

In addition, for x 2 speed (in normal mode) the total mea-surement noise should be multiplied by 1.2, and for fastspeed (in normal mode), the multiplier is 3.4.Note that in fast speed, no additional averaging isimplemented.

Example:E9321A power sensor, number of averages = 4, free runacquisition, normal mode, x 2 speed.Measurement noise calculation:(< 6 nW x 0.88 x 1.2) = < 6.34 nW

Effect of video bandwidth setting: The noise per sampleis reduced by applying the meter video bandwidth reduc-tion filter setting (High, Medium or Low). If averaging isimplemented, this will dominate any effect of changing thevideo bandwidth.

Example:E9322A power sensor, triggered acquisition, video band-width = High.Noise per sample calculation:(< 180 nW x 0.80) = < 144 nW

Effect of time-gating on measurement noiseThe measurement noise will depend on the time gatelength, over which measurements are made. Effectively20 averages are carried out every 1 us of gate length.

Table 8. Zero set

Sensor model Zero set Zero set(normal mode) (average only mode)

E9321A, E9325A 5 nW 0.17 nWE9322A, E9326A 19 nW 0.5 nWE9323A, E9327A 60 nW 0.6 nW

Table 9. Zero drift and measurement noise.

Sensormodel

E9321AE9325A

E9322AE9326A

E9323AE9327A

Zero drift1

Normal Average onlymode mode

< ±5 nW < ±60 pW

< ±5 nW < ±100 pW

< ±40 nW < ±100 pW

Measurement noise2

Normal Normal Average onlymode3 mode 4 mode

< 6 nW < 75 nW < 165 pW

< 12 nW < 180 nW < 330 pW

< 25 nW < 550 nW < 400 pW

1. Within 1 hour after zero set, at a constant temperature, after a 24 hour warm-up of the power meter.2. Measured over a one-minute interval, at a constant temperature, two standard deviations, with averaging set to 1

(for normal mode), 16 (for average only mode, normal speed) and 32 (for average only mode, x 2 speed).3. In free run acquisition mode.4. Noise per sample, video bandwidth set to OFF with no averaging (i.e. averaging set to 1) - see the note “Effect of

Video Bandwidth Setting” and Table 11.

Table 10. Noise multipliers

Mode

Average-only

Normal

Number ofaverages

Noise multiplier(normal speed)

Noise multiplier(x 2 speed)

Noise multiplier(normal speed;free run acquisition)

1

5.5

6.5

1.0

2

3.89

4.6

0.94

4

2.75

3.25

0.88

8

1.94

2.3

0.82

16

1.0

1.63

0.76

32

0.85

1.0

0.70

64

0.61

0.72

0.64

128

0.49

0.57

0.58

256

0.34

0.41

0.52

512

0.24

0.29

0.46

1024

0.17

0.2

0.40

Table 11. Effect of video bandwidth on noise per sample.

Sensor

E9321AE9325A

E9322AE9326A

E9323AE9327A

Low

0.32

0.50

0.40

Medium

0.50

0.63

0.63

High

0.63

0.80

1.0

Noise multipliers

10

11

Settling timesAverage-only mode:

In normal and x 2 speed, manual filter, 10 dB decreasing powerstep refer to Table 12.

In fast speed, within the range –50 to +20 dBm, for a 10 dBdecreasing power step, the settling time is 10 ms (for the E4416A)and 20 ms (for the E4417A).

When a power step crosses the power sensor’s auto-range switch point,add 25 ms.

Normal mode:In normal, free run acquisition mode, within the range –20 to +20 dBm,for a 10 dB decreasing power step, the settling time is dominated bythe measurement update rate and is listed in Table 13 for various filter settings.

In normal mode, measuring in continuous or single acquisition mode,the performance of rise times, fall times and 99% settled results are shownin Table 14. Rise time and fall time specifications are for a 0.0 dBm pulse,with the rise time and fall time measured between 10% to 90% points andupper range selected.

Overshoot in response to power steps with fast rise times, i.e. less than thesensor rise time, is < 10%. When a power step crosses the power sensor’sauto-range switch point, add 10 μs.

Table 12. Settling time (average only mode)

Number of average 1 2 4 8 16 32 64 128 256 512 1024

Settling time(s) normal 0.08 0.13 0.24 0.45 1.1 1.9 3.5 6.7 14 27 57

Settling time(s) x 2 0.07 0.09 0.15 0.24 0.45 1.1 1.9 3.5 6.7 14 27

Table 13. Settling time (normal mode)

Number of averages 1 2 4 8 16 32 64 128 256 512 1024

Settling time free run 0.1 0.15 0.25 0.45 0.9 1.7 3.3 6.5 13.0 25.8 51.5acquisition, normal speed (s)

Settling time free run 0.08 0.1 0.15 0.25 0.45 0.9 1.7 3.3 6.5 13.0 25.8acquisition, X2 speed (s)

Table 14. Rise and fall times versus sensor bandwidth1

Sensor model Parameter Video bandwidth settingLow Medium High Off

E9321A, Rise time (< μs) 2.6 1.5 0.9 0.3E9325A Fall time (< μs) 2.7 1.5 0.9 0.5

Settling Time (rising) (< μs) 5.1 5.1 4.5 0.6Settling Time (falling) (< μs) 5.1 5.1 4.5 0.9

E9322A, Rise time (< μs) 1.5 0.9 0.4 0.2E9326A Fall time (< μs) 1.5 0.9 0.4 0.3

Settling Time (rising) (< μs) 5.3 4.5 3.5 0.5Settling Time (falling) (< μs) 5.3 4.5 3.5 0.9

E9323A, Rise time (< μs) 0.9 0.4 0.2 0.2E9327A Fall time (< μs) 0.9 0.4 0.2 0.2

Settling Time (rising) (< μs) 4.5 3.5 1.5 0.4Settling Time (falling) (< μs) 4.5 3.5 2 0.4

1. Rise and fall time specifications are only valid when used with the E9288A sensor cable (1.5 meters).

Physical specificationsDimensions: 150 mm L x 38 mm W x 30 mm H

(5.9 in x 1.5 in x 1.2 in)Weight: Net: 0.2 kg (0.45 lbs)

Shipping: 0.55 kg (1.2 lbs)

Ordering informationE9321A 50 MHz to 6 GHz; 300 kHz BWE9322A 50 MHz to 6 GHz; 1.5 MHz BWE9323A 50 MHz to 6 GHz; 5 MHz BWE9325A 50 MHz to 18 GHz; 300 kHz BWE9326A 50 MHz to 18 GHz; 1.5 MHz BWE9327A 50 MHz to 18 GHz; 5 MHz BW

Accessories suppliedOperating and Service Guide (multi-language)ANSI/NCSL Z540-1-1994 Certificate of Calibrationsupplied as standard

Power sensor options

E932xA-A6J Supplies ANSI/NCSL Z540-1-1994test data including measurementuncertainties

E932xA-0B1 Add manual set

12

www.agilent.com/find/emailupdatesGet the latest information on the products andapplications you select.

Agilent Email Updates

Agilent Direct

www.agilent.com/find/agilentdirectQuickly choose and use your test equipmentsolutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of

connecting and programming test systems

to help engineers design, validate and

manufacture electronic products. Agilent

offers open connectivity for a broad range

of system-ready instruments, open industry

software, PC-standard I/O and global sup-

port, which are combined to more easily

integrate test system development.

Remove all doubt

Our repair and calibration services will get

your equipment back to you, performing

like new, when promised. You will get

full value out of your Agilent equipment

throughout its lifetime. Your equipment will

be serviced by Agilent-trained technicians

using the latest factory calibration proce-

dures, automated repair diagnostics and

genuine parts. You will always have the

utmost confidence in your measurements.

Agilent offers a wide range of additional

expert test and measurement services for

your equipment, including initial start-up

assistance onsite education and training,

as well as design, system integration, and

project management.

For more information on repair and

calibration services, go to

www.agilent.com/find/removealldoubt

www.agilent.comwww.agilent.com/find/powermeter

For more information on Agilent

Technologies’ products, applications

or services, please contact your local

Agilent office. The complete list is

available at:

www.agilent.com/find/contactus

Phone or FaxAmericasCanada (877) 894-4414Latin America 305 269 7500United States (800) 829-4444

Asia PacificAustralia 1 800 629 485China 800 810 0189Hong Kong 800 938 693India 1 800 112 929Japan 0120 (421) 345Korea 080 769 0800Malaysia 1 800 888 848Singapore 1 800 375 8100Taiwan 0800 047 866Thailand 1 800 226 008

Europe & Middle EastAustria 01 36027 71571Belgium 32 (0) 2 404 93 40Denmark 45 70 13 15 15Finland 358 (0) 10 855 2100France 0825 010 700*

*0.125€/minuteGermany 07031 464 6333**

**0.14€/minuteIreland 1890 924 204Israel 972-3-9288-504/544Italy 39 02 92 60 8484Netherlands 31 (0) 20 547 2111Spain 34 (91) 631 3300Sweden 0200-88 22 55Switzerland 0800 80 53 53United Kingdom 44 (0) 118 9276201Other European Countries:www.agilent.com/find/contactusRevised: July 17, 2008

Product specifications and descriptions

in this document subject to change

without notice.

© Agilent Technologies, Inc. 2008

Printed in USA, August 1, 2008

5980-1469E

���������� ������������������������������������� � �������������������

����������

��������� ������������������������������������������������������������������������������

������������������

���������� �!����"���������������#

����������� ������� ��������������������!�����������������������������������"#$������� ������������������������� ������!�� ���������������������

����������������������������������������������������������������������� ��������������������������� ��������������� �������������%����������������������!������� ����������������!���� �����������������

��������������������������������&���$��� ��������������� ���������������������������������$�������� ���������!����������� ������������������'����$��� ��������������������� �������������

�������������������������������(����� �����������������������������������������������������������������

�����

����������

������������

$��%&��'�

���

���

���

��

����

��

����

����

���

����

���

��

����

����

����

��

����

��

����

��

����

��

��

���

����

���� �����

�������

��������� !"�#$� �%�&'(��)�*+� +

(�����

���,���� !"��-.����)�*+� +

�����#$� �%�&'(��)�*+� +

��� �� /0!�$�-.����12/�*(3�)�*+� +

�������/0!�$�-.����# &�/��� !"��)�*+� +

� ���������������

��� �

������������

������ 40#/� �

������ 40#/������� �

������

������������

�����5�����

6����� 7����� 2�����

�����

������������������ ���� �

������ 40#���

������������������ 40#/� �

���� ������� 40#/���

��������������� ��

��� ��

������������

��� -40#������-

5����-6����-

����-

�����������)

�&�����*������

+�������*�������

���&�����

�����������������

����

����

'���

����

,�������'����'�������'�-

.�!�'���!!��'������/�"!���-

.��"�'�&!���������

0�����������

0�����������'�"!�������1���/�����������

.���!������������'2�������

���$�!��1����

��)��������

��� ��

.0��3��034�0,504

����� ��

����� ��

'�"�6����&������7

����� ��

����� ��

��,0��'�"�8���7

����� ��

����� ��

�89����)���,��

:�!��(��8����;7

����� ��

����� ��

�������������������������� �� ����� �� ����� �� ����� ��

���������������������

��� ��!�

�"!�����#$�%

,�

!

��� ������������!����"����<�!!��'���������'�"!���)���������1���*�����!����"���&��"����

�����$� ���&��#������$ %�$�'��%��(�&�&)�#�%����%��(��������#��*� �� �$� ��%'+���%��������$� ���, %�$�'����(���� -�#-%���� -�.�+� ������$ �����/�����#��%$� ���#$�%��������*�&$�0�, ��# ��$� ���-�%�1�$-%������%'#�%��'�'���2�+�� $�$� ����##� ��&� ���'#���#�$ (�#&��$� �$%����$��)���(#�&������'#��'�, ��# ��$� ���-�%�1�$-%������%'#�%��������34��555�)$3&�(#�

�3�+$($+��$� %�-�%+#$)������$ %�#'&� �6%5�##� ��-�3�#(�#&� +��� -��33����(��#��!�7&$ '���5�#&7'3��.��%�%3�+$($+��$� %��#�����$-����#�$�%�3�#��$ ��� �$#� &� ����#� ��' ��%%�����#5$%��%����-�� -��(��#3�#(�#&$ ����8�#��� -�+��$)#��$� 3#�+�-'#��

�'33��&� ����+��#�+��#$%�$+%�9%��5 $ �$���$+%:��#��$ �� -�-����3#��$-��--$�$� ���$ (�#&��$� ��'%�('��$ �33��$ ������$ %�#'&� ��)���$�$ ���3$+���9�;3�+��-:��)'�� ���5�##� ��-3�#(�#&� +��3�#�&���#%��.��%�+��#�+��#$%�$+%��#��%��5 �$ �$���$+%�#���)���-��%����������� ��� ���#�������������

�#�$ (�#&��$� �� �&��%'#�&� �' +�#��$ ���+��+'���$� %��#�(�#����33�$+��$� ��������7 *��<' -�&� ���%�(�2�� -��$+#�5����1�5�#���%'#�&� �%=���$��#��'#�� '&)�#>"�>7�!����

,�"!���)��!�����������<��� ��� -�"!����7��#$�%���������#$�%�� -��������#$�%����#����3�5�#�%� %�#%

$��%&��'������<�"�?�8���� ��@�8�%� %�#�-�3� -� �

����������<�AB��-�&����C���-�&9 ���3�����>��:��%� %�#�-�3� -� �

����������������"�'�����<"��-��&�;$&'&�9�7��#$�%�%� %�#%:>��-��&�;$&'&�9�������#$�%�%� %�#%:>>�-��&�;$&'&�9��������#$�%�%� %�#%:

0��!���&����<�)%��'��4�����%��#�-�&2����$��4�1�#+� ���#�-�

��� ������������!����"����!��1��"��'�'����'�������'�

0��!��������&����<�����+��)��#�%��'�$� ��(� ������ ����� ��� -����� -�$ �D���&�-����#� ������-$�$�%�$ ��$ ��#&�-�

0�1�&�������&����<���� �-��$ ����&�-���!�-$�$�%�$ ��$ ��#�&�-�

�''&��'�

�)���&��<�E����-��9���:��#�E��>F9�$ ��#:��1���%���--�����+�##�%3� -$ �3�5�#�%� %�#��$ ��#$���3�#+� ����(#�&�.�)������ -�.�)���"�9(�#��7��#$�%%� %�#%:�� -�.�)��� ��9(�#��������#$�%%� %�#%:�

+�����*�<�E�����-��9D��:��#�E ��F9�$ ��#:��1���%���--�����+�##�%3� -$ �3�5�#�%� %�#��$ ��#$���3�#+� ����(#�&�.�)��� ��9(�#��������#$�%�%� %�#%:�

=������>������������)������1?���@<�� %�#�-�3� -� ��9#�(�#����.�)��� :���#�7��#$�%�%� %�#%����$%�%3�+$($+��$� �33�$�%������8�#��3�#(�#&�-�5�� ����%� %�#�$ 3'��$%� ���+� �+��-�������1G��2�2��

=������1��1�������<��� %�#�-�3� -� ��#�(�#����.�)��� ���#��"!���%� %�#%��#�(�#���.�)��� �(�#�+�&3�����-����

����&��"��������<��� %�#�-�3� -� ��#�(�#����.�)��� �� -�.�)������#��"!��%� %�#%��#�(�#����.�)��� �(�#�+�&3����-����

11�'���1�*��������������<���#��$ ����#� ���� ���#��-$ �%�$%����$��)���(�##�-'+$ �� �$%���.�)��� �3#��$-�%����&��%'#�&� �� �$%��(�#���3�#�$+'��#%� %�#�5$������� '&)�#��(����#���%�%����� ��9(�#� �#&���&�-�:�� -�!�9(�#�;&�-�:��/%������ �$%��&'��$3�$�#��(�#�����33#�3#$����&�-��9 �#&����#�;:�� - '&)�#��(����#���%�����-���#&$ �����������&��%'#�&� �� �$%�����'��

/�"!��<��� ��3�5�#�%� %�#�� �#&���&�-�� '&)�#��(����#���%�H��

����&��"��������'��'&������<9I�>�3��;��B>:�H�I �3�

J�#�%3�+$($+��$� %�3�#��$ $ �����������������#$�%3�5�#�%� %�#%��3���%��#�(�#������������� ���������������������� ������������������$��#��'#� '&)�#�>"�"7"!!!���

�������1����'�

������&�!&�<� ����&��9����-�&:��+��#��%������E���F��#�+��)������������$� ���1��%$+���D�)�#���#��9�1D:�/K �

�''&��'�<��#��5�����#%4E��>F�9!�E�!�L*:E���F�9>�E� ��L*:E��"F�9�����>>�L*:

$��%&��'�<�>����8� �&$ ��

��+<� ����&�;$&'&9 ����&�;$&'&�(�#�G3�$� ���!:

,����'�����!�<�.�3�7��9(:��>���

����&��"����!���

.�#���&��%'#�&� ��%3��-�&�-�%����#�����@1,����#�����$��)����%�%��5 ���� ��5$���������3$+���&�;$&'&&��%'#�&� ��%3��-�(�#���+��&�-��

������� �!����"����4��"��<���#��-$ �%�%�+� -/8<����#��-$ �%�%�+� -$���<����#��-$ �%�%�+� -

���������!����"�������%'#�&� ��%3��-�$%�#�-'+�-��(�#�;�&3����5$���)����+�� ��%�$ ���.&�-���������3$+���&�;$&'&&��%'#�&� ��%3��-�$%� ���#��-$ �%�%�+� -�

�%��&�-��$%�(�#��7%�#$�%�%� %�#%�� ���

��;$&'&�&��%'#�&� ��%3��-�$%�)��$ �-�'%$ ��)$ �#���'�3'��� -�$ �(#��#' ��#$���#�&�-��

>

��� ������������!����"����!��1��"��'�'����'�������'�

�����

�"!������"!� ����"!����!

�"!������"!� ��!

�"!������"!� ��!

��� ������ !�

���� ��������������>�

��� ������������!������>������B��2�������M�����

��� �������

��� ������>������B�

��� �������

2�������M�����

��������������

=������

E>���3�

E>���3�

E>� �

E>��3�

E>� �

E>�� �

E>��N�

E��3�

E>�N�

E!��3�

E��� �

=������1��

!"#���$

!"#�� $

!"�#� $

!"#��$

!%� $

!"�� $

!"��&$

!���$

!"�&$

!'��$

!��� $

.�)���

����&��"��������8

(����$

(��� $

(� $

(���$

��� $

""�� $

""��&$

�#��$

"��&$

'#��$

�#�� $

���$��$ �� ����'#��(��#�8�#��%���������+� %�� ����&3�#��'#����(��#����7��'#�5�#&7'3��(�����3�5�#�&���#���.��� '&)�#��(����#���%���� ��(�#� �#&���&�-��� -�!�(�#�;�&�-��������+� %�� ����&3�#��'#���&��%'#�-����#���� �7&$ '���$ ��#�������� -��5��%�� -�#-�-��$��$� %���#��7%�#$�%�%� %�#%������&��%'#�&� �� �$%��$%�&��%'#�-�5$��$ �������5�#� ����2�(�#��������#����� �����%� %�#�&� '���(�#�('#���#�$ (�#&��$� �!���3�+$($+��$� ��33�$�%����������5�3�5�#�3����� >F����B>F�#����$����'&$-$���

.�)��8

4�9�1�*������

4����"&���!����

��������#&���&�-�

������;�&�-�

>�>

��>

8

!��"

���

�B>

!�>

�"�

�!

�A

��!

B8

���>

A�

���

��B

�8

���"

��>B

8CA

��!�

���

C�8

���

��"

��8�

�� B

��

��� ������������!����"����!��1��"��'�'����'�������'�>'�����&��@

����������"��

���&��1�������������'�������!�������!1�����"�����/8"����>����'�������������'�!�����1������������4 � ��������������@

�������$ ���$&�4������""F�%�����-�#��-$ �%����#�����@1,������ ���3�5�#�%��3�+#�%%�%���#�'�������%� %�#6%��'��7#� ���%5$�+��3�$ ����--�>�&%��2�(�#��������#����� ��%� %�#�&� '���(�#�%5$�+���3�$ ��$ (�#&��$� �

.�)��B

4�9�1�*������

����������"�������������������>�@

��������#&���&�-�

������;�&�-�

����������"�����4 � ��������������>�@

��������#&���&�-�

������;�&�-�

����������"����� � ��������������>�@

��������#&���&�-�

������;�&�-�

���(

����

��"#

��"#

��"#

��"#

8

��")

���(

��)

��"�

��)

��"�

��)"

��")

��%

��))

��%

��))

���

��)"

��#

��%#

��#

��%#

�A

"

���

"�"

��##

"�"

��##

B8

"��

"

"�*

"�"

��*

"�"

A�

%�%

"��

%��

"�*

%��

"�*

�8

'�#

%��

'�'

%�#

'�'

%�#

8CA

"%

'��

"%

'�*

"%

'�*

C�8

)(

"��)

)(

"��#

)(

"��#

��8�

#(

%)

#(

%%

#(

%%

J�7��#$�%�%� %�#%�$ ��%��&�-��9'%$ ��(#���#' ��#$���#:��5$��$ �����#� ���A>��-�&����C B�-�&������%����$ ���$&��$%4��� ��4�"�����)

��� "�4�)�����)

��� ������������!����"����!��1��"��'�'����'�������'�>'�����&��@

�&��1��������1�&�������&����1�����"�����/8"����

�$����7��#$�%���� �� !��%� %�#%���� �7-��-�+#��%$ ��3�5�#�%��3�9 ����+#�%%#� ���%5$�+��3�$ �:

�$����7��#$�%��"!����� ������%� %�#%

�$����7��#$�%��"!����� ������� �%� %�#%

�$ �-�&

B

/8"��� 4��"��"���

�����

")����

)"����

������

�����

(����

������

%����

'����

����������"�'�����

+���������� ������

�$ �-�&

D�5�1�5�#�1���

�$���1�5�#�1���C ��-�&

C�-�&

A��-�&A ��-�&A��-�&A!��-�&A���-�&A>��-�&

(����

)"����

������

"��

(����

")����

"��

'�#��

"%��

��;�-�&

/8"��� 4��"��"���

�����

")����

)"����

������

�����

(����

������

%����

'����

����������"�'�����

+���������� ������

D�51�5�#1���

�$��1�5�#1���

C���-�&

C!�-�&

C��-�&

C��-�&

C ��-�&

��-�&

A ��-�&A��-�&

(����

)"����

������

"��

(����

")����

"��

'�#��

"%��

C��-�&

C �-�&

C��-�&

��-�&

A ��-�&A��-�&A!��-�&A���-�&

�"!���� � �"!���� � ��;�-�&

/8"��� 4��"��"���

�����

(����)"����%����

(����

")����������'�#��

A���-�&A>��-�&A���-�&

����������"�'�����

+���������� ������

�$ �-�&

��;�-�&

��� ������������!����"����!��1��"��'�'����'�������'�>'�����&��@

�$�����������#$�%�%� %�#%����� �7-�-�+#��%$ ��3�5�#�%��3�9 ����+#�%%�#� ��%5$�+��3�$ �:

�$����������#$�%�%� %�#%����� �7-�-�+#��%$ ��3�5�#�%��3

/8"��� 4��"��"���

"#����

"�����

%#����

%�#��

����������"�'�����

+���������� ������

�$ �-�&

"#����

)�����

#�����

'�'��

��-�

��-�

��-�

��-�

��;�-�&

/8"��� 4��"��"���

"#����

"�����

������

%�'��

'�'��

����������"�'�����

+���������� ������

�$ �-�&

"#����

)�����

"��

'�'��

"%�#��

��-�

��-�

��-�

��-�

>�-�

��;�-�&

��� ������������!����"����!��1��"��'�'����'�������'�>'�����&��@

�����"����1&�'�����

�''�����)�2�������<��$���#���#-?��%��#�%�(�?���&� '��� -�3#��#�&&�)���

=���<�O�#�%�����&���#��91�5�#�#�(�#� +�+��$)#���#�$%�%5$�+��-��((�-'#$ ��8�#�$ �:�

,��<�*��$)#���%�����&���#�'%$ �$ ��# ���93�5�#�#�(�#� +��+��$)#���#:�#��;��# ���%�'#+���2�(�#� +��+��(�+��#�%����)���(#�&� F���� >�F��$ �� F�$ +#�&� �%�

$��%&��'�<�� ��#�-�(#�P'� +��#� ��$%�'%�-����$ ��#3����������+��$)#��$� (�+��#%���)���

+����4� �?�8����"""�"�@�8��%����)��$ � 7?�8�%��3%�

,��1�'���<����%�����+��$)#��$� (�+��#�(�#�����&���#��2� ��4� F��� >�F��$ �$ +#�&� �%��(���� F�

+�����*�4��$%3���%�����%'++�%%$��&��%'#�&� �%�#����$������������%�-$%3����-����'��

611���<�����5%�3�5�#�&��%'#�&� �%���)���((%���)��A ���-�����C ���-��%����)���$ ����� 7-��$ +#�&� �%����+�&3� %����(�#��;��# �����%%��#���$ �

��*����'���<����#��'3���� ��$ %�#'&� �%����%��$������%����#�+����&� '�

��"��<�����+��)���' $�%��(��$���#����%��#�-�&�$ ��)%��'���3�5�#Q�#�3�#+� ���#�-��(�#�#����$��&��%'#�&� �%�

$�����>�*�������@<�����+��)���(#�& ���� �����'��7���#��$ ��3#��$-�%�'��&��$+� �$%��+�&3� %��$� �

0&��'�'��<��'���+�+������'�%�)��5�� ���� F����""�"""F��$ �$ +#�&� �%��(���� F��+� �)��� ��#�-����-$%3�����3��?�3�5�#�#�3#�%� ���$� ��(&��%'#�-�3�5�#��.���(����5$ ��P'��$� �$%�'%�-����+��+'��������-$%3����-�3��?�3�5�#����'�4�3��?3�5�#�H�&��%'#�-�3�5�#�-'���+�+���

������'����)���<�����+�%�+���(�+��#��#%'%�(#�P'� +����)��%�+�##�%3� -$ ����%3�+$($�-�%� %�#%�9�������#$�%�� ��:�

(�"���<��$���� -���5��$&$�%�+� �)��%��$ �����#� ���A >��-�&����C!��-�&��$ ���� 7-�&�$ +#�&� �%�

��������1�&��*��&��<�-�&�&�-���#���((��3�5�#�#�(�#� +���((��-'���+�+����((��((%����((��(#�P'� +��>����8���/.G���#�����(#���#' ���/.G�#� ���9(�#�7��#$�%�%� %�#%:�

0��!���<�����+��)���%$ ����� -�%3�$�%+#�� �(�#&��%��#�����$��)�����P'�%$7� �����-$%3����$%����$��)���(�#�3��?$ �&��%'#�&� �%��.���-'��7+�� ���3�5�#&���#�+� ��%$&'��� ��'%���-$%3����� ��5��+� ($�'#��$� %��(�����������������7����7��� -�#����$���

3�������!�'�1�'������

0�"�������.���(����5$ ��-$&� %$� %��;+�'-��(#� �� -�#��#�3#��#'%$� %4 ���&&���;����>�&&���;�!���!�&&��9��>�$ �;�!�>�$ �;� !�B�$ :

������

��� �<�����?��9�����):� ����B�"�?��9 B���):�%�$33$ ������<��� �?��9"����):� ��������?��9 B���):�%�$33$ �

+���!����'����'����+�'������&�!&��<�� ��������� 7������ 7?���'�3'��$&3�-� +�����*+� �+��#����� "��#�+�#-�#��'�3'�%�#��-�-$+���-����+�� ������ -+�� �����+�"�����!&���&�!&�<���..D����$+������$%��'�3'��5�� �����&��%'#�&� ��;+��-%���3#�-���#&$ �-��$&$����..D$ 3'�%��#��3#��$-�-����$ $�$����8�#��� -+��$)#��$� �+�+��%��2R7�>�%�#$�%�%�$��-�-&�-'��#�S�+?��%%�&)���+� �+��#��..DG'�3'�4��$���H�������&�;Q���5�H�����&�;�..D5�!&�<��$���H�!�>���&$ ��>���&�;Q���5�H ���&�;��A��!���&$ �3�5�<�����5%�+�&&' $+��$� �5$���� �;��# ���+� �#����#�+��8B8��88<�����5%�+�&&' $+��$� 5$���� ��;��# ���2�7!���+� �#����#������3�'��"�3�%$�$� ��7%')&$ $��'#�+� �+��#�3��&��<��$ -$ ��3�%����++�3�%��7&&3�'���#�)�#�75$#��+� �+�$� �

(���!����5�!&�*�����������<��>���������*��'��&��$+�%���+�$� �5�!&�1��%&��'������<�>����������8��������%&���"���<�33#�;$&������>����9 ���:

"

��� ������������!����"����!��1��"��'�'����'�������'�>'�����&��@

�������6!��������!���������'����'�������'��

.���(����5$ ��$ (�#&��$� �-�%+#$)�%+��#�+��#$%�$+�3�#(�#&� +��)�%�-�������&3�#��'#���(�>�L*�' ��%%�����#5$%� ���-�.�!�'���!���������"�<�'3����!�>��'#%�5$���D���)�+?�$����� Q�'3���>�>���'#%�5$���D���)�+?�$�����((9��� ���3�5�#�&���#:�,�������"�<���'#%����+��#���('���(#�&�� ��&3���%����Q�>��&$ '��%+��#�$ ��� �)��%� ���'#��(��3�#��$� 5$���D���)�+?�$����� Q�!>�&$ '��%+��#�$ ��� �)��%� 7�#��3�#��$� �5$��D���)�+?�$�����((��1�5�#�&���#�$%�3�#��$� ���5�$�%��+��#�$ �����*�'���1��9���B�F��(�$ $�$���+�3�+$�����>�L*:<��>��+��#���-$%+��#���+�+��%,��"�����<��$+?���&�������-#$-�������<� �?�

�*����"�����'����'�������'�

3������'���������<�*�&3�$�%�5$������#�P'$#�&� �%��(�������*��$#�+�$���"�!!����*��.�$%�$ +�'-�%�@� �#$+,&&' $������ -�#-����>���7 4� ""�� -2�-$���-�, ��#(�#� +����� -�#-���>>� 4� "" �*,�12 4 ""���@#�'3� �7*��%%���

6!���������*����"���

.�"!����&��<��L*����>>�L*��/�"&"�&"�����<�">F�������L*9 � 7+� -� %$ �:�����"&"�&"�����<� >F�������L*9 � 7+� -� %$ �:���/�"&"�����&��<!����&���#%9"����(���:�

�������'���������

���������"!����&��<A��L*����CB��L*�4����!�������"�/�"&"�&"�����<"�F�����>�L*�9 � 7+� -� %$ �:�4����!�������"�/�"&"�����&��< >���&���#%�9>������(���:�

��1���

*� (�#&%��������(����5$ ��3#�-'+�%3�+$($+��$� %44A������<� ""!�,�*� � �7 4� ""�C� �*���*������ � �7 4� ""!4A� 8C��<� ""��,�*��>7 4� ""!*��%%� �D�5����������$#�+�$��B�!���*

+�"���!�����""���

5����1�'�<�@�,��$ ��#(�+���3�#���%���,����������2�7!�� -�2�7�%�#$���$ ��#(�+��%'33�$�-��%�%�� -�#-�,�""�������&���<��*1,�%�� -�#-$ ��#(�+��+�&&� -%���!���� -��!B�+�-��+�&3��$)���9��� ���� ��:Q��!��+�-��+�&3��$)���9��� "��� ��:�

3�5�'�"!���)�����<��� ���� ��.���.���D���D�����2 ��2D ��11 ���* ���. ��*��

�������<�D$��$'&�3���+�#)� &� �(��'#$-����33#�;$&�����$(��$&��>���#%����>�L*

��*��#�+��#$%�$+%�-�%+#$)��3#�-'+��3�#(�#&� +�������$%�'%�('��$ ������33�$+��$� ��(�����3#�-'+���)'��$%� ���+���#�-�)������3#�-'+��5�##� ���

��� ������������!����"��������������1��"�����

�����"�����

��� �<��$ ���7+�� ����1����#$�%3�5�#�&���#�����<��'��7+�� ����1����#$�%3�5�#�&���#

����������'�&����������'�!����"���������������'�)��<���� �����%�� � �>7&���#�9>7(�:�%� %�#�+�)������� "����%�5�� �>7&���#�9>7(�:�%� %�#�+�)��%������'���<�G ����7&���#�9B�>7(�:�+�)���1�5�#�3�'��&��+��%�-�%�$ ��$� #�P'$#�&� �%�0�'&"��������<����#-�+�3��� -�*���#%$� ��(������ ��$%���� �'����/%�#6%@'$-��� -�1#��#�&&$ ��@'$-��$%3#��$-�-�5$��������1��3�5�#�&���#��%%�� -�#-����%���+�$� �+� �)��&�-����-������������#-�+�3����������<, +�'-�-�5$�����+���1���#$�%�3�5�#�&���# �$%���%�� -�#-� 7&� ���#��'# 7��7��$�� ��5�##� ���� -%�#�$+��3�� ����%���+�$� �+� �)��&�-�����;�� -�����$ $�$���5�##� ���� -�%�#�$+�3�� ����!����#%�

�����6!�������/�����<���$ %�3�5�#�� -$ ��# ���#�+��#���)���)����#�

,����'����6!�������/����8<�1�#������#��#�3� ��%� %�#�$ 3'��+� �+��#9%:�� -�(#� �3� ���#�(�#� +��+��$)#���#�+� �+��#6!�������/����B<�1�#������#��#3� ���%� %�#�$ 3'��+� �+��#%�� -#��#�3� ���#�(�#� +��+��$)#���#�+� �+��#

,���)��������������6!�������/���AD<����,�O>��+�&3�$� ��+��$)#��$� ���%��-����$ +�'-$ �&��%'#�&� ��' +�#��$ �$�%6!�������/����E<�,�G B�>�+�&3�$� �+��$)#��$� ���%��-����$ +�'-$ �&��%'#�&� ��' +�#��$ �$�%

0�'&"��������6!�������/��6�6<����������#-�+�3�&� '���%���(#�&�%�� -�#-�$ +�'%$� �5$��3�5�#�&���#6!�������/����C<�� ��$%���� �'�����#�$+���� '��6!�������/����A<�� ��$%���� �'���&� '���%���9��#-�+�3��/%�#%�@'$-�� -�1#��#�&&$ ��@'$-�:6!�������/����0<�@�#&� ���+��$8��$� 9��#-�+�3��/%�#%�@'$-��� -�� ��$%�1#��#�&&$ ��@'$-�:6!�������/����<��3� $%����+��$8��$� 9��#-�+�3��/%�#%�@'$-��� -�� ��$%�1#��#�&&$ ��@'$-�:6!�������/����$<�#� +����+��$8��$� 9��#-�+�3��/%�#%�@'$-��� -�� ��$%�1#��#�&&$ ��@'$-�:6!�������/����D<�R�3� �%���+��$8��$� �9��#-�+�3��/%�#%�@'$-��� -� ��$%��1#��#�&&$ ��@'$-�:

,�)���6!�������/�����<��������3�5�#%� %�#�+�)���(#�&�%�� -�#-�$ +�'%$� 5$���3�5�#�&���#��EB��<�1�5�#�%� %�#�� -����� �$%�%�'#+��+�)������ ���� �>�&���#%�9>�(�:��EB��<�1�5�#�%� %�#�� -����� �$%�%�'#+��+�)������ ����!�&���#%�9 ��(�:��EB�,4�1�5�#�%� %�#�� -����� �$%�%�'#+��+�)������ ������ �&���#%�9��(�:��EB�0<�1�5�#�%� %�#�+�)������ ��� >��&���#%�9>��(�:��EB�<�1�5�#�%� %�#�+�)������ ���!��>�&���#%�9 ���(�:��EB�$<�1�5�#�%� %�#�+�)������ ����� &���#%�9���(�:

�''��������6!�������/���� <�2�+?&�' ��?$�9� ��$ %�#'&� �:6!�������/�����<�2�+?&�' ��?$�9�5��$ %�#'&� �%:B��B��<�.#� %$��+�%��(�#����(7#�+?�/�$���$ %�#'&� �%B�����<�T����5�%�(��+�##���3�#��$ ��+�%�B��A��<��++�%%�#��3�'+��8 E�8<��3�#��)����#��3�+?�(�#�����1��3�5�#�&���#

,�"!��"�������%&�!"�����A B�<�2� ���+��$)#���#��#$($�%������++'#�+��� -��$ ��#$����(�����1��%�#$�%�3�5�#�&���#%��G'�3'�%+�##�%3� -$ �����&���#�#��-$ �%��(�!�� ��!��� ���� -�!���N��� -� ��!�� ���!��� - ���&���#��3#��$-�-��*��$)#��$� ' +�#��$ ���$%�E��>F�� �����#� ��%�

���*�'��!�������������2��'# 7��7��$�� ��5�##� ���� -�%�#�$+�3�� �������;�� -%�$ $�$���3�� ����!����#%,���)������B

�#�!����#%���#-�#�!��&� ��%��(�����33#�3#$����+��$)#��$� �3�� �%��5 )���5�+�C�,�����B<���� -�#-�+��$)#��$� �3�� +�C�,��8��B=C��'���)������!���<.����7��#$�%�� -��������#$�%�3�5�#%� %�#%�������� 7&� ���#��'# 7��7��$�� ��5�##� ���� -�%�#�$+��3�� ���#&�#��$ (�#&��$� ��+� ��+����'#���+��%���%�� -�%�#�$+���(($+��

��G ���(�#��1��%�#$�%�3�5�#�&���#�5$���G3�$� ���� U�7�� �$ %�����-����#�G3�$� ���� U�7�� ������!�7&� ���5�##� ���-��%� ����33�����������"�B��)����#��3�+?�!��G3�$� %� ������$��)���$ �����+�' �#$�%�

�������,�!�����������!�'�1�'������

.�)��C)9���� !��+��$)#��$� �(�+��#' +�#��$ ������ &��9��-�&:

$��%&��'�

>����8

�����8

���@�8

���@�8

����@�8

����@�8

����@�8

����@�8

���@�8

���@�8

����@�8

����@�8

B���@�8

����@�8

����@�8

����@�8

����@�8

����@�8

F�'��������G>H@

2�(�#� +�

��

��

��

��

��

��

��

��

��

��

��

��

!��

!��

!��

!��

!��

,���)������1�'���>,$@�����1��'����'��11�'����>+��@

������������ ����������� �� ���� ������������������������������ ���������������������� ����������������������������������������������� �������������������������������� ��� ������������������������������ ����������������!�"�#����������������������������������������������$�������%� ��� ��������������� ������������������������&'(������������������� ���������������%�������������������������������������)������ ��� ����%��������������$�����������*��+� ����*�,-.�+������� ����������� ��� ����������� ��� ����

/���� ��� ���� ����!/�#��������������01/�� ���$������������$������2�01/�3���4�/�.��5�/�

(�6������ �����������������%������������������������,� ��������&77�89��������� ����������,��������&77�:9����������������� ���������������������� ������������������������������ ��� �����������0".�9�7������������� ������������������������� ��������� ������ �����������6������� ���������������;,- ���� ������������� ����$�(�+��#��(��

.�)��C�9���� ��+��$)#��$� �(�+��#' +�#��$ ������ &��9��-�&:

$��%&��'�

����8

!����8

>����8

�����8

���@�8

���@�8

����@�8

����@�8

����@�8

����@�8

���@�8

���@�8

����@�8

����@�8

����@�8

F�'��������G>H@

��

��

2�(�#� +�

��

��

��

��

��

��

��

��

��

��

��

��

����������"�'�����<���!������"�>IE���"��J8���"@.�)���

�����

���8�

���B�

��/�"&"��+

J ����8����I!����84� �!����8����I�@�84� � >�@�8����I��@�84� � B��@�8����I �@�84 � �@�8����I ��@�84� �B

>����8����I �����84� � �����8����I��@�84� � "��@�8����I ��@�84� � ��@�8������>�@�84� ��

��/�"&"��+

����8�A� ��@�8

>����8�A���>�@�8

��/�"&"!����

���&��9C!�-�&:

���&��9C!�-�&:

,����'�����!�

.�3�7��9&:

�1*7!�>�&&�9&:

J��33�$�%����%� %�#%�5$���%�#$���3#�($;�/��!�����#��#����#

�������,�!�����������!�'�1�'������>'�����&��@

3������

0�"�������<

��� �4 !��&&�D�;�!��&&���;�!��&&��

��� !�4 ��&&�D�;�!��&&���;�!��&&��

������<�� ��?��9�����):�

.���+��#��$ �$��&����%��5%�������3$+��' +�#��$ ���$ �&�?$ ����#����$���3�5�#&��%'#�&� ���'%$ ������%�&��3�5�#&���#�+�� ���� -�����%�&��3�5�#%� %�#�����)��$ �����#�(�#� +��� -����&��%'#�-����'�%���;�&3�����$��'%�#���%��#����$�����$ �9�&3�$($�#�&��%'#�&� �:��;�&3�����$��'%�#���%���#����$�����%%9$ %�#�$� ���%%�&��%'#�&� �:��.�$%�+��#��%%'&�%� ���$�$)���+�� ���$ �(#�P'� +�� -�&$%&��+���++'#�5�� ��#� %$�$� $ �(#�&�����3�5�#�������'%�-��%����#�(�#� +���������3�5�#�������)�$ �&��%'#�-�

/�"!���<1�H� �91:� ��;� �&�1�H� ���� ��;� �&�1�H�!�"��&�!F�;�!�"��&��H� "���N�

/�"!���<1�H� ��91:� ��; �&�1�H� ��7!>� ��;� �&�1�H�! �� �!F�;�! �� ��H�"���� �

5��#��1�H�3�5�#�$ �����%�� -�91:�H�3�5�#�$ �-�&

��������������.�)��A

�����

���3����� ��&�9AB��-�&����C ��-�&:

��&����� ���&�9C ��-�&����C��-�&:

.�"!����&��>8CK,LCK,@

E!F

E��>F

.�"!����&��>�K,��CCK,@

EBF

E �F

!

$��&�����2����$���&�-��3�5�#�&��%'#�&� ���$ ��#$���5$����1����#$�%�3�5�#�&���#��7��#$�%�*��3�5�#%� %�#����>�L*�E�>�L*�9��3$+��:

AB�������������������������������������������A!>�����������������������������A������������A ������������������C ����������C�

E�F

C!F�

C�

C �

C�

A�

A!>

AB�

1�5�#�D�����/%�-��%�2�(�#� +��9-�&:

1�5�#�D�������$ �

����

%'#�-�9-�&:

�3�+$($+��$� %��#�����$-�G�DT��(��#�3#�3�#+��$)#��$� ��(�����3�5�#�&���#�� -��33��(�#�*��%$� ��%�' ��%%�����#5$%��%����-��3�+$($+��$� %��33������#�������&3�#��'#�#� �����L*����>>�L*�' ��%%�����#5$%�%����-��� -�%3�+$($+��$� %�P'���-����#������&3�#��'#��#� ���>�L*�E ��L*�+� (�#&��������%�� -�#-�� �$#� &� �����%��+� -$�$� %��%�-�($ �-�$ �.,���,��,�7"B7��� -�.,���,��,�7"�7��V W�

��������*�����!�����������!�'�1�'������

.�)��E

:���!����!���

(��!����!���

M�N�&11�/�������

A �����C��-�&

A������A ��-�&

M�N�&11�/�������

C�����C���-�&

A!�����C��-�&

M:N�&11�/�������

�����C!��-�&

A>�������-�&

.����7��#$�%��"!���3�5�#�%� %�#%������5��$ -�3� -� ��&��%'#�&� ��3�����%%��5 4

��/�"&"!����

C>�-�&�9!��&�:����#���Q

C!!�-�&�3��?�9��:

9I� ��N%�+:

C>�-�&�9!��&�:����#���Q

C!!�-�&�3��?�9��:

9I� ��N%�+:

C>�-�&�9!��&�:����#���Q

C!!�-�&�3��?�9��:9I� ��N%�+:

�����!>�L*4�!�������

!>����>>�L*4�>������

I���@�84�>�����3?

X���@�84� >���3?

>�����N��3�#�3'�%�

�����!>�L*4�!�������

!>����>>�L*4�>������

I���@�84�>�����3?

X���@�84� >���3?

>�����N��3�#�3'�%�

!� �������

�����3?

�����N��3�#�3'�%�

!� �������

�����3?

�����N��3�#�3'�%�

,����'�����!�

.�3�7��9&:

.�3�7��9&:

.�3�7��9&:

.�3�7��9&:

.�3�7��9&:

.�3�7��9&:

.�3�7��9&:

�����

�"!���

�"!� �

�"!���

�"!���

�"!� �

�"!���

�"!� �

$��%&��'������

����8���� ��@�8

����8������@�8

"�?�8������@�8

����8���� ��@�8

����8������@�8

����8���� ��@�8

����8������@�8

��/�"&"��+>8CK,L��K,@

����8����!����84� � >

!����8�����@�84� � !

�@�8���� ��@�84� � "

��@�8���� ��@�84� �

��@�8���� ��@�84� ��

����8����!��@�84� � >

!����8�����@�84� � !

�@�8���� ��@�84� � "

"�?�8�����@�84� � !

�@�8������@�84� � "

����8������@�84� �

����� ���@�84� � B

������ ��@�84� ��

����8������@�84� �

����8������@�84� � >

����� ���@�84� �>

������ ��@�84� ��

����8������@�84� � >

��/�"&"��+>���CCK,@

����8����!����84� �

!����8�����@�84� � >

�@�8���� ��@�84� ��

��@�8���� ��@�84� �!

��@�8���� ��@�84� �B

����8����!����84� �

!����8�����@�84� � >

�@�8���� ��@�84� ��

"�?�8�����@�84� � >

�@�8������@�84� ��

����8������@�84� � �

����� ���@�84� � �

������ ��@�84� �>

����8������@�84� � �

����8������@�84� � B

����� ���@�84� ��

������ ��@�84� �"

����8������@�84� � B

IB���"��J����"��������"�'������������

.�)��

IC���"��JB���"��������"�'������������

IA���"��J8���"��������"�'������������

>

��������*�����!�����������!�'�1�'������>'�����&��@

+�������$,��"��-./����"��0./�1)#�23!"��234�5���6*%����� 7�6*%�"���� ����

��� ������������������������������������������������������� ����������� ��������� ���������� ��������� ����

� �

� �

� �

���

���

���

��

#�P'� +��@�8

��2

+�������$,��*�8./����'�0./�1)#�23!"��234�5���6*%������ ���� �

� >

��>

� ����� ����������� ����������������!����������� � ����> ����������

��2

#�P'� +��@�8

��������*�����!�����������!�'�1�'������>'�����&��@

+�������$,��"��-./����"��0./�1)#�23!"��234�5���6*%��9�� 7�6*%�"9��� ����

��������������������������������������������������������������������������� ������������� �������������� ������������� ������������ �

��

� >

� �

��>

���

#�P'� +��@�8

��2

+�������$,��"��-./����"��0./�1)#�23!"��234�5���6*%��.�� 7�6*%�".��� ����

��������������������������������������������������������������������������� ������������� �������������� ������������� ������������ �

� >

��>

#�P'� +��@�8

��2

B

��������*�����!�����������!�'�1�'������>'�����&��@

��������������G

+������6*%���:�"�:����������� ����������)#�23���5����/����� 7����;����� ���������������7�����<���� ��< ������ ��

7!� 7� 7 7 � 7 � 7 � 7� 7 � � � � �

1�5�#�9-�&:

��>

���

��!

��

��

7��

7��

7��!

7���

7��>

F��##�#

����������

A!�����A��-�&

A�����A ��-�&

A �������-�&

�����C ��-�&

C �����C��-�&

����&��"���&�'��������

E��"F

E���F

E���>F

E��>>F

E���>F

.�)���

������

�"!������"!� ����"!���

�"!������"!� �

�"!������"!� �

�����

A������A ��-�&

A �������-�&

�����C��-�&

A!�����C��-�&

C�����C!��-�&

C!�����C���-�&

A>�������-�&

�����C ��-�&

C �����C!��-�&

(��������>8CK,L��K,@

E!��F

E�>F

E��F

E!�>F

E!��F

E�>F

E���F

E!�>F

E!��F

(��������>�K,��CCK,@

E!�>F

E!��F

E�>F

E���F

E!�>F

E!��F

E>��F

E���F

E!�>F

J�(��#�8�#��� -�+��$)#��$� �����&)$� ��� �$#� &� ����+� -$�$� %

��������*�����!�����������!�'�1�'������>'�����&��@

+������6*%��9:�"9�������� ����������)#�23���5����/����� 7����;����� ���������������7�����<���� ��< ������ ��

���

���

���

��

7��

7���

7���

7���

7

1�5�#�9-�&:

F��##�#

7 �����������7>���������������������������>������������ ����������� >������������������������>����������!�

����������

A�������-�&

�����C ��-�&

C �����C��-�&

C�����C��-�&

����&��"���&�'��������

E����>F

E���>>F

E����>F

E���! F

���

���

���

��

7��

7���

7���

7���

7

1�5�#�9-�&:

F��##�#

7 �����������7>���������������������������>������������ ����������� >������������������������>����������!�

+������6*%��.:�".�������� ����������)#�23���5����/����� 7����;����� ���������������7�����<���� ��< ������ ��

����������

A�����A��-�&

A�����A ��-�&

A �������-�&

�����C ��-�&

C �����C��-�&

C�����C��-�&

����&��"���&�'��������

E���"F

E����F

E����>F

E���>>F

E����>F

E���! F

"

��������*�����!�����������!�'�1�'������>'�����&��@

11�'���1'���������"!����&�������������

,(���&3�#��'#��+�� ��%�� -���'�+���%� ������#�7+��$)#��������%� %�#���--����(����5$ ��3�5�#��$ ��#$����##�#��������$ ��#$���%3�+%�$ �.�)���"4

$���"���'����������"!����&��.�3$+���&�;$&'&��--$�$� ���3�5�#�$ ��#$����##�#�H�!��"#=:239���$-��(��#�8�#�$ ������%� %�#:

$�������'����������"!����&��

������

�"!������"!� ����"!���

�"!������"!� �

�"!������"!� �

�����

A������A ��-�&A �������-�&�����C��-�&A!�����C��-�&C�����C!��-�&C!�����C���-�&A>�������-�&�����C ��-�&C �����!��-�&

����������!������������������>8CK,L��K,@

E �>FE �>FE �>FE �>FE �>FE �>FE �>FE �>FE �>F

����������!������������������>���CCK,@

E��FE�>FE��FE��FE�>FE��FE��FE�>FE��F

.�)����

$��&��89�2����$���&�-��3�5�#�&��%'#�&� ���$ ��#$���5$���� ��1��%�#$�%�3�5�#�&���#�����>�L*E ��L*�9��3$+��:

EF E F

EFE F

�C��-�&

7 ��-�&

���%'#�-1�5�#

���-�& 7!��-�&��7>��-�&

C��-�&����-�&

�C���-�&��C!��-�&

C��-�&

C���-�&

C!��-�&

A ��-�&

C��-�&

��-�&

�7���-�&

�7!��-�&

�7>��-�&

$�'#���%��5%�������3$+���' +�#��$ ��$ �&�?$ ����#����$���3�5�#�&��%'#�&� ��'%$ ������%�&��3�5�#�&���#�+�� ��� -�%�&��3�5�#�%� %�#�����)��$ ����#�(�#� +��� -�����&��%'#�-����'�%��� -�%%'&�%������ ���$�$)���+�� ���$ (#�P'� +��� -�&$%&��+���##�#��++'#5�� ��#� %$�$� $ ��(#�&�����3�5�#������'%�-��%�����#�(�#� +���������3�5�#������)�$ ��&��%'#�-�

��������*�����!�����������!�'�1�'������>'�����&��@

����'�!��������.����"!���3�5�#�%� %�#%�������5��3���%�%�%��5 �$ �.�)���B��.���3�5�#�&���#�'��&��$+�����%���+�%�����3#�3�#�3�5�#������3�����.�����$-�' �+�%%�#�%5$�+�$ ��5�� �����3�5�#�������$%� ��#����%5$�+��3�$ ���%5$�+�$ ��3�$ ���%��#�%$%���%�)�� ��--�-�

/�"!�������B��M�N�&11�/�������<

��%��#�%$%�+�'%�%�������5�3�5�#�3������#�&�$ �%���+��-�' �$���33#�;$&�����A"�>�-�&��%�����3�5�#�������$%�$ +#��%�-��)������$%�3�5�#�������$���3�5�#�3���5$���)��%���+��-��.����$���3�5�#�3���5$���#�&�$ �%���+��-�' �$���33#�;$&�����A ��>�-�&�$%�#��+��-��%�����%$� ��������-�+#��%�%������5���$%�3�5�#��������53�5�#�3����5$���)��%���+��-�

����'����!�������������<�+������!��#=�1�!���)�794����'����!��������������<���#�79������

�B���������&11�/

,����������

D�5�#�3�5�#�3���9 >F����B>F�2�:D�5�#�3�5�#�3���9B>F����">F�2�:�$���3�5�#�3���9 >F����B>F�2�:�$���3�5�#�3���9B>F����">F�2�:

D�5�#�3�5�#�3���9 >F����B>F�2�:D�5�#�3�5�#�3���9B>F����">F�2�:�$���3�5�#�3���9 >F����B>F�2�:�$���3�5�#�3���9B>F����">F�2�:

D�5�#�3�5�#�3���9 >F����B>F�2�:D�5�#�3�5�#�3���9B>F����">F�2�:�$���3�5�#�3���9 >F����B>F�2�:�$���3�5�#�3���9B>F����">F�2�:

=������

>���3�

>���3�

>��� �

>��� �

>��� �

>��� �

>���N�

>���N�

>� �

>� �

>�N�

>�N�

=������1�8

>��3�

������3�

>�� �

!���� �

>�� �

��N�

>��N�

!����&�

�>� �

���N�

�>�N�

!��&�

����&��"��������B

B���3�

B���3�

>��� �

>��� �

B��� �

B��� �

>���N�

>���N�

B� �

B� �

>�N�

>�N�

��2��$%������))#��$��$� �(�#�#����$����'&$-$������$��$ � ���'#��(��#�8�#��%���������+� %�� ����&3�#��'#����(��#����7��'#�5�#&7'3��(�����3�5�#�&���#�5$���3�5�#�������%� %�#�+� �+��-�!��.��� '&)�#��(����#���%���� ��(�#� �#&���&�-��� -�!�(�#�;�&�-��������+� %�� ����&3�#��'#���&��%'#�-����#��������� ��&$ '���$ ��#����� -��5��%�� -�#-�-��$��$� %�

.�)����

��������*�����!�����������!�'�1�'������>'�����&��@

,���)������1�'���>,$@�����1��'����'��11�'����>+��@

*��$)#��$� �(�+��#�� -�#�(��+�$� +��(($+$� ��-�����#��3#��$-�-���(#�P'� +��$ ��#���%�� ���-����%����$ +�'-�-�5$�������3�5�#�%� %�#��.�$%-����$%�' $P'�������+��%� %�#��,(���'�����&�#����� �� ��%� %�#��&��+�����%�#$��� '&)�#�� �����*�#�$($+����(�*��$)#��$� �9*G*:�5$�������%�#$�� '&)�#�� �����3�5�#�%� %�#���'��#�'%$ ���.���*�+�##�+�%�(�#�����(#�P'� +�#�%3� %���(�����%� %�#��.����1��%�#$�%3�5�#�&���#��'��&��$+�����#��-%�����*-����%��#�-�$ �����%� %�#�� -�'%�%�$����&�?������+�##�+�$� %�

2�(��+�$� �+��(($+$� ��92��:�#�����%���������2��++�#-$ ���������(����5$ �(�#&'��4��2�H�9 �C�2��:�9 �7�2��:

��;$&'&�' +�#��$ �$�%��(�����*�-����#���$%��-�$ ���)��%� ��� -� )��(�#���+�$ -$�$-'���&��%'#�&� ��3����9�$���3�5�#� -���5�3�5�#���%�%��5 �$ �.�)���B:��.��' +�#��$ ���� ���%$%�(�#�����+��$)#��$� �(�����%� %�#%�5�%�-� ��$ ��++�#-� +�5$�������,�G�@'$-���.���' +�#��$ ���-���#�3�#��-�� �����+��$)#��$� �+�#�$($+����$%�����;3� -�-�' +�#��$ ���5$�����">F+� ($-� +��������� -���+���#���(�+��#��(��

3������

0�"�������<� !��&&�D�;�!��&&���;!��&&��

������<��� ��?��9�����)%:

+�1����'��<V W�.,��$%�����.���+�&&' $+��$� %�, -'%�#���%%�+$��$� Q��,��$%��������+�#� $+�, -'%�#$�%��%%�+$��$� ��.,���,��,�7"B7��$%�����#�+�&&� -�-&$ $&'&�3�#(�#&� +��%�� -�#-%�(�#�)�%��%���$� %�%'33�#�$ ��-'��&�-��5$-�)� -�%3#��-�%3�+�#'&�+���'��#�&�)$���%���$� %��.,���,��,�7"�7��$%�����#�+�&&� -�-�&$ $&'&�3�#(�#&� +��%�� -�#-%�(�#�-'��7&�-��5$-�)� -�%3#��-�%3�+�#'&�+���'��#�&�)$���%���$� %�

.�)���8)9�*��$)#��$� �(�+��#�' +�#��$ �$�%�9�$���3�5�#�3���:

$��%&��'�

����8����!����8

!����8����>�����89�"!���4�"�?�8����>�����8:

>�����8���� ��@�8

��@�8������@�8

��@�8���� ��@�8

��@�8���� ��@�8

F�'��������>H@>8CK,E��K,@

E�� F

E ��F

E�!F

E ��F

E �"F

E���F

F�'��������>H@>�K��CCK,@

E���F

E!��F

E���F

E� F

E�!F

E!�!F

$��%&��'�

����8����!����8

!����8����>�����89�"!���4�"�?�8����>�����8:

>�����8���� ��@�8

��@�8������@�8

��@�8���� ��@�8

��@�8���� ��@�8

F�'��������>H@>8CK,E��K,@

E� ��F

E ��F

E ��F

E �BF

E ��F

E����F

F�'��������>H@>�K��CCK,@

E�F

E��F

E�>F

E��F

E��F

E�F

.�)���8�9�*��$)#��$� �(�+��#�' +�#��$ �$�%�9��5�3�5�#�3���:

� �������������������"�'�&!��!�����������!�'�1�'������

.����������#$�%�%� %�#%�3#��$-��;�#��#-$ �#���++'#�+���%��)$�$���� -���2���#���5$-��#� ����(�(#�P'� +$�%�9 ��?�8���� ��@�8:�� -�3�5�#������%�AB�-�&����C���-�&�

,���)������1�'���&�'����������

.�)���B9�.�3$+���#����%'&��(�%P'�#�%�9#%%:�' +�#��$ ���� �����+��$)#��$� �(�+��#�-����3#$ ��-�� �����3�5�#%� %�#

$��%>�:?@

�� ��! ! �!�>� ��!�� ����������

� 8�

�����B��B�����������B��������������"

� 8�

�> �� �� �> �> �> �� �� �� �> �> �>

� B�

�! � � � � � � � � � �A

$��%>3:?@

��>�!�!!!��>!B���������>�

+ � A�

����>� � ��AAAAA

O � A�

AAA�������"!�"!�"!�"��">�!

+ � A0

!��!�!��!��!��!��!��AAAAA

� C0

A�"J!�J!�!JAAAAAAAA

O � A0

AAA����������">� >�>>����

� C�

A!� J!�J!�BJAAAAAAAA

� E�

� ��!�!�!���>���"!� �"!��

� E0

��!�������B!��!�!�>!��!��>��

$��%>3:?@

��� � � � ���>

� ��

��B��B�����" �� �� � � � �>AA

� ��

�� �� �> �> �> �� �� �� �B �"AA

� �:

�����������" �� �� � � � �>AA

� C0

�� �� �B �B �B �" �"��� ��B��

� �0

�����������" �� � � � �> �BAA

� C�

�� �� �B �B �B �" �"����� ����

� E�

�� �� �� �> �> �> �� �� �B �B �"�

� E0

�! �! �� �� �� �> �> �� �B �B �"�

J.��%��' +�#��$ �$�%�� ����33������G3�$� ��!!�

!

� �������������������"�'�&!��!�����������!�'�1�'������>'�����&��@

.�)����

�����

��� �

����

��� �

����

���>�

G3�$�

���>�7�!!

��� �

����

���!�

9B>7��&:

2�����

M�����

������

������

���B�

$��%&��'������

����8���� ��@�8

���?�8�������@�8

����8���� ��@�8

���?�8�������@�8

>����8������>�@�8

��>���8����!!�@�8

����8���� ��@�8

���?�8�������@�8

���?�8�����@�8

��>�@�8�������@�8

!!�@�8����>��@�8

>��@�8����B>�@�8

B>�@�8���� ��@�8

>����8����>��@�8

��/�"&"��+

����8�����@�84� � �

�@�8���� ���@�84� � �

���@�8���� ��@�84� ��

���?�8�����@�84� � �

�@�8�������@�84� � �

����8������@�84� ��

��@�8���� ���@�84� �>

���@�8���� ��@�84� �!�

���?�8�������@�84� ��

>����8���� �����84� � >

�����8�����@�84� � �

�@�8���� ���@�84� � >

���@�8���� ��@�84� ��

��@�8������>�@�84� �>

��>�@�8����!!�@�84� ���

����8����!����84� ���

!����8����>����84� � �

>����8�����@�84� � �

�@�8���� ���@�84� � �

���@�8���� ��@�84� ��

���?�8����!���?�84� ���

!���?�8���� ���84� ��

���8�����@�84� � �

�@�8�������@�84� �!�

���?�8��������?�84� ���

����?�8�����@�84� � �

��>�@�8�������@�84� ���

!!�@�8����>��@�84� �>�

>��@�8����B>�@�84� ���

B>�@�8���� ��@�84� ���

>����8���� �����84� � >

�����8�����@�84� � �

�@�8���� ���@�84� � >

���@�8���� ��@�84� ��

��@�8������>�@�84� �>

��>�@�8�������@�84� �!�

���@�8����>��@�84� �>�

���������������

C!>�-�&����C����-�&4�9E�F:

C!>�-�&����C����-�&4�9E�F:

C>�-�&����C�!>�-�&4�9E>F:

C>�-�&����C�!>�-�&4�9E>F:

C ��-�&����C���-�&4�9E!F:

C ��-�&����C���-�&4�9E!F:

C ��-�&����C���-�&4�9E!F:

C ��-�&����C���-�&4�9E!F:

C ��-�&����C���-�&4�9E!F:

C ��-�&����C���-�&4�9E!F:

C ��-�&����C���-�&4�9E!F:

C ��-�&����C���-�&4�9EF:

A!��-�&����C� ��-�&4�9E F:

9EF:

C ��-�&����C���-�&4�9E!F:

��/�"&"!����

��L*����!>��L*4�!�������

!>�L*����>>��L*4�>������

��� ����>���@�84�>�����3?

>������ ��@�84� >���3?

>�����N%�3�#�3'�%�

��L*����!>��L*4�!�������

!>�L*����>>��L*4�>������

��� ����>���@�84�>�����3?

>������ ��@�84� >���3?

>�����N%�3�#�3'�%�

!�>�������� �����3?

�����N%�3�#�3'�%�

!�>�������� �����3?

�����N%�3�#�3'�%�

!���&������� >���3?

!����N%�3�#�3'�%�

!���&������� >���3?

!����N%�3�#�3'�%�

!���&������� >���3?

!����N%�3�#�3'�%�

!���&������� >���3?

!����N%�3�#�3'�%�

!���&������� ����3?

!���&������� >���3?

!����N%�3�#�3'�%�

!���&������� >���3?

!����N%�3�#�3'�%�

���&������������3?

9 ��N%�3�#�3'�%�����>F

-'���+�+��:

���&������������3?

9 ��N%�3�#�3'�%�����>F

-'���+�+��:

!���&������� >���3?

!����N%�3�#�3'�%�

,����'�����!�

.�3�7�9&:

.�3�7�9&:

.�3�7�9&:

.�3�7�9&:

�1*7!�>&&9&:

�1*7!�>&&9&:

.�3�7��9&:

.�3�7��9&:

.�3�7��9&:

9B>7��&:

�����'$-��(�� ��

/@7>""�/

�����'$-��(�� ��

/@7!�!�/

�����'$-��(�� ��

/@7!�>�/

�����'$-��(�� ��

/@7!�B�/

���&&�9&:

������

����?��9 �B>��):

����?��9 �B>��):

���?��9��!���):

���?��9��!���):

���?��9�!���):

���?��9�!���):

���?��9��!���):

���?��9��!���):

���?��9��!���):

����?��9��>!��):

����?��9��>!��):

����?��9��"��):

����?��9��"��):

�� ��?��9����):

������$�$)���-��$��$� ��;+�3��(�#����%��3�5�#�#� ��%� ���-����#�3'�%�%��#����#���� �!���������&�;$&'&����#����3�5�#�91�:�$%��$&$��-�)������� �#���3�#�3'�%��9�:�$ ���N%��++�#-$ �����1��H�!�7������

8C��������������"���8C�>���"��J����"@

����"����������P������"�>IB���"��J8���"@

B����������������P���B�>I����"��JBC��"@

��/�"&"��+���!�������������

� �������������������"�'�&!��!�����������!�'�1�'������>'�����&��@

������$�$)���-��$��$� ��;+�3��(�#����%��3�5�#�#� ��%� ���-����#�3'�%�%��#����#���� �!���������&�;$&'&����#����3�5�#�91�:�$%��$&$��-�)������� �#���3�#�3'�%��9�:�$ ���N%��++�#-$ �����1��H�!�7������!��, +�'-�%� B����!��-������ '���#�(�#�+��$)#��$ �����$ %����-�&��>����8�3�5�#�#�(�#� +���.��� B����$%�(�+��#��%������!��-��E���>�-��������>����8���#�+��)�������,�.����2�I� ��>����>����8�

���������������

A!��-�&����A��-�&4�9E F:

A!��-�&����A��-�&4�9EF:

A!��-�&����A��-�&4�9EF:

A!��-�&����A��-�&4�9EF:

A!��-�&����A>�-�&4�9E!F:

A>�-�&����A��-�&4�9E>F:

A!��-�&����>�-�&4�9E!F:

A>�-�&����A��-�&4�9E>F:

$��%&��'������

����8���� ��@�8

>����8������>�@�8

>����8����!!�@�8

>����8����>��@�8

��>�@�8�������@�8

!!�@�8����>��@�8

�����

��� ��!

���>��!

G3�$�

���>�7�!!

���B��!

2������!

M������!

��/�"&"��+

����8����!����84� ���

!����8������@�84� � >

��@�8���� ��@�84� ��

��@�8���� >�@�84� �!�

>�@�8���� ��@�84� �!>

���>�@�8������ �@�84� � "

�� �@�8������@�84� � >

��@�8���� �@�84� � "

�@�8���� ��@�84� �>

��@�8������>�@�84� �"

��>�@�8����!!�@�84� �!>

���>�@�8������ �@�84� � "

�� �@�8�����@�84� � >

�@�8���� ���@�84� ��

���@�8���� ��@�84� �"

��@�8����!��@�84� �!B

!��@�8�������@�84� ��

���@�8����>��@�84� ��"

��>�@�8�������@�84� ���

!!�@�8����>��@�84� ���

��/�"&"!����

���&������� ���&��3?

���&������� ���&��3?

���&������� ���&��3?

���&������� ���&��3?

����N%�3�#�3'�%�

���&��������#�3?

�����-+�&�;

���&��������#�3?

�����-+�&�;

,����'�����!�

.�3�7��9&:

�1*7!�>&&�9&:

�1*7!�>&&�9&:

���&&�9&:

�����'$-��(�� ��

/@7>""�/

�����'$-��(�� ��

/@7!�!�/

������

�� ��?��9��!B��):

���?��9�!���):

���?��9�!���):

���?��9��!���):

����?��9��>!��):

����?��9��>!��):

4 � �����������"�'�&!��!�����������!�'�1�'������.�����������#$�%�3�5�#�%� %�#%��#��#�3��+$ �������������#$�%���#&�+�'3���#� ��������$��-�%3�+$($+��$� %�� �������������#$�%�+� �)�(�' -�$ ����������� ����������������������� ������������������$��#��'#� '&)�#�>"�"7"!!!���

:�����������*��������������!�����P�>IE���"��I8���"@

���9�������9'�"�1�����"���&!�����@�����������%��$ (�#&��$� �� ����3#�-'+�%�� -��33�$+��$� %���'�%���+��

���9�������9'�"�1���������������'�M'$+?���+���%��� -�'%����'#���%��P'$3&� ��%��'�$� %�5$���+� ($-� +��

���9�������9'�"�1�����!����$�� ��G3� �%$&3�$($�%�����3#�+�%%�(�+� �+�$ ��� -�3#��#�&&$ ���%��%�%��&%�������3�� �$ ��#%-�%$� �����$-����� -�&� '(�+�'#����+�#� $+�3#�-'+�%����$�� ���((�#%�3� �+� �+�$�$���(�#���)#��-�#� ���(�%�%��&7#��-��$ %�#'&� �%���3� $ -'%�#��%�(�5�#���1*7%�� -�#-�,�G� -����)���%'33�#���5�$+���#�+�&)$ �-����&�#����%$���$ ���#�����%��%�%��&�-�����3&� ��

�������"���F!�����

�������0���'�

+�"�*������&)�

G'#�#�3�$#�� -�+��$)#��$� �%�#�$+�%5$���������'#��P'$3&� ��)�+?������'�3�#(�#&$ �� �$?�� �5��5�� �3#�&7$%�-��T�'�5$�������('������'���'���(��'#� ��$�� �� �P'$3&� �� ��#�'��7�'�� $�%� �$(��$&��� T�'#� �P'$3&� �5$���)��%�#�$+�-�)����$�� �7�#�$ �-��+� $+$� %�'%$ ����������%��(�+��#�+��$)#��$� �3#�+�-'#�%���'��&���-#�3�$#�-$�� �%�$+%�� -��� '$ ��3�#�%�T�'�5$��� ��5��%� ����� ���� '�&�%�+� ($-� +��$ ���'#�&��%'#�&� �%�

��$�� ���((�#%���5$-��#� ����(��-7-$�$� ����;3�#�� ��%��� -�&��%'#�7&� ��%�#�$+�%�(�#���'#��P'$3&� ��$ +�'-$ ��$ $�$���%��#�7'3��%%$%�� +�� %$����-'+��$� �� -� �#�$ $ ��� �%5�����%�-�%$� ��%�%��&�$ ���#��$� �� -�3#�S�+��&� ���&� ��

�#�&�#��$ (�#&��$� �� �#�3�$#�� -+��$)#��$� �%�#�$+�%�������

���9�������9'�"�1������"�*������&)�

�#�&�#��$ (�#&��$� �� ���$�� ��.�+� ����$�%63#�-'+�%���33�$+��$� %��#�%�#�$+�%��3���%�+� ��+����'#���+�����$�� ���(($+���.���+�&73������$%��$%����$��)�����4

���9�������9'�"�1����'����'�&�

�������$�/�"���'��*� �-�D��$ ��&�#$+�/ $��-������%

9�BB:��"�7�� �!�>��"�B>��9���:��"7����

������'�1�'�'%�#��$�*�$ ��� ��K� �, -$�R�3� K�#�������%$��$ ��3�#�.�$5� .��$�� -

������"���>����� ��� �"����"!���"! ����� �""� ��9� :�!�>����B�"����� ������������ �����!B>�� ���������B���� ����������

���9�������9'�"���9�������9'�"�1����!����"����

��'�������$%����#�-�&�#?��5 �-�)����'��������,@��, +��/������� -��$+� %�-������$�� ��.�+� ����$�%��, +�+-&�����$%���#��$%��#�-�+�#�$($+��$� �&�#?��(����.���+�&&' $+��$� %�, -'%�#���%%�+$��$� ��/%�-�' -�#�$+� %����$��U�$%����#�-�&�#?��(������$��U��#'&�

1#�-'+��%3�+$($+��$� %�� -�-�%+#$3�$� %$ ���$%�-�+'&� ��%')S�+�����+�� ��5$���'�� ��$+��

&��!�Q����������'%�#$�����$'&�� &�#?$ �� -#� +�

@�#&� �,#��� -,%#���,���������#�� -%�3�$ �5�-� �5$�8�#�� -/ $��-�K$ �-�&G���#��'#�3�� �*�' �#$�%4555���$�� ��+�&�($ -�+� ��+�'%

� �!��B�B >B !�9�:������"!����>�B�� !� >� >!>��9�:� ���>>� ����>�� ��B��JJ�� > �&$ '���B�! ������!!! �"��"����"B7!7"��7>���>��!"���"��������! �9�:���>�B� !��9" :��! �!!�����7����>>��������>!�>!���9�:� ��"B��

2��$%�-4�G+��)�#�������

Y���$�� ��.�+� ����$�%��, +�����1#$ ��-�$ �/����G+��)�#� >�����>"�>7�!��

Agilent N1911A/N1912A P-Series Power Meters andN1921A/N1922A Wideband Power Sensors

Data sheet

2

LXI Class-C-Compliant Power Meter

A P-Series power meter is a LXI Class-C-compliant instrument,developed using LXI Technology. LXI, an acronym for LANeXtension for Instrumentation, is an instrument standard fordevices that use the Ethernet (LAN) as their primary communication interface.

Hence, it is an easy- to- use instrument especially with the usageof an integrated Web browser that provides a convenient way toconfigure the instrument’s functionality.

Specification Definitions

There are two types of product specifications:

Warranted specifications are specifications which are covered bythe product warranty and apply over a range of 0 to 55 ºC unlessotherwise noted. Warranted specifications include measurementuncertainty calculated with a 95 % confidence.

Characteristic specifications are specifications that are not warranted. They describe product performance that is useful inthe application of the product. These characteristic specificationsare shown in italics.

Characteristic information is representative of the product. In manycases, it may also be supplemental to a warranted specification.Characteristic specifications are not verified on all units. Thereare several types of characteristic specifications. They can bedivided into two groups:

One group of characteristic types describes ‘attributes’ common toall products of a given model or option. Examples of characteristicsthat describe ‘attributes’ are the product weight and ‘50-ohminput Type-N connector’. In these examples, product weight is an ‘approximate’ value and a 50-ohm input is ‘nominal’. These twoterms are most widely used when describing a product’s ‘attributes’.

Conditions

The power meter and sensor will meet its specifications when:

• stored for a minimum of two hours at a stable temperature within the operating temperature range, and turned on for atleast 30 minutes

• the power meter and sensor are within their recommended calibration period, and

• used in accordance to the information provided in the User's Guide.

Physical Dimensions2

General Features

Number of channels N1911A P-Series power meter, single channelN1912A P-Series power meter, dual channel

Frequency range N1921A P-Series wideband power sensor, 50 MHz to 18 GHzN1922A P-Series wideband power sensor, 50 MHz to 40 GHz

Measurements Average, peak and peak-to-average ratio power measurements are provided with free-run or time-gated definitions. Time parameter measurements of pulse rise time, fall time, pulse width, time-to-positive occurrence and time-to-negative occurrence are also provided.

Sensor compatibility P-Series power meters are compatible with all Agilent P-series wideband power sensors, E-Series sensors,8480 Series sensors and N8480 Series sensors1. Compatibility with the 8480 and E-Series power sensorswill be available free-of-charge in firmware release Ax.03.01and above. Compatibility with N8480 Series power sensors will be available free-of-charge in firmware release A.05.00 and above.

1. Information contained in this document refers to operations using P-Series sensors. For specifications relating to the use of 8480 and E-Series sensors (except E9320A range), refer to Lit Number 5965-6382E. For specifications relating to the use of E932XA sensors, refer to LitNumber 5980-1469E. For specifications relating to the use of N8480 Series sensors, refer to Lit Number 5989-9333EN.

2. The dimensions stated does not include bumper.

8.5 in

13.7 in

3.5 in

3

P-Series Power Meter and Sensor Key System Specifications and Characteristics3

Maximum sampling rate 100 Msamples/sec, continuous samplingVideo bandwidth ≥ 30 MHzSingle-shot bandwidth ≥ 30 MHzRise time and fall time ≤ 13 ns (for frequencies ≥ 500 MHz)4,

see Figure 1Minimum pulse width 50 ns5

Overshoot ≤ 5 %4

Average power measurement accuracy N1921A: ≤ ± 0.2 dB or ± 4.5 %6

N1922A: ≤ ± 0.3 dB or ± 6.7 %Dynamic range –35 dBm to +20 dBm (> 500 MHz)

–30 dBm to +20 dBm (50 MHz to 500 MHz)Maximum capture length 1 secondMaximum pulse repetition rate 10 MHz (based on 10 samples per period)

Figure 1. Measured rise time percentage error versus signal under test rise time

Although the rise time specification is ≤ 13 ns, this does not mean that the P-seriesmeter and sensor combination can accurately measure a signal with a known rise timeof 13 ns. The measured rise time is the root sum of the squares (RSS) of the signalunder test rise time and the system rise time (13 ns):

Measured rise time = √((signal under test rise time)3 + (system rise time)3 ), and the % error is:

% Error = ((measured rise time – signal under test rise time)/signal under test rise time) x 100

3. See Appendix A on page 9 for measurement uncertainty calculations.4. Specification applies only when the Off video bandwidth is selected.5. The Minimum Pulse Width is the recommended minimum pulse width

viewable on the power meter, where power measurements are meaningful and accurate, but not warranted.

6. Specification is valid over a range of –15 to +20 dBm, and a frequency range of 0.5 to 10 GHz, DUT Max. SWR < 1.27 for the N1921A, and a frequency range of 0.5 to 40 GHz, DUT Max. SWR < 1.2 for the N1922A. Averaging set to 32, in Free Run mode.

4

P-Series Power Meter Specifications

Meter uncertaintyInstrumentation linearity ± 0.8 %

TimebaseTimebase range 2 ns to 100 msec/divAccuracy ±10 ppm Jitter ≤ 1 ns

TriggerInternal trigger

Range –20 to +20 dBmResolution 0.1 dBLevel accuracy ± 0.5 dBLatency7 160 ns ± 10 nsJitter: ≤ 5 ns rms

External TTL trigger inputHigh > 2.4 VLow < 0.7 VLatency8 90 ns ± 10 nsMinimum trigger

pulse width 15 nsMinimum trigger

repetition period 50 nsMaximum trigger

voltage input 15 V emf from 50 W dc (current < 100 mA), or60 V emf from 50 W (pulse width < 1 s, current < 100 mA)

Impedance 50 WJitter ≤ 5 ns rms

External TTL trigger output Low to high transition on trigger eventHigh > 2.4 VLow < 0.7 VLatency9 30 ns ± 10 nsImpedance 50 WJitter ≤ 5 ns rms

Trigger delayDelay range ± 1.0 s, maximumDelay resolution 1 % of delay setting

10 ns maximumTrigger hold-off

Range 1 µs to 400 msResolution 1 % of selected value

(to a minimum of 10 ns)Trigger level threshold hysteresis

Range ± 3 dBResolution 0.05 dB

7. Internal trigger latency is defined as the delay between the applied RF crossing the trigger level and the meter switching into the triggered state.

8. External trigger latency is defined as the delay between the applied triggercrossing the trigger level and the meter switching into the triggered state.

9. External trigger output latency is defined as the delay between the meterentering the triggered state and the output signal switching.

5

P-Series Wideband Power Sensor SpecificationsThe P-series wideband power sensors are designed for use with the P-Series power meters only.

Sensor model Frequency range Dynamic range Damage level Connector typeN1921A 50 MHz to 18 GHz –35 dBm to +20 dBm (≥ 500 MHz) +23 dBm (average power); Type N (m)

–30 dBm to +20 dBm (50 MHz to 500 MHz) +30 dBm (< 1 µs duration)(peak power)

N1922A 50 MHz to 40 GHz –35 dBm to +20 dBm (≥ 500 MHz) +23 dBm (average power); 2.4 mm (m)–30 dBm to +20 dBm (50 MHz to 500 MHz) +30 dBm (< 1 µs duration)

(peak power)

Maximum SWRFrequency band N1921A N1922A50 MHz to 10 GHz 1.2 1.210 GHz to 18 GHz 1.26 1.2618 GHz to 26.5 GHz 1.326.5 GHz to 40 GHz 1.5

Sensor Calibration Uncertainty10

Definition: Uncertainty resulting from non-linearity in the sensor detection and correction process. This can be considered as a combination of traditional linearity, cal factor and temperature specifications and the uncertainty associated with the internal calibration process.

Frequency band N1921A N1922A50 MHz to 500 MHz 4.5 % 4.3 %500 MHz to 1 GHz 4.0 % 4.2 %1 GHz to 10 GHz 4.0 % 4.4 %10 GHz to 18 GHz 5.0 % 4.7 %18 GHz to 26.5 GHz 5.9 %26.5 GHz to 40 GHz 6.0 %

Physical characteristicsDimensions N1921A 135 mm x 40 mm x 27 mm (5.3 in x 1.6 in x 1.1 in)

N1922A 127 mm x 40 mm x 27 mm (5.0 in x 1.6 in x 1.1 in)Weights with cable Option 105 0.4 kg (0.88 Ib)

Option 106 0.6 kg (1.32 Ib)Option 107 1.4 kg (3.01 Ib)

Fixed sensor cable lengths Option 105 1.5 m (5-feet)Option 106 3.0 m (10-feet)Option 107 10 m (31-feet)

10. Beyond 70 % humidity, an additional 0.6 % should be added to these values.

6

1 mW Power Reference

Note: The 1 mW power reference is provided for calibration of E-Series, 8480 Series and N8480 Series sensors. The P-Series sensors areautomatically calibrated and therefore do not need this reference for calibration

Power output 1.00 mW (0.0 dBm). Factory set to ± 0.4 % traceable to the National Physical Laboratory (NPL) UK Accuracy (over 2 years) ±1.2 % (0 to 55 ºC)

±0.4 % (25 ± 10 ºC)Frequency 50 MHz nominalSWR 1.08 (0 to 55 ºC)

1.05 typicalConnector type Type N (f), 50 W

Rear-panel inputs/outputsRecorder output Analog 0-1 Volt, 1 kW output impedance, BNC connector. For dual-channel instruments there will be two

recorder outputs.GPIB, 10/100BaseT LAN Interfaces allow communication with an external controller.and USB2.0Ground Binding post, accepts 4 mm plug or bare-wire connectionTrigger input Input has TTL compatible logic levels and uses a BNC connectorTrigger output Output provides TTL compatible logic levels and uses a BNC connectorLine power

Input voltage range 90 to 264 Vac, automatic selectionInput frequency range 47 to 63 Hz and 440 HzPower requirement N1911A not exceeding 50 VA (30 Watts)

N1912A not exceeding 75 VA (50 Watts)

Remote programmingInterface GPIB interface operates to IEEE 488.2 and IEC65

10/100BaseT LAN interfaceUSB 2.0 interface

Command language SCPI standard interface commandsGPIB compatibility SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP1, DC1, DT1, C0

Measurement speedMeasurement speed via remote interface ≥ 1500 readings per second

Regulatory information Electromagnetic compatibility Complies with the requirements of the EMC Directive 89/336/EEC.Product safety Conforms to the following product specifications:

EN61010-1: 2001/IEC 1010-1:2001/CSA C22.2 No. 1010-1:1993 IEC 60825-1:1993/A2:2001/IEC 60825-1:1993+A1:1997+A2:2001Low Voltage Directive 72/23/EEC

Physical characteristicsDimensions The following dimensions exclude front and rear panel protrusions:

7

88.5 mm H x 212.6 mm W x 348.3 mm D (3.5 in x 8.5 in x 13.7 in)Net weight N1911A ≤ 3.5 kg (7.7 lb) approximate

N1912A ≤ 3.7 kg (8.1 lb) approximateShipping weight N1911A ≤ 7.9 kg (17.4 lb) approximate

N1912A ≤ 8.0 kg (17.6 lb) approximate

Environmental conditionsGeneral Complies with the requirements of the EMC Directive 89/336/EEC. Operating

Temperature 0 °C to 55 °CMaximum humidity 95 % at 40 °C (non-condensing)Minimum humidity 15 % at 40 °C (non-condensing)Maximum altitude 3,000 meters (9,840 feet)

Storage Non-operating storage temperature –30 °C to +70 °CNon-operating maximum humidity 90 % at 65 °C (non-condensing)Non-operating maximum altitude 15,420 meters (50,000 feet)

System Specifications and Characteristics

The video bandwidth in the meter can be set to High, Medium, Low and Off. The video bandwidths stated in the table below are not the 3 dB bandwidths, as the video bandwidths are corrected for optimal flatness (except the Off filter). Refer to Figure 2 for information on the flatness response. The Off video bandwidth setting provides the warranted rise time and fall time specification and is the recommended setting for minimizing overshoot on pulse signals.

Dynamic response - rise time, fall time, and overshoot versus video bandwidth settingsVideo bandwidth setting

ParameterLow: 5 MHz Medium: 15 MHz High: 30 MHz

Off< 500 MHz > 500 MHz

Rise time/ fall time11 < 56 ns < 25 ns ≤ 13 ns < 36 ns ≤ 13 nsOvershoot12 < 5 % < 5 %

For option 107 (10m cable), add 5 ns to the rise time and fall time specifications.

Recorder Output and Video Output

The recorder output is used to output the corresponding voltage for the measurement a user sets on the Upper/Lowerwindow of the power meter.

The video output is the direct signal output detected by the sensor diode, with no correction applied. The videooutput provides a DC voltage proportional to the measured input power through a BNC connector on the rear panel. TheDC voltage can be displayed on an oscilloscope for time measurement. This option replaces the recorder output on therear panel. The video output impedance is 50 ohm.

11. Specified as 10 % to 90 % for rise time and 90 % to 10 % for fall time ona 0 dBm pulse.

12. Specified as the overshoot relative to the settled pulse top power.

8

Characteristic Peak Flatness

The peak flatness is the flatness of a peak-to-average ratio measurement for various tone separations for an equal magnitude two-toneRF input. Figure 2 refers to the relative error in peak-to-average ratio measurements as the tone separation is varied. The measurementswere performed at –10 dBm with power sensors with 1.5 m cable lengths.

Figure 2. N192XA Error in peak-to-average measurements for a two-tone input (High, Medium, Low and Off filters)

Noise and drift

Sensor model Zeroing Zero setZero drift13 Noise per sample

Measurement noise < 500 MHz > 500 MHz (Free run)14

N1921A /N1922A No RF on input 200 nW100 nW 2 µW 50 nW

RF present 550 nW 200 nW

Measurement average setting 1 2 4 8 16 32 64 128 256 512 1024Free run noise multiplier 1 0.9 0.8 0.7 0.6 0.5 0.45 0.4 0.3 0.25 0.2

Video BW setting Low 5 MHz Medium 15 MHz High 30 MHz OffNoise per sample multiplier < 500 MHz 0.5 1 2 1

≥ 500 MHz 0.45 0.75 1.1 1

Effect of video bandwidth settingThe noise per sample is reduced by applying the meter videobandwidth filter setting (High, Medium or Low). If averaging isimplemented, this will dominate any effect of changing the videobandwidth.

Effect of time-gating on measurement noiseThe measurement noise on a time-gated measurement willdepend on the time gate length. 100 averages are carried outevery 1 µs of gate length. The Noise-per-Sample contribution inthis mode can approximately be reduced by √(gate length/10 ns)to a limit of 50 nW.

13. Within 1 hour after a zero, at a constant temperature, after 24 hours warm-up of the power meter. This component can be disregarded with Auto-zero mode set to ON.

14. Measured over a one-minute interval, at a constant temperature, two standard deviations, with averaging set to 1.

9

Appendix A

Uncertainty calculations for a power measurement (settled, average power)

[Specification values from this document are in bold italic, values calculated on this page are underlined.]

Process: 1. Power level: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W2. Frequency: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Calculate meter uncertainty:Calculate noise contribution

• If in Free Run mode, Noise = Measurement noise x free run multiplier• If in Trigger mode, Noise = Noise-per-sample x noise per sample multiplier

Convert noise contribution to a relative term15 = Noise/Power . . . . . . . . . . . . . . . . . . . . . . . . . . %Instrumentation linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . %Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . %

RSS of above three terms => Meter uncertainty = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . %4. Zero Uncertainty

(Mode and frequency-dependent) = Zero set/Power = . . . . . . . . . . . . . . . . . . . . . . . . . . %

5. Sensor calibration uncertainty(Sensor, frequency, power and temperature-dependent) = . . . . . . . . . . . . . . . . . . . . . . . . %

6. System contribution, coverage factor of 2 => sysrss = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . %(RSS three terms from steps 3, 4 and 5)

7. Standard uncertainty of mismatch Max SWR (Frequency-dependent) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

convert to reflection coefficient, | rSensor | = (SWR–1)/(SWR+1) = . . . . . . . . . . . . . . . . . . .

Max DUT SWR (Frequency dependent) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

convert to reflection coefficient, | rDUT| = (SWR–1)/(SWR+1) = . . . . . . . . . . . . . . . . . . . . .

8. Combined measurement uncertainty @ k=1

. . . . . . . . . . . . . . . . . . . . . . %

Expanded uncertainty, k = 2, = UC • 2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . %

15. The noise-to-power ratio is capped for powers > 100 µW, in these cases use: Noise/100 µW.

Max(rDUT) • Max(rSensor) sysrss

2

+2

2

2UC =

10

Worked Example

Uncertainty calculations for a power measurement (settled, average power)

[Specification values from this document are in bold italic, values calculated on this page are underlined.]

Process: 1. Power level: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 mW2. Frequency: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 GHz

3. Calculate meter uncertainty: In free run, auto zero mode average = 16Calculate noise contribution

• If in Free Run mode, Noise = Measurement noise x free run multiplier = 50 nW x 0.6 = 30 nW• If in Trigger mode, Noise = Noise-per-sample x noise per sample multiplier

Convert noise contribution to a relative term16 = Noise/Power = 30 nW/100 µW . . . . . . . . . 0.03 %Instrumentation linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8 %Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –

RSS of above three terms => Meter uncertainty = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8 %4. Zero Uncertainty

(Mode and frequency dependent) = Zero set/Power = . . . . . . . . . . . . . . . . . . . . . . . . . . 0.03 %

5. Sensor calibration uncertainty 300 nW/1 mW

(Sensor, frequency, power and temperature-dependent) = . . . . . . . . . . . . . . . . . . . . . . . . 4.0 %

6. System contribution, coverage factor of 2 => sysrss = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.08 %(RSS three terms from steps 3, 4 and 5)

7. Standard uncertainty of mismatch Max SWR (Frequency-dependent) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.25

convert to reflection coefficient, | rSensor | = (SWR–1)/(SWR+1) = . . . . . . . . . . . . . . . . . . . 0.111

Max DUT SWR (Frequency-dependent) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.26

convert to reflection coefficient, | rDUT| = (SWR–1)/(SWR+1) = . . . . . . . . . . . . . . . . . . . . . 0.115

8. Combined measurement uncertainty @ k = 1

. . . . . . . . . . . . . . . . . . . . . . 2.23 %

Expanded uncertainty, k = 2, = UC • 2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±4.46 %

16. The noise-to-power ratio is capped for powers > 100 µW, in these cases use: Noise/100 µW instead.

Max(rDUT) • Max(rSensor) sysrss

2

+2

2

2UC =

11

Graphical Example

A. System contribution to measurement uncertainty versus power level (equates to step 6 result/2)

Note: The above graph is valid for conditions of free-run operation, with a signal within the video bandwidth setting on the system.Humidity < 70 %.

B. Standard uncertainty of mismatchSWR r SWR r

1.0 0.00 1.8 0.291.05 0.02 1.90 0.311.10 0.05 2.00 0.331.15 0.07 2.10 0.351.20 0.09 2.20 0.381.25 0.11 2.30 0.391.30 0.13 2.40 0.411.35 0.15 2.50 0.431.40 0.17 2.60 0.441.45 0.18 2.70 0.461.5 0.20 2.80 0.471.6 0.23 2.90 0.491.7 0.26 3.00 0.50

Note: The above graph shows the Standard Uncertainty of Mismatch = rDUT. rSensor / 2, rather than the Mismatch UncertaintyLimits. This term assumes that both the Source and Load have uniform magnitude and uniform phase probability distributions.

C. Combine A & B

Expanded Uncertainty, k = 2, = 2. UC = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± %

System uncertainty contribution - 1 sigma (%)

1.0%

10.0%

100.0%

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20

Power (dBm)

N1921A: 500 MHz to 10 GHzN1922A:18 to 40 GHzOther bands

Standard uncertainty of mismatch - 1 sigma (%)

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0 0.1 0.2 0.3 0.4 0.5

r Sens

or

rDUT

2UC = (Value from Graph A) + (Value from Graph B)

2

www.agilent.com/find/emailupdatesGet the latest information on the products andapplications you select.

Agilent Email Updates

Agilent Direct

www.agilent.com/find/agilentdirectQuickly choose and use your test equipmentsolutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of

connecting and programming test systems

to help engineers design, validate and

manufacture electronic products. Agilent

offers open connectivity for a broad range

of system-ready instruments, open industry

software, PC-standard I/O and global sup-

port, which are combined to more easily

integrate test system development.

www.lxistandard.org

LXI is the LAN-based successor to

GPIB, providing faster, more effi cient

connectivity. Agilent is a founding

member of the LXI consortium.

Remove all doubt

Our repair and calibration services will get

your equipment back to you, performing

like new, when promised. You will get

full value out of your Agilent equipment

throughout its lifetime. Your equipment will

be serviced by Agilent-trained technicians

using the latest factory calibration proce-

dures, automated repair diagnostics and

genuine parts. You will always have the

utmost confidence in your measurements.

Agilent offers a wide range of additional

expert test and measurement services for

your equipment, including initial start-up

assistance onsite education and training,

as well as design, system integration, and

project management.

For more information on repair and

calibration services, go to

www.agilent.com/find/removealldoubt

www.agilent.comwww.agilent.com/find/powermeter

For more information on Agilent

Technologies’ products, applications

or services, please contact your local

Agilent office. The complete list is

available at:

www.agilent.com/find/contactus

Phone or FaxAmericasCanada (877) 894-4414Latin America 305 269 7500United States (800) 829-4444

Asia PacificAustralia 1 800 629 485China 800 810 0189Hong Kong 800 938 693India 1 800 112 929Japan 0120 (421) 345Korea 080 769 0800Malaysia 1 800 888 848Singapore 1 800 375 8100Taiwan 0800 047 866Thailand 1 800 226 008

Europe & Middle EastAustria 01 36027 71571Belgium 32 (0) 2 404 93 40Denmark 45 70 13 15 15Finland 358 (0) 10 855 2100France 0825 010 700*

*0.125€/minuteGermany 07031 464 6333**

**0.14€/minuteIreland 1890 924 204Israel 972-3-9288-504/544Italy 39 02 92 60 8484Netherlands 31 (0) 20 547 2111Spain 34 (91) 631 3300Sweden 0200-88 22 55Switzerland 0800 80 53 53United Kingdom 44 (0) 118 9276201Other European Countries:www.agilent.com/find/contactusRevised: July 17, 2008

Product specifications and descriptions

in this document subject to change

without notice.

© Agilent Technologies, Inc. 2008

Printed in USA, August 1, 2008

5989-2471EN