aiaa-1998-1-921 frontiers of the "responsibly imaginable" in (civilian) aeronautics

20
Copyright© 1997 American Institute  o f  Aeronautics  a nd  Astronautics Inc. T H E  998 AIAA DRYDEN LECT URE FRONTIERS OF THE RESPONSIBLY IMAGINABLE IN (CIVILIAN) AERONAUTICS Dennis M. Bushnell* National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001 ABSTRACT Paper  discusses  future  alternatives  t o  currently deployed sys tems which could provide revolutiona ry improvements  in  metrics applicable  to  civilian aeronautics  with, in many  cases,  significant military "spinoff." Sp ecific m iss ions addres sed include subsonic transports, supersonic transports, personal aircraft,  an d space  access.  These alternative systems  an d  concepts are in many  cases  updates to know n "end  point"  designs enabled by recent and envi saged advancements in electronics,  communications, computing, CFD /nonli near aerodynamics and  "D esi gner  Fluid Mechanics"--  in conjunction  with  a de sign appro ach employing extensive synergistic interactions between propulsi on, aerodynamics and structures. INTRODUCTION T he  last  50 years of aeronautics have been  truly revolutionary. In the developed world, train and s hip long h aul pass enger  traffic  has been replaced by aviation an d  aviation  h as  assumed  a  dominant role  in  warfare. T he  list  of  revolutionary technologica l developments during  this period includes large swept wing near-sonic transports of the B47-707 genre, supersonic cruise and fighter  aircraft, turbojets  an d  ramjets, high strength aluminums  an d  c om posites,  and a  vast array  o f avionics.  Much of this  progress  occurred under the dominant m etric of higher, faster and larger is better and was a  cont inuati on  o f  aeronautical development trends since  the  early  1900's. Today  and for the  foreseeable  future,  th e  metrics,  an d hence the nature of desired technological improvements ar e  "different." These "new" (ci vilian) metrics include AFFORDABILrTY (initial,  life  cycle), pro ductivity (aircraft,  air  space),  safety  and the  environment (noi se, pollution). Driving  these  metrics  ar e  global economic competition (exacerbated  by the  demise  of the  "cold war"),  an  i ncreasi ng demand  for air  travel  in the  shorter term,  increasingly stringent environmental regulations an d  the  emerging competition  from  th e  ongoing telecommunications r evolution(s) wherein business travel  in  particular  ma y  become increasingly replaced  by "virtual"  interpersonal interacti on via (eventually) 3-D technology  such as holographic projection, virtual reality  immersion, etc. Estimat es i ndicate  a 4 0  percent busi ness travel reduction over the next 20 years due to th e  "teletravel"  revolution  with  consequent (non-trivial) reductions  (the order of 1000 units) i n CTOL transport production  (e.g.,  references  1 to 5).  Such  a  reduction  in busi nes s air travel would leave recreational travel the dominant  market  sector,  a sector which is extremely price sensitive, placing  a  further  premium upon cost reduction  technologies . Corresponding updated military metrics are  also  lea d by AFFORD  ABILITY,  follow ed by responsi veness , flexibility,  lethality, survivability, logistic support and standardization/interoperability.  T he  present paper places  major emphasis upon  t he  civilian sector,  with obvious  military "spinoff  possibilities"  noted. The curren t approaches to  satisfying  these metrics almost universally involve i ncrement al/evolutionary technological improvements to the existing paradigms coupled  with  revolutionary reductions  in  design cycle time and  "manufacturability" improvements  in the context  of an  "integrated product  team."  What  are conspicuous  b y  their absence  are any  major attempts  to satisfy  these metr ics  via the  complementary approach  o f inventing,  developing,  an d  deploying  farther  term/ advanced  technologies,  in  pa rticular advanced configurations or  systems,  with  revolutionary performance  improvements. While traditionally performance  improvem ents have been used to enhance speed  o r  reduce  fuel  consumption, they  can  obviously also b e employed to addre ss the present metrics of cost/part count/w eight, pro ductivity, safety  and the environment,  wh ere advanced perform ance  can  have *Chief  Scientist,  Fellow AIAA 1 American Institute  o f  A eronauti cs  and  Astronautics Copyright  ©  1998  by the  American  Institute  of  Aeronautics  an d Astronautics,  Inc.  No  Copyright  is  asserted  in the United States under  Title  17 ,  U.S.  Code.  U.S.  Government has a  royalty-free  license to  exercise  all  rights under  the  copyright claimed herein  fo r Governmental  purposes.  All o ther  rights  ar e  reserved  by the copyright  owner.

Upload: mndraw

Post on 07-Aug-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 1/20

Copyright© 1997 American Inst itute

  o f

 A eronaut ics

  and

 Astrona utics Inc.

T H E

  9 9 8 A IA A DR YDE N LE C T UR E

FRO NTIERS O F TH E RESPO NSIBLY IM AG INABLE IN ( CIVILIAN) AERO NA UTICS

Dennis M. Bushnel l*

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

ABSTRACT

Pape r discusses future alternatives to curr ently deployed

systems which could provide revolutiona ry

improvements

  in

 metrics applicable

  to

 civilian

aeronautics with, in many cases, significant military

"spinoff." Specific missions addressed include subsonic

transports, supersonic transports, personal aircraft, and

space access.  These alternative systems

 and

 concepts

are in many

 cases

 updates to know n "end point" designs

enabled by recent and envisaged advancements in

electronics,   communications, computing,

CFD /nonlinear aerodynamics and

 "D esigner

 Fluid

Mechanics"-- in conjunction with a design appro ach

employing extensive synergistic interactions between

propulsion, aerodynamics and structures.

INTRODUCTION

The

 last

 50 years o f aeronautics have been truly

revolutionary. In the developed world, train and ship

long h aul passenger  traffic has been replaced by aviation

and

 aviation

 has

 assumed

 a

 dom inant role

 in

 warfare.

The list of revolutionary technological developments

during this period includes large swept wing near-sonic

transports of the B47-707 genre, supersonic cruise and

fighter  aircraft, turbojets and ram jets, high strength

aluminums

 and

 com posites,

 and a

 vast array

 of

avionics.  Much of this progress occurred under th e

dominant m etric of higher, faster and larger is better and

was a

 cont inuation

 of

 aeronautical development trends

since the early 1900's.

Today and for the fo reseeable  future,  the metrics,  and

hence the nature of desired technological improvements

are "different." These "new" (civilian) metr ics include

AFFORDABILrTY (initial,

  life

 cycle), pro ductivity

(aircraft,

  air

 space), safety

 and the

 environment (noise,

pollution). Driving

 these

 metrics

 are

 global economic

competition (exacerbated

 by the

 demise

 of the

 "cold

war"),

 an

 increasing demand

 for air

 travel

 in the

 shorter

term, increasingly stringent environmental regulations

and the em erging competition  from  the ongoing

telecomm unications r evolution(s) wherein business

travel

 in

 particular

 may

 become increasingly replaced

  by

"virtual"

 interpersonal interaction via (eventually) 3-D

technology

 such as holographic projection, virtual

reality

 imm ersion, etc. Estimates indicate  a 40 percent

business travel reduction over the next 20 years due to

the "teletravel" revolution with consequent (no n-trivial)

reductions

 (the order of 1000 units) in CTOL transport

production (e.g., references  1 to 5).  Such a reduction in

business air travel would leave recreational travel the

dominant  market

 sector,

 a sector wh ich is extremely

price sensitive, p lacing

 a

 further premium upon cost

reduction technologies.

Corresponding updated military metrics are

 also

 lead by

AFFORD  ABILITY, follow ed by responsiveness,

flexibility,  lethality, survivability, logistic support and

standardization/interoperability.

  The

 present paper

places

 major emphasis upon

 the

 civilian sector,

  with

obvious

 military "spinoff possibilities" noted.

The curren t approaches to

 satisfying

  these metrics

almost universally involve increment al/evolutionary

technological improv ements to the existing para digms

coupled with revo lutionary reductions

  in

 design cycle

time and "manufacturability" improvements in the

context

 of an

 "integrated product team."  What

 are

conspicuous by their absence are any major attempts to

satisfy  these metr ics

 via the

 complementary approach

 o f

inventing, developing,  and deploying

 farther

 term/

advanced

 technologies,

  in

 pa rticular advanced

configurations or

 systems,  with revolutionary

performance  improvements. While traditionally

performance imp rovem ents have been used to enhance

speed o r reduce

 fuel

 consumption, they can obv iously

also b e employed to address the present metrics of

cost/part co unt/w eight, pro ductivity, safety  and the

environment, wh ere advanced perform ance can have

*Chief  Scientist, Fellow AIAA

1

American Institute

 of

 A eronautics

 and

 A stronautics

Copyright

 © 1998 by the American

 Institute

 of Aeronautics and

Astronautics,

 Inc.

  No Copyright is

 asserted

 in the United States

under

 Title

 17,

 U.S.

 Code.

 U.S.

 Government has a royalty-free license

to

 exercise

 all

 rights under

 the

 copyright claimed herein

 for

Governmental

 purposes.

  All other

 rights

 are reserved by the

copyright

 owner.

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 2/20

C opy r i gh t ©

  1997

Amer ican

  Ins t itu te of Ae ronau t ics and Ast ronaut ics Inc .

truly dramatic payoffs.  Also, much of the

 major

aeronautical improvement

 actually fielded

 over the past

40

 years, particularly

 in the long

 haul arena,

 ha s

 been

the result

 of

 propulsion technology,

 primarily

 higher

bypass

 and turbine

 inlet temperature,

 which

 provided

much of the technology for a near trippling of

 seat

miles

 per

  gallon. Studies

 and

 suggestions

 for

 advanced

configuration concepts (e.g., references 6-11) have, in

general, not been

 investigated

 in depth nor

implemented.  In

 fact,

 vehicle long term strategic

planning/research  in the civilian aeronautical arena has

been

 exceedingly sparse for decades. This has not gone

unnoticed and

 calls

 for renewed

 longer term research

efforts

  have

 come

 from both Dan Goldin, the

 NASA

Administrator, and

 Cong ress "Focus

 NASA's

Aeronautics on Revolutionary New

 C oncepts" (reference

12).  The military has been much m ore proactive in this

regard

 (e.g.,

 references 13,14 and the

 previous

"forecast" studies-e.g.,

 reference

 15).

The purpose of the

 present paper

 is to discuss example

advanced

 concept approaches, across

 the

 speed range

 and

for

 space access, which may provide

 revolutionary

changes and oppo rtunities in civilian aeronautics in the

future.

  The context of this

 advanced

 concepts

discussion

 is

 that there

 are no "m agic bullets," i.e.,

concepts which require no R&D , have no problems,

require

 no

 research

 and

 provide

 guaranteed

 (huge)

benefits.

  All of these

 approaches

 require considerable

work to move them through the two

 filters

 which exist

between an  idea and a deployed system.  The first of

these

 filters

 is a

 technical

 one which

 asks

 the question

 does it work." The

 second,

 and imm ensely important,

filter

 is technological and

 addresses

 the

 issue

 of w hether

the  concept

 makes

 sense in the "real

 world"

 when all the

 illities are considered. Also,

 most

 of these concepts

are not new  (see reference 16),

 simply worthy

 of being

readdressed in the context of new metr ics,

missions/requirements, available technology

 levels

 and

implementation  ideas.  A

 central theme

 is the use of

serious synergies

 between prop ulsion, aerodynamic

 and

structural systems

 (see

 reference

 17).  Many

 of the

concepts discussed

 herein

 devolved

 from

 a

 series

 of

unpublished wo rkshops and studies

 convened

 by the

present

 author

 at

 NASA Langley

 in the late 80's-early

90's specifically

 to

 (re)address advanced concepts

 in

various

 mission areas (CTO L,

 HSCT,

 hypersonic

airbreathing

 propulsion

 and

 personal

 aircraft).

A major  "bottom

 line

suggested by this

(re)examination of  advanced aeronautical concepts is that

aeronautics is far

 from

 operating near the limits of what

can  be

 accomplished either

 physically o r

 economically—

i.e., the

 conventional

 wisdom (which is

 unfortunately

approaching

 a

 "self-fulfilling

  prophecy")

 that

aeronautics is a

 "plateau"/"mature"

 industry is

emphatically no t correct. There is such a wealth o f

alternative

 concepts,

 each of them  offering truly

revolutionary  possibilities,

 that

 the adaptation of even

one or a

 limited number could lead

 to a

 "Renaissance"

in aerona utics (see

 also

 reference  18).

DESIGNER  FLUID MECHANICS

Most of the

 configuration concepts discussed

 herein rely

on  a set of technologies developed extensively over the

last

 30

 years which

 can be

 collectively termed "D esigner

Fluid

 Mechan ics."

  These technologies include

 laminar

flow control (reference 19), m ixing

 enhancement

 (e.g.,

reference 20), separated flow

 control (references 18 and

22), vortex control (reference

 23),

 turbulence control

(e.g., r eference 24),

 anti-no ise,

 favorable

 wave

interference (reference 25),

 and

 even "designer

 fluids."

In most cases, these

 have

 been

 taken to the

 flight

  test

stage and beyond and are

 thus

 ready, in

 various

manifestations,

  fo r inclusion in, and to

 pro vide enabling

technology/ capability

 for,

 synergistic advanced aircraft

concepts.

Consider, fo r example, the currently

 applicable aircraft

metrics-productivity, safety, environment and

affordability.  These would

 be

 greatly

 enhanced by

major simultaneous reductions in wake vortex hazard

(reference 23),

 drag-due-to-lift

 (references 26-34)

 and

friction

 drag (references 35,36).

  The Designer

 Fluid

Mechanics

 literature just

 cited offers an extensive array

of  alternative

 reduction

 approaches

 for each

 metric/flow

phenomena.  If the

 lists

 of the various

 approaches

 are

"merged" and "simultan eous solutions" sought, the

resultant configurational

 imp lications strongly suggest

several

 revolutionary

 configurational alternatives, fo r

example, to the current 707-DC8 CTOL

 transport

paradigm.

  Th is serves to illustrate the

 thought

processes followed

 to develop the advanced

configurations

 described

 in the

 following sections.

ALTERNATIVE

 SUBSONIC

 LONG

 HAUL

TRA NS PORT  CONFIGURATIONS

Am erican Institute of

 Aeronautics

 and

 Astronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 3/20

Copyr ight© 1997 American Inst i tu te   o f A e ronau t ics   and  Ast rona ut ics Inc.

Strut/Truss-Braced Wings with W ing-Tip Engine

Pfenninger has long

 advocated

 strut

 bracing

 to

 improve

the

 performance

 o f conventional

 transports

 (e.g.,

references 37 and 38, see also

 references

 39-44).  The

resulting  (bending,

 torsion)

 structural benefits allow

reduced wing thickness and sweep, resulting in a

tremendously  enhanced and easily m aintained (reduced

sensitivity to

 rough ness/insect

 remains/ice clouds,

reduced

 cross

 flow) extent of natur al-to-easily

 forced

low

 drag

 laminar flow, as

 well

 as increased

 span.

  The

latter

 allowed a

 r eduction

 in

 wing

 chord,

 further

enhancing the extent of  laminar flow, as well as

enhanced

 takeoff and climb performance and

 reduced

vortex hazard.

  Plenninger's designs

 fo r

 such aircraft

yielded L/D values in the 40's,

 over

 twice current

levels.  The

 concept

 was not, how ever, adopted

primarily

 because

 th e

 extensive wing

 span did not fit

the

 FAA "80

 m eter

 box

fo r

 airport gate com patibility

and disbelief  that a

 transonic

 strut braced

 wing

 could be

designed with acceptable

 shock drag (and obtain laminar

flow

 on the strut/truss).  Obviously

 strut-bracing

 is

routinely

 em ployed on low(er)

 speed

 aircraft.  The

latter

 objection

 is probably not

 valid

 in light of

 today's

CFD  capabilities.  "W e build what w e can com pute"

(reference 45) and we hav e been too long constrained in

aircraft design to linear theory and consequent

 "linear

thinking."

The span o f a

 strut braced

 configuration can probably

be

 reduced

 to the 80 meter requirement and the

 overall

performance

 retained

 if an alternative

 approach

 is

employed

 for major

  drag-due-to-lift reduction-wing

 t ip

engine

 placement (also enabled by strut/truss bracing).

Whitcomb

 (reference

 46) and others (e.g.,

 references

 47

to 55) have

 shown

 that up to the order of 50 percent

DD L reductions are obtainable using t his approach,

which

 pro bably requires circulation control

 in the

empennage region

 and

 utilization

 of

  thrust vectoring

 o n

all engines to

 handle

 the "engine

 out"

 problem. The

Pfenninger approach

 o f

 wing  sweep/thickness

reductions and consequent natural-to-easily forced

 wing

laminar flow

 as enabled by strut

 bracing

 is

 also

retained.

Synergistic

 prop ulsion-aerodynamic

 interaction

The use of tip engines fo r aerodynamic drag-due-to-lift

and

 wake vortex reduction is

 part

 of an overall

paradigm shift in aircraft design where a configurational

concept

 is sought in the context of an "open

thermodynamic system," i.e., synergistic use is made

of

 the energy added by the

 propulsion system.

Historically, aerodynamic theory is almost totally

predicated

 upon analysis within

 a

  closed

 system" (no

energy  added

 within the control

 volume).

  By necessity,

as

 speed

 is

 increased,

 increasing use has

 been made

 of

favorable pro pulsive interactions— wing pro pulsive pre-

compression/engine

 nacelle favorable

 interference

 lift at

supersonic speeds

 and,

 at hypersonic conditions, th e

entire

 undersurface of the body is an integral part of the

engine flow path for the airbreather case.  However,

little

 "first

 principles"

 work

 is available

 regarding

favorable

 interactions

 in the

 subsonic case.

A

 theoretical

 construct for

 aerodynamic optimization

 in

an

 open system

 is not yet extant, but

 there

 are

 several

discrete

 exam ples, in addition to the

 whig-tip

 engine

case,

 where

 synerg istic airframe/  aerodynamic-

prop ulsion integration has been

 studied

 and in some

cases even applied.

  These include

 circulation contro l

wing flow  which offers  up to a factor of 4

 increase

 in

CL

  compared to

 conventional flaps

 and

 slats with

tremendous

 reductions to

  part count"

 (reference

 56),

wake/boundary layer ingestion into the propulsion

system  [order of 15 percent increase in propulsion

efficiency (e.g.,

 reference 57)] including synergistic

interaction with an LFC suction system (reference

 58);

thrust vectoring for control (e.g., X-31,  tail-less

fighters, etc.) and, hyperson ically, fo r lift enhancement

and thrust requirement reduction; utilization of a

leading edge

 region

 LFC

 suction system

 for high

 lift

during

  takeoff;

  the

 ejector

 wing f or improved structural

and aero efficiency

  (reference

 59); wing tip injection for

wake vo rtex

 and drag-due-to-lift

 reduction

 an d myriad

propulsive-augmented  high lift schemes.  An additional

major oppor tunity

 f or

 synergistic propulsion-

aerodynamic

 interaction

 is the

 "Goldschmied"

 wing (o r

body), a

 takeoff

 on the Griffith

  wing (reference 60).

The

 basic

 concept is to po sition  the propulsive inlet in

the recompression region on the wing/afterbody  to

effectively  place  sinks inside the

 body

 and convert

much of the

 balance

 of the

 afterbody  into

 a

 stagnation

region instead of having a rear stagnation  point.

Estimates

 indicate up to a 50

 percent

 "cancellation"

 of

the

 body fr iction

  drag

 is possible via this "static

pressure thrust" approach (references 61-65).  An

additional,

 but to

 this point

 unevaluated, approach is

use of

 inflatable

 surfaces to provide "mission

adaptation."

 A particularly attractive

 application

 of

this

 would

 be

 tailoring

 of the

 afterbody

  region o f

hypersonic

 cruise

 vehicles

 during

 acceleration through

American

 Institute

 of Aeronautics and Astronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 4/20

Co p y r i g h t ©   1997 Amer ican   Institute

 o f

 Aerona ut ics

  and

 Ast rona ut ics Inc .

the transonic speed

 regime

 to alleviate the tremendous

transonic "drag pinch" problem

 on configurations

designed fo r efficient hypersonic cruise/

acceleration/airbreathing.

Double Fuselage

Conventionally,  double fuselage/multi-body

  aircraft

have

 been employed to pr ovide span-load distribution

and accrue

 the associated

 structural w eight benefits

(reduced

 wing

 bending

 mom ent) without going

 all the

way to a

 "blended

 wing

 body'Vspanloader

 configuration

i.e.,

 providing

 such

 benefits

 v ia

 "con ventional" (e.g.,

"comfortable")   technology. Total

 aircraft

 drag is also

reduced, primarily due to

 favorable effects

 on drag-due-

to-lift

 (e.g.,

 references 9 and 66-70).

An  advanced double fuselage approach could attempt to

delete

 th e

 conventional

 outer

 wing

 panels

 and

 only

retain a,

 largely unswept/long

 chord, whig section

between

 the fuselages.  This requires prodigious drag-

due-to-lift reduction, a requirement which can be

addressed via design of the fuselages as wing-tip "end

plates and the

 individual

 fuselage emp ennage as

"winglets,"

 i.e.,

 the tails become

 thrusting

 surfaces  in

the presence of the

 wing

 vort icitv wrapping around the

fuselage(s).

For this

 case,

 the "m idwing" can becom e the

 site

 of the

gear

 (to

 allow

 use of con ventional runways), engines

"buried"  at the rear of the wing to accrue the

 benefits

 o f

"boundary layer ingestion" and extensive (natural/

suction) lam inar

 flow.

  The

 major payoff

  would accrue

from

 making

 the

 fuselages  detachable/interchangeable

to  prov ide a civilian

 "sky-train"

 with

 enhanced

productivity. The midwing portion which does all the

"flying" could be in the air nearly "around the clock"

with freighter and/or

 passenger modules, thereby

 nearly

doubling

 the pro ductivity/duty cycle and "return on

investment"

 (reference

 71).

  Such an approach would

allow

 a restructuring of the

 airline capital

 investment,

with the

 airlines "o wning" their fuselages

 and

 leasing

them

 from a

 "rent-a-wing"

 company. Obviously,

military

 versions

 could have

 cargo,

 troop, and

 refueling

fuselages-providing  a quantum jump in

 m ilitary

flexibility

 and productivity.

Biplane/Ring

 Wing

Another alternative configuration  is a "back-to-the-

future"

 relook at a

 long-haul biplane (reference

 72 , see

also

 references 9 ,73 and

 74).

  Recent

 work (reference

72) indicates a wide spectrum of benefits for

 such

 an

approach, again in the context of

 present-to-future

advances

 in CFD, materials, controls, "Designer Fluid

Mechanics,"

 etc. techno logies.

  Some

 of

 these

estimated

 benefits

 a re

 major-60

 percent

 reduction in

wing weight, order of 30 percent

 increase

 in L/D and

reduced vortex hazard.  The related ring whig (e.g.,

references 75 and 76) is also worth

 r evisiting.

JIJMBO AIRCRAFT

As

 this

 paper

 is written, the requirement

 for,

 and

interest

 in, "Jumbo A ircraft" (>600

 PAX)

 is in a state

of

 uncertainty. Airbus is proceeding

 with

 an enlarged

"conventional"

 aircraft

 study/development, B oeing has

placed

 its corresponding effort  on the "back burner" and

the  fate o f a developing

 Douglas

 aircraft blended wing

body

 effort

  is dependent upon the

 outcome

 of the

proposed  Boeing-McDonnell Do uglas "m erger."  There

is

 little doubt that

 a

 larger size/updated version

 of the

747

 would have greatly

 improved

 performance

 (e.g.,

reference 77).  At some level the major players

 (U.S.,

Europ eans, Russians) are studying the technology fo r a

jumbo aircraft in the 800+ PAX range which is,

"different"-some variant

 of the

 spanloader

 or

 "blended

wing body"

 (BWB).

 From reference 78, "machines

with

 more

 than

 1,000

 seats will

 have to be

 designed.

For such m achines, the

 unstable flying wing,

 quite

probably equipped

 with

 a canard,

 will

 be the imposed

solution."

 (Bernard Ziegler,

 Senior

 Vice President,

Engineering, A irbus).  Jumbo options

 aside from

conventional and BWB include multi-body and wing-in-

ground (WIG) effect  The multi-body is a viable

candidate

 but the WIG

 probably

 is not.  Study of the

extensive Russian

 work in the WIG

 arena indicates

several nontrivial problem areas for the WIG vis-a-vis

the long

 haul

 transport

 mission-operation near the

surface in

 high

 density air engendering a

 high drag

level,

 structural and pro pulsive weight inefficiencies

associated

 with w ater impact and takeof f thrust

requirements

 and

 safety

 problems

 associated

 with

operation  at the extremely low altitudes (fractions  of

the wing chord) required to attain

 appreciable

 ground

effect benefits

 on

  cruise L/D.

The

 success

 of a

 "deployed version,"

 the B -2 bomber,

has renewed interest, worldwide, hi spanloader/blended

wing-body

 aircraft  The major performance benefits of

such

 aircraft

 are required to address the po tential "killer

issues fo r jumbo aircraft-noise

 and

 vortex hazard

American Institute of Aeronautics and

 Astronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 5/20

Co p y r i g h t ©

  1997

Amer ican

  Inst i tute of Aeronaut ics   and  Ast ronaut ics Inc.

engendered by their great

 weight.

  It is not clear,

although jumb o

 aircraft

 will obviously carry

 more

passengers  individually,

 whether

 airport

 passenger

throughput will go up or down with the introduction of

jumbos—more

 PAX per

  aircraft

 bu t perhaps

 less

aircraft/unit  time in terms of

  takeoffs/landings

 due to

wake vortex/noise/passenger handling delays.

Obvious benefits of

 spanloader

 aircraft include large

increases in L/D

 (due

 primarily to the  demise of

fuselage

 wetted

 area/skin

 fr iction)

 and reduction in

empty and gross takeoff weight.  The design

 approach

"puts

 the lift

 where

 the

 load

 is" fo r a requisite

 size

aircraft  with a

 phy sical

 wing th ickness sufficient  to

allow  passenger seating within t he

 wing.

  The

technological

 challenges

 (as

 well

 as the

 oppor tunities)

of an

 800+

 PA X

 long haul

 B W B transport are

tremendous but at

 least

 thus

 far evidently

 "wo rkable."

These challenges include

 thick wing sections

 (possibly

with

 hybrid LFC and synergistic ("Goldschmied")

propulsion

 integration),

 non-circular pressure

 vessels,

stability

 and

 control,

 emergency

 passenger egress, ride

quality,  airport

 com patibility

 an d

 very

 high R eynolds

number

 aerodynamics-both

 high lift

 and cruise.  The

B  WB design inherently contains a surfeit of internal

volume and is therefore highly conducive to enhanced

range, cargo operation and passenger comfort  In regard

to the latter benefit,

  sleeper

versions  of the B W B

could

 provide

 very interesting comp etition

 to the

HSCT

 for trans-Pacific

 routes

 in

 terms

 of

 enhanced

comfort/lower price

 versus

 shorter tra nsit time/higher

price.

  The

 USAF "New

 W orld

 Vistas"

 study (reference

14)

 specifically

 called out the BWB approach as an

excellent candidate to

 provide

 enhanced

 "global

 reach"

airlift

  capability—in

 conjunction  with pr ecision

 (GPS-

guided) delivery pallets

 as an

 alternative

 to the

 vehicle

design

 decrements and

 vulnerability

 of

 landing

 "in

theater."  The large payload/volume and extraordinary

range of BW B transports also pro vides extraordinary

capability fo r high

 capacity

 paratroop drops,

 cruise

missile or UCAV carriage/launch, "AW AC S" m issions

and

 "aerial replenishmen t"  References 9 and

 82-87

provide an entre into the BWB literature, reference 88

describes

 a

 very

 different Russian spanloader

 approach.

THE

 CHANNEL WING

The channel whig is an interesting example of an

advanced configuration w hich was somewhat ahead of

its

 time.

  The

 concept

 was o riginally developed,

essentially

 empirically, in the

 40's

 an d

 early 50's

 as a

STOL

 light

 aircraft and several versions w ere flown,

this is not

 just

 a  paper airplane. The essential

technology

 consists of a sem icircular airfoil

  "channel"

underneath, and surrounding on the

 underside,

"standoff

  wing

 mo unted engine nacelles such that the

engine-induced airflow

 produces

 sizable lift on the wing

 channel

at

 zero-to-low forward speed, providing

dramatic

 STOL

 capability. The

 developers

 of the

configuration  claimed, but there was never any

satisfactory  proof  that the approach w as capable of

near

 VTOL performance.

  Development

 of this

 concept

has been essentially dormant since the

 late

 50's except

for

 Soviet

 research-Antonov produced

 an advanced

prototype-demonstrator in the

 late 80's

 termed the AN-

181  (reference

 89).

The original

 40 's-to-50's

 era research on the channel

wing

 was, by necessity, highly empirical an d resource

constrained (see

 references

 90-97).  The concept

provides a classic

 example

 of an

 approach

 worth

revisiting

 with

 updated

 tools

 and technology to

ascertain

 th e

 extent

 to w hich its STOL performance

could

 approach

 VTOL.  In

 particular,

 th e

 incorporation

of  circulation control in the classical

 sense

 (via

blowing imm ediately upstream an d above the trailing

edge),

 when combined with

 the engine-induced flow

over the wing,

 should further

 augment the

  lifting

capability of the

 configuration.  Additional technology

updates/approaches of possible interest include (power-

on)  CFD,

 flow

  separation

 avoidance an d control, wing

laminar

 flow  fo r cruise

 performance

 and inboard strut-

bracing along with the all important

 controls

 issues.

The

 po tential

 fo r such an

 updated channel

 wing

approach to  address the "V-22 niche"

 should

 be

determined as the

 channel

 wing

 could

 po ssibly

incorporate very

 interesting

 lifting  capabilities with

 a

fairly high

 cruise speed at reduced w eight/cost compared

to the V-22

 (with

 it s

 engine rotation requirements

 an d

associated systems penalties).

HIGH

 SPEED

 CIVIL

 TRANSPORT

The increasing importance of "Pacific Run" air travel

and the requisite

 long transpacific

 flight

  times

 for the

current subsonic transpo rts have renewed

 interest

 in a

Mach 2 class

 "high speed

 civil

 transport."

  Such a

device

 is nom inally a "flying  fuel

  tank"

 to a much

greater extent than the subsonic case, due to the

American

 Institute of

 A eronautics

 and Astronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 6/20

C op y r i gh t © 1997 Amer ican   Ins t itu te of Ae ronau t ics and Ast ronaut ics Inc .

addition  of

 appreciable

 wave

 drag.

  This large

 fuel

fraction

  (order of one half to two thirds of gross takeoff

weight)

 makes the designs

 exceedingly sensitive

 to drag

level and drag

 reduction.

  A mere 1 percent drag

reduction

 can

 yield

 a IS Klb

 reduction

 in take off

weight.

  To

 first order

 the

 cruise drag

 is

 nearly equally

partitioned between skin friction, volume wave drag

and wave/vortex drag-due-to-lift.  Large drag reductions

are pot entially available

 via

 "Designer

 Fluid

Mechanics," e.g.,

 laminar

 flow control,

 favorable

 wave

interference

 and flow separation control as

 well

 as

configuration tailoring to produce an elongated lifting

line

 (references

 25 and 99).  The

 following

 advanced

configuration

 concepts provide

 enhanced performance

alternatives

 to the

 conventional

 "double-delta"

planforms. Drag r eductions theoretically

 attainable

include

 up to 70+

 percent

 of the skin

  friction

  via

laminar

 flow

 control

 and a very large

 fraction

 o f the

volume wave drag  via favorable wave interference.

Parasol W ing

This

 is an old

 approach wherein

 reflections of the

fuselage nose

 shock pro vides

 favor able interference  lift

and  subsequent afterbody region thrust

 (references

 4,

99-102).

  Estimated

 L/D

 impro vements

 are in the

 range

of  25 to 30 percent  Advanced

 technologies

 required to

accrue these

 benefits

 include flow separation

 control

 for

the

 shock-boundary

 layer interaction regions and

fluidics o r va riable physical geometry to work the "off-

design"

 performance

 issues.  The

 reduction

 in volume

wave drag may allow

 reduced

 wing sweep and

consequent greatly enhanced LFC application.

Strut-Braced "Extreme Arrow"

Pfenninger  has also

 advocated

 an

 externally

 strut-braced

HSCT  with truly revolutionary cruise performance-an

L/D of order 20,

 over tw ice

 that of the

 best

 of the

current

 appro aches

 (references 103 and

 104).

  The strut

bracing allows use of an extreme arrow wing planform

with

 m inimal w ave drag-due-to-lift,

 increased aspect

ratio

 and extensive laminar flow

  ("controlled").

  Mid-

wing fuel canisters are used to provide

 favorable

 wave

interference an d

 load

 alleviation

 with

 extensive

"natural"

 laminar flow  on both the fuel canisters and

the fuselage.

Other A lternative HSCT

 Approaches

Northrup has studied a "reverse delta"

 configura tion

  fo r

purposes of obtaining extensive regions of  "natural"

laminar

 flow

 on the wing (reference 105, see also

reference 106).  "Novel" general concepts

 with

application  across

 th e

 configurational

  spectrum include

use of flow  separation control at cruise to allow full

exploitation

 of inviscid design precepts

 (reference

 25).

The current

 design

 approach

 entails investigation

 of

advanced (primarily inviscid

 flow-driven)

 aero concepts

in

 th e

 wind tunnel

 to

 determine flow separation

boundaries in

 terms

 of vehicle attitude and geometry.

The p otential

 performance

 of the

 advanced concept

 is

then

 degraded accordingly.

  Utilization of "designer

fluid m echanics" technology in a proactive manner fo r

cruise should

 allow

 recovery

 of

 this flow separation-

induced

 performance

 loss.  Potential

 benefits

  include

enhanced wing leading edge

 thrust,

 increased upper

surface lift, increased fuselage

 lift/camber

 (reduced

 wave

DDL)

 and

 enhanced

 perform ance of favo rable wave

interference (via shock-B.L. separation

 control)

 as well

as

 "bird-like"

 flight

  fo r enhanced ah-

 system

productivity/noise reduction at lower speeds.

Another

 "alternative" is to

 consider

 a "multi-stage"

aircraft  (e.g.,

 references

 25 and 107).  In-flight refueling

and  some type

 of "take-off

  assistance"

 are

 obvious

ways

 to

 "multi-stage,"

 but what is

 specifically

suggested

 herein is that

 since

 th e

 HSCT

 is a "flying

fuel

 tank"

 the aircraft  that lands is very

 different/lighter

weight

 than

 the vehicle at

 takeoff.  Therefore,

 the

heavy fuel/noise  control/high lift devices and gear

 (gear

weight  approaches fuselage weight for an HSCT)

required for the

 "takeoff ' condition

 could

 perhaps

 be

positioned toward the rear of the craft and

"detached'V'flown

 back"

 once airborne.  The vehicle is

thus

 no t

 burdened throughout

 it s

 flight

 by

 apparatus

uniquely

 required

 f or

 mission initiation only.

If economics or

 environmental considerations

 dictate a

lower

 altitude/low er

 speed

 (« 50

 Kft,

 M

 =1.5)

 than an

obvious "approach of choice would be the

 R.T.

 Jones

yawed whig

 (references

 108-110) which

 is capable,

from  reference 108, of doubling

 speed

 and increasing

PAX

  load-out 25 p ercent v is-a-vis the 747 for

essentially

 the

 same

 fuel

  burn.

Another exceedingly interesting but at this point

highly

 speculative

 approach to HSC T

 (and

 also CTOL)

optimization is through

 wave drag reduction

 via

"plasma Control"/ electro-gas-dynam ics. The

conventional shock-plasma Interaction literature is

clustered about two "end points" in terms of param eter

space-planetary (collision-less)

 bow

 shock form ation

 in

6

American

 Institute of

 Aeronautics

 and

 Astronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 7/20

Co p y r i g h t ©

  1997

Amer ican

  Inst i tute of Aeronaut ics   and  Ast ronaut ics Inc.

the solar

 wind and

 inertial-confined fusion.

  Of

particular interest in the former case is Venus, which

has no

 m agnetosphere

 and is therefor e subject to

electro-gas-dynam ics as opposed to

 magneto-electro-gas

dynamics

 phenomena

 (e.g.,

 reference

  111).

Examination of the

 phy sics

 of shock-plasma

interactions (c.f.,

 reference

  112) indicates

 that, in the

absence

 of a magnetic

 field ion -acoustic waves

 are

expected

 to be dom inant. Research in

 Russia

 (e.g.,

reference

 113)

 and the

 U.S.

 (reference

  114) indicates

unexpectedly large experimental effects  for a "new

arena of  shock-plasma interaction— weakly ionized

plasmas

 at

 conventional

 gas dynamic conditions

(continum

 flow,  supersonic/hypersonic

 Mach

numbers). Typical requisite experimenta l conditions

are 10

12

  electrons/cc, but

 relatively

 high electron

temperature

 (vis-a-vis ion/neutral

 temperature)

 and

placement

 of

 electrons well

 ahead of the

 unmo dified

bow  shock.  Conventional wisdom (e.g., reference

  115)

would indicate

 that

 such weak ionization should

 have

little-to-no

 effect

 on the

 neutral

 gas

 dynam ics.

How ever, the

 ob servations

 indicate

 virtual

 replacement

of  the usual

 speed

 of sound by a higher speed wave

system  the

 order

 of the ion-acoustic velocity and

consequent reduction in effective  Mach number and

body

 drag.

  The reducio-ad-absurdium implications are

truely

 revolutiona ry-an increase in

 drag

 rise

 Mach

number  from 0(.85) to  0(2+),

 HSCT's

 which

 a re

similar

 in configuration  to CTOL transports and CTOL

transports

 with greatly increased wing thickness/reduced

sweep, etc.

  The

 keys

 to

 such

 leaps

 are the

 verification

of  the

 available observations,

 understanding of the

operative physics and obvious

 developmental

 aspects

associated with

 high temperature

 electron

 generation

and

 placement

 in and ahead of the vehicle flow  field.

That an increase in sound speed can reduce wave

 drag

has long

 been

 known

 (e.g.,

 references 116 and

 117),

but

 heating per se is

 simply

 not an

 energetically

efficient

 approach to obtaining such a sound

 speed

increase/drag

 reduction.

  What is "new" is the

possibility o f employing new

 physics (e.g.,

coulombic-induced  com munication-ion-acoustic

waves)

 and the

 exceedingly

 low

 power levels

 which the

existing

 data

 base

 suggests are required. Some type of

"amplification

 system" may be operative to achieve

such dramatic influences

 upon

 gross flow

  field

 features

from

 such a small energy input/low

  ionization

  fraction.

A

 current line of investigation in that

 regard involves

dynamic processes including ion-acoustic

 instabilities

(e.g., reference 118).

PERSONAL AIRCRAFT-THE

 VTOL

 CONVERTICAR

The

 developed

 nations entered the

 1900's

 with a

transportation  system  (for people) centered upon the

horse, the

 railroad

 and the steamship, with associated

travel times

 the

 order

 of

 hours-to-days/weeks,

depending  upon distance.  In the closing years of the

same

 century,

 th e

 automo bile

 has

 long

 supplanted the

horse and the fixed whig aircraft has nearly

 driven

 the

railroads

 and steamship

 compan ies from

  the long haul

passenger  business.  Travel

 times have shrunk

 to

minutes-to-hours. In the process of supplanting

 older

transportation  systems,

 these

 newer approaches

 have

had a

 profound influence upon

 th e structure of

 modem

societies.

  In the

 U.S.,

 cities

 have

 expanded out of

  18th

century seaports and 19th century

 railheads, where

much of the developed region w as by necessity

 within

walking distance of the transportation

 terminals,

 into

tremendous suburbs with

 attendant reductions

 in

crowding/increased

 opportunity for

 individual

 home

ownership

 etc.,

 etc.

  The existing

 transportation

system  fulfills

  a

 variety

 o f purpo ses, including travel

to and

 from work

 and

 stores,

 and for

 various

 business,

service and pleasure related activities.

This

 portion

 of the

 present

 report

 centers

 upon

 future

possibilities/options  for a

 specific

 portion of the

transportation spectrum, short-to-moderate range,

nominally

 from

  10's to

 100's

 of

 miles.

  The current

dominant transportation

 mode fo r

 this mission

 is the

automobile, which,

 possibly

 more

 than a ny

 other

single technical achievement, has

 enabled

 the current

life style enjoyed by the developed nations.  In this

process,

 the auto has created

 m assive safety problems

(order

 of

 40,000

 deaths/year due to highway accidents)

and has been responsible for the expenditure of truly

prodigious sums

 on

 roads,

 bridges, along with

pollution-induced health

 and

 m aterial degradation

remediation.

  The current status of the auto

infrastructure  is that w e

 continue

 to

 clear

 and

 pave

more

 of the watershed, contributing to air po llution,

flooding, desiccation,

 th e

 formation

 of

 heat islands

 and

wildlife

 habitat degradation. Also, the average trip

time

 is

 increasing

 due to

 suburbian expansion

 and

increased

 congestion, causing non-trivial

 changes in

family  life

 as

 travelers attempt

 to

 utilize non-traditional

time slots, o r suffer  long/nonproductive comm utes.  In

American

 Institute of Aeronautics and Astronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 8/20

C op y r i gh t © 1997 Amer ican   Ins ti tu te of Aerona ut ics and Ast rona ut ics Inc.

the

 U.S.

 th e interstate

 highway

 system is (finally)

finished

 and is already

 clearly

 overburdened and in

 need

of  very expensive repairs

 and expansion, particularly in

the

 urban areas.

Society cannot, easily or otherwise, continue to bear

the

 costs imposed

 by almost

 sole reliance upon

 the

automobile

 fo r short-to-intermediate

 passenger

transport, alternatives are

 necessary

 for the future— both

for

  the

 developed societies

 and

 those that

 desire

 to/are

developing.

  Probably the

 most

 comm only

 advocated

alternatives involve

 some

 form

 of mass

 transit, which

have,

 along with tremendous capital costs, several

other drawbacks such

 as

 passenger wait time,

 weather

exposure

 and

 lack

 of

 p rivacy, security, pride

 of

ownership

 and

 personal stowage.

 Additional drawbacks

are the

 fact

  that they

 are not

  portal-to-portal

 and

 there

 is

no  guarantee of

 having

 a

 seat,

 as well as an inherent

assumption

 regarding

 increased

 population

density/concentration.

  Undoubtedly, th e

 future

 mix of

short-to-intermediate transport systems

 will include

both

 mass tran sit and autom obiles of

 some variety,

probably operated on

 "intelligent"

 highways to

improve safety and throughput/trip time (reference

119).  The "smart highway " alternative is, however,

expensive and

 very

 limited in terms of growth

 potential

(=0[factorof2]).

There is,

 however, both

 a n eed and an opportunity to

include in the transporta tion m ix a personal air

 vehicle

which would

 provide, percentage-wise, the same

increase

 in

 speed

 (compared to the

 auto

 in traff ic),  as

the auto

 provided

 over the horse. Personal air

transportation usable by "everyone" is both

revolutionary and the next  logical step in the

development

 of human infrastructure and corporal

communication. The

 increased

 speed of such a

capability,  along with the

 greatly reduced capital

requirements in

 terms

 of highways/bridges, etc.,

 should

allow  significant

 increases

 in the quality of

 life

 as well

as reduced sta te and national

 public works

 budgets.

Specific benefits include distribution

 of the

 population

over a

 much

 larger area allowing a more

 peaceful/less

damaging

 co-existence

 of m an and nature, along

 with

improved transportation

 safety.

  The  vision is of

multilevel

 highways in the

 sky, contro lled

 and

monitored by

 inexpensive

 electronics as

 opposed

 to

narrow, single level, exceedingly expensive "ribbons of

concrete" (e.g.,

 reference 120).

  Such air

systems/vehicles could also obviously be used fo r

longer  haul, as are automobiles today. The various

wait

 times

 associated with comm ercial

 air

 travel, along

with the inefficiencies in

 terms

 of transit time of the

hub

 and spoke

 system

 mitigate in favor o f reduced

overall

 trip time for

 slower,

 but

 more

 direct,

 travel via

personal aircraft (compared to the "faster" commercial

jet).

  Various options

 exist for personal aircraft

systems.

  The discussion

 herein will

 address one such

option,

 an automatic VTO L-converticar, and attempt to

defend

  that

 particular

 recomm endation.

Certain

  requirements/desirements

 are comm on to any

personal

 transportation

  vehicle/system. These

 include

short

 transit time/high

 speed,

 direct portal-to-portal,

privacy and security, constant availability, personal

stowage and a

 suitability

 fo r use by the "n on-pilot."

The latter

 necessitates  from

  the outset

 that

 an obvious

(and

 probably

 attainable) goal should

 be an automatic

personal air

 transport

 system, autom atic

 with

 respect to

navigation

 (e.g.,

 references

 121-123),

 air

 traffic

 control

and

 op eration.  The technology to accomp lish this is

either

 currently

 employed by/for the

 long

 haul air

transport application, or in the

 research/application

pipeline, thanks to the

 m icrochip "electronics

revolution"  and includes

 GPS,

 personal and other

communication

 satellites

 (44

 broadband/mobile

communication

 satellite systems "on the

 books'Vin

progress)

 and the

 military investments

 in

 RPV 's,

AA V's, UA V's, UTA's, UCA V's, etc. Such

automatic

 operation could

 provide

 vastly

 improved

safety,

 as the p reponderance (70 percent to 80 percent)

of

 a ir

 transport accidents have historically been

 due to

"human

 error."

  In addition, it

 makes

 personal air

vehicle

 transportation

 available to the general public,

as

 opposed

 to the few who

 have

 the opportunity,

wealth,

 and physical character istics to become pilots,

as well as reducing the

 unit

 cost by an order of

magnitude or

 more

 due to the concomitant

 vast

increases in production ra te/market.

Conventional wisdom holds tha t, to be successful, an

alternative

  transportation

 system must be not

 only

faster,

 but

 also

 relatively

  inexpensive. The

 costs

involved in any system  include a cquisition, operation,

maintenance, and depreciation .  To be com petitive with

the

 automo bile

 a

 personal

 VT OL -converticar should

have

 an acquisition

 cost

 in the vicinity of a quality

automobile.  Although in terms of the

 current

helicopter   industry, this

 is a

 ridiculous target,

 th e

advantages

 of a

 production

 run of millions

 instead

 of

American Institute of Aeronautics and Astronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 9/20

Co p y r i g h t ©

 1997

Amer ican

  Inst i tute of

 Aeronaut ics

 and A s t ronaut i cs Inc.

hundreds, along

 with

 a

 recent offering

  of a

 single seat

helo

 for $30K  (references 124 and 125) and a

 two-place

"gyroplane"  for

 $20K,

 all at

 small

 production runs

makes the outlook to

 achieve

 such a

 go al possible

 if

no t

 probable

 (see

 reference

 126).

 Operational costs

include fuel,  insurance, parking fees,

 etc., and

 need

 no t

be greater than the

 auto.

 Maintenance is considerably

greater fo r present

 helos

 than for autos, and

 therefore

this issue

 would have to be

 addressed

 in any personal

helo

 technology

 development

 program.

All-weather operation is also a requirement , the same

all-weather capability one now has in an automobile,

which  is by no m eans

 absolute.

  Extremely heavy rain,

extreme winds, ice and snow

  will

 all either

 slow

 or

stop  the auto, and similar restrictions will probably

hold

 for the personal

 helo.

  Obviously

 the evolving

"detect

 and

 avoid"

 technology could be

 utilized

 by the

personal

 helo

 (either on or off board) to increase

 safety

vis-a-vis

 extreme

 weather.  In terms of speed and range,

the helo must provide a significant speed advantage or

it is simply n ot   viable.  As compared t o a  fixed wing

personal aircraft,  the helo speed

 advantage

 is

 much

 less

vis-a-vis th e auto, but at a

 nominal

 factor o f 4

 (for

  th e

traffic case) still sufficient

  We are

 currently spending

significant  sums to

 gain

 a factor of 2+ in the

 high

speed civil transport program (vis-a-vis subsonic

transports).

  Another

 key issue is rider acceptance in

terms of acoustics, vibration, r ide

 quality,

 and

reliability/safety.

  All of these technical

 areas

 will

require

 further

 work, although the

 helo

 community ha s

made significant

 strides in

 these already

 and

considerable further

  gains/technological

 advances are in

the pipeline.  A final major set of issues involve

community acceptance

 in

 terms

 of

 acoustics

 and

downdrafts during near surface operations. Again, more

work is needed, but th ese could be

 addressed

 by

operational as

 well

 as

 technological

 approaches.

Previous approaches to the

 "personal

 helicopter" have

mainly considered existing

 machines

 as opposed to the

advanced

 technology/ farther

  term

 vision discussed

herein

 (e.g., references 127-129).  There have been,

however,

 calls fo r such an approach

 (references 130,

131).

Over the years, particularly

 since

 the 1930's, there have

been suggestions,

 and in

 some cases

 strident

 calls,

 fo r

the developm ent and marketing o f personal

 aircraft

Although

 "general aviation" has

 made

 considerable

advances,

 the "aircraft for the

 masses" never

 really

caught on for a variety of

 reasons,

 mainly

 involving

COST,

 requisite techno logy

 readiness

 and an absolute

requirement that th e "operator" be a  pilot e.g.,

 non-

automatic

 operation.

  History

 is replete

 with

 examples

of

 concepts

 which are

 good ideas

 and which

 keep

resurfacing   until

 the

 technology base

 is

 ready.

  An

obvious example is the gas turbine engine.  Since the

last personal aircraft campaign in the

 late

 40's-50's,

major

 strides

 have

 occurred in

 several

 enabling

technologies.

  These

 include

 light weight miniature,

inexpensive

 and trem endously

 capable electronics/

computing,

 lightweight

 composite

 m aterials

 with

"nearly infinite" fatigue life, com putational fluid

mechanics, smart-to-brilliant

 ma terials/skins, flow

control

 of

 several

 types and

 active controls/load

alleviation.

  Such

 advances significantly change the

personal aircraft  discussion,

 par ticularly

 for the helo.

"The helicopter looks,

 35 to 40 years

 after

  its

invention,

 to be

 poised

 in the po sition t he

 fixed

 wing

aircraft

 were in the

 late

 40's and

 early

 50's,

 again

 40

years

 after t he

 first

 flights

 w ere being

 made"

 (reference

132).

  In

 particular,

 the

 personal helicopter would

profit from much

 of the sizable investment made in

military

 m achine

 research,

 albeit the civilian

application is in

 many

 ways less severe in terms of

"rough

 usage" etc. This

 is

 again directly analo gous

 to

the fixed wing

 situation where the 707

 class

 of

transport  aircraft

  profited

 immensely from/was enabled

by , the military investments in swept  wing/jet

propelled bombers/tankers/transports.

Key helo -specific

 technologies

 either

 available or in the

pipeline include com posite blades

 with

 10,000

 hour

fatigue life,  the hingeless-bearingless roto r with low

drag

 hub,

 automatic health monitoring to allow

significant reductions

 in

 m aintenance costs, anti-

vibration and anti-noise fo r enhanced rider comfort,

automatic piloting and navigation/nap-of-the-Earth

operation, and composite structure and smart

 skins

 fo r

flow and load control (see, for example, references 133-

140).

There

 are several "system s level" issues and critical

choices

 regarding

 the

 personal aircraft which served

 as

key  discriminator s in the selection of the

 par ticular

personal

 aircraft discussed

 herein, a

 helo-converticar.

The

 first

  such

 issue

 is

 whether

 th e

 personal aircraft

(either  "fixed" o r rotary wing) should be a

 separate

 air

vehicle,

 or a

 "conv erticar," i.e.,

 a

 combination

autom obile and air

 vehicle capable

 of

 economically

American Institute of Aeronautics and A stronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 10/20

C opy r i gh t ©  1997 American Ins t itu te o f Aerona ut ics and A st ronaut ics Inc.

performing  both missions. Economics

 and

 utility

strongly

 favor

  the

 "converticar" option.

 There are

numerous

 elements

 commo n to both the air and ground

vehicles, such as passenger

 com partm ents,

 engines,

etc.

 and therefore, if it is technically feasible to

 reduce

the weight of an auto to

 what

 is

 reasonable

 for an air

vehicle, then

 a

 single

 device should be considerably

more economical (initial cost

 as

 well

 as maintenance-

wise) than buying and maintaining tw o

 separate

vehicles, part icularly when one considers the present

cost

 of  autos. Simplex

 estimates

 of the

 flight-specific

component w eights indicate

 a

 value

 of

 less than 1000

pounds,

 indicating

 that,

 with shared

 utilization

 of

common systems such as the engine, the

 "all-up"

weight of the

 converticar could

 be in the

 (reasonable)

range

 of

 3000+

 pounds. From an operational

viewpoint,

 usage

 as well as m aintenance-wise, a single

vehicle

 should be

 much

 more

 convenient,

 obviating

 the

need for a

  rent-a-car

in the

 vacinity

 of

 one's

destination. Once the converticar option is

 selected,

some decision/recomm endation

 has to be made

regarding the prov ision for the

 "air-unique"

components,

 pa rticularly

 th e

 lift-producing  surfaces

which require, fo r

 reasonable levels

 of drag-due-to-lift,

non-trivial

 span/aspect ratio.

  Option s include towed

"trailored" wings (utilized in early versions of the

converticar),

 fixed wings of inherently low aspect

 ratio

for

  readability (reference 141), airport

 "rent-a-wing"

concessions

 where the

 wings

 are attached prior to , and

removed

 at the conclusion of,

 flight,

 and

telescoping/folding

  wings. The

 present

 author favors

the telescoping/folding option

 as

 offering

  the

 best

comprom ise between

 convenience and

 performance.

The next critical cho ice is between conventionaV 'fixed

wing" operation and a  VTOL device.  An essential

difference  is that the

 fixed wing machine/operation

requires an

 airport.

  There are

 many

 thousands of GA

airports in the U.S. and one would have to

 begin

 and

end the air

 portion

 of the

 trip

 at one of

 these.

  In the

opinion of the

 present author, this

 is

 simply

 too

restrictive and contravenes several of the fundamental

purposes of the personal air vehicle

 such

 as

independence

 of/reduced

  requirement for large civil

works,

 portal-to-portal transportation,

 and access to

remote sites

 (remote

 from  roads,

 etc.).

The VTOL

 option

 would

 allow

 development/usage of

currently undeveloped nations/regions at a fraction of

the

 cost

 of the roads/bridges, etc. usually required fo r

such  development,

 and at much

 less

 disruption to the

environment (reference 142).  The estimated off-shore

mark et for such a  device is the order of

 $.5T/year.

Conversion from  ground to

 flight

 and back again for a

helo-converticar

 requires only a

 relatively

 hard surface

with a

 diameter

 the order of 25 f t, something which

could be placed at

 intervals

 along side th e

 existing

highway system to provide convenient ground-to-air

"merging" away from  existing b uiltup housing areas

 to

minim ize acoustic/downdraft etc.,

 influences

 upon the

population.

  Further advantages of the helo include the

provision for both lift an d prop ulsion in a

 single

 device

during

 air

 operation

 and ATC

 "margin"

 (in the

 event

 of

an A TC conflict the vehicles

 involved

 could

 "hover"

 or

locally  land while the

 problem

 is addressed/resolved).

Another

 major option

 involves the extent to which the

operation

 in the air

 mode

 should be automatic as

opposed to

 p ilot/human derived. While

 sport

 mo dels

could be

 somewhat

 human-controlled (within the

confines of the A TC/safety

 regulations)

 the optimal

solution

 is clear.  The

 portion

 of the

 population

physiologically capable

 of becoming

 pilots

 is not

 large

and

 there is considerable cost and time involved in

doing so, m ost accidents are due to

 pilot

 error

 (reference

129), and the AT C system requires, for the large

numbers ultimately envisaged, autom atic operation.

Therefore,

 a

 user-orientated personal

 air

 capab ility

should,

 ultimately, be

 automatic

 in operation as

 well

as navigation and ATC, as

 already

 suggested

 herein.

A  personal

 transportation machine

 capable of

 both

ground and

 (VTOL)

 air

 operation

 could be an

automobile with

 an 1C

 engine (reference

 144),

 probably

initially

 a

 two-seater

 and at

 least somewhat pilot-

controlled,

 which

 is light enough to also fly and

 which

has

 built into

 its

 roof

 a n

 erectable

 low

 drag, large taper

(reference 145) rotatable hub with a diameter consistent

with the

 vehicle

 width

 containing

 the order of four o r

mo re telescoping/

 folding

 rotor

 blades.

  In addition, a

rear deck vertical fin is

 required

 w ithin wh ich is a,

perhaps electrically driven, tail

 rotor.

  Alternative

approaches

 include circulation contro l on the

"afterbody" o r a tandem/counter-rotating rotor system.

As stated several times in this

 discussion ,

 th e central

issue is COST (see the quote from  Henry Ford in

reference

 146) and

 usability.

  As a

 result

 of

technological advances in

 several

 areas, many of them

momentous, and the tremendous requirement/market fo r

10

Am erican Institute of A eronautics and Astronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 11/20

Co p y r i g h t ©  1997 American Inst i tu te  o f Ae rona u t ics  and  A s t ronau t ics Inc.

such an

  affordable/user-friendly  capability,

 the

 issue

 of

personal air transportation should be revisited.  The

probable

 course

 of developm ent for personal air

transportation is par allel to that of the automo bile in

the early

 1900's.

  The

 initial

 m achines were expensive

("rich m an's toys") with many impediments to their

operation  such as poor roads, noise

 sensitivity

 and

 laws

which were

 in

 many cases "anti-automobile." Once

industrialists (e.g., Henry

 Ford)

 addressed the

 problem

via  "design to cost/PRICE,"

 simplicity

 (any color as

long

 as

 it's black)

 and m ass pro duction, the

 price

dropped

 drastically and the resulting widespread

sales/utilization  of the

 pro duct revolutionized,

 in

 many

ways, our

 entire society (see also references

 147 and

148).

  The key to such a mass market/affordability  fo r

the

 VTOL

 converticar is

 automatic

 operation via a

largely  existing infra structure and technology base.

Militarized versions

 would

 provide the armed

 forces

with a

 (ro botic/automatic) flying jeep

 capable of

meeting the

 b attlefield

 mobility requirements for the

"Army  after next"

 (beyond

 "Force

 21 ).

 Such

 an

"automatic" VTO L-capable machine would

 also

provide, in a "future world" of increasing prevalent tele-

commuting and "electronic cottages" affo rdable/robotic

delivery  of requisite food supplies for the carbon-based

inhabitants as

 well

 as go ods ordered on the

"net'Vshopping channels.

SPACE   ACCESS

There are tw o disparate space

 access missions with

fundamentally

 different

 but

 overlapping metrics--

inexpensive

 transportation of "pounds to orbit" and

"space  warfare." The

 former m ission

 is

 vital

 to

economical/ viable

 space

 utilization (environment al

monitoring, navigation, com munications, natural

resource observation,

 space

 m anufacturing,

astro/solar/planetary physics, planetary exploration

etc.)

 and is

 currently

 being worked by NASA via the

X-33  and X-34 programs.  The space warfare m ission

was the subject of the NAS P program of the

 late 80's

and early

 90's

 and the continuing/increasing

requirement for a

 military

 T ransatmo spheric Vehicle

(TAVy'space

 plane"

 is clearly

 stated

 in

 several

recent/ongoing

 A ir

 Force planning

 studies

 (e.g.,

Spacecast 2020, Air Force 2025, New  World V istas).

The

 rationale for a military

 space plane includes

 battle

space

 awareness, global precision strike and space

control.

  The present writer

 suggests

 that the

 different

metrics/requirements fo r these tw o m issions may

perhaps best be satisfied by

 disparate approaches~an

advanced rocket for inexpensive space access and an

advanced

 airbreather

 which could uniquely provide

 the

required flexibility

  for the military

 space plane

missions.  The increased dry w eight/cost

 associated

with

 airbreathing engines makes th e

 hypersonic

airbreathing

 option problem atical

 for the

  pounds

 to

orbit"

 mission but its  capability f or self ferry, enhanced

cross

 range,

 orbital

 plane change, recall,

 enhanced

launch window, in-atmospheric abort/assured payload

return,

 dispersed launch

 sites,

 orbit/deorbit/reorbit,

 etc.

uniquely

 satisfy  various space w arfighting metrics (see

references

 149-152).

Considering first  the

 "pounds

 to orbit" m ission for

both

 civilian an d

 military

 applications, over th e years a

large number of studies have "mixed and m atched" the

various

 multitudinous

  technical/technological

 space

access options available, fo cusing o n (significantly)

reduced cost—with n o obvious  clear winning

combination." The following suggested advanced rocket

involves

 emerging

 technologies

 not yet included in

these previous

 systems

 studies with the intent of

addressing

 the prime

 m etric—affo rdabili

 ty. The

suggested

 technological elements of a space access

advanced

 rocket

 include

 propulsion,

 fuel and aero

components.

  The

 suggested

 primary propulsion

 cycle

is a

 pulse-detonation

 wave rocket

 engine,

 a technology

which is successfully emerging  from

  several

 years of

Phase

 2 SBIR research projects.  Potential benefits

include lightw eight,

 order

 of 15

 percent

 Isp

 increase

(constant

 volume as opposed to constant

 pressure

combustion) and up to a  factor of 40 r eduction in

pressure level requirement for the turbine feed pumps

with attendant major  reliability

 and

 cost

 benefits

compared to  current (i.e., SSME ) practice/requirements

(e.g., references

 153-157).

  Significant additional thrust

up to the

 Mach

 6

 regime

 is ava ilable via a lightweight

exhaust

 region

 shroud/ejector

 designed

 using NA SP-

level and

 beyond

 mixing augm entation

 technology.

Estimates indicate

 the

 addition

 of the ejector

 could

significantly  increase payload fractions

 (e.g.,

 references

158-161).

  The suggested advanced

 fuel

  is

 solid

hydrogen  (with imbedded Boron lattice)

 under

development

 in the Phillips

 Laboratory

 HEDM

Program  (reference

 162).

 In addition to the expected

densification benefits,

 th e Air

 Force

 estimates up to a

25

 percent

 fuel

  Isp

  increase. Finally,

 to

 obviate aero-

control-dictated  ballast and "packaging"

 requirements

recourse

 could

 be made to "designer aerodynam ics"

11

American Institute o f A eronautics and A stronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 12/20

C opy r i gh t ©

 1997

Amer ican   Ins t i tu te of Ae ronau t ics and As t ronaut ics

Inc.

wherein dynamic pneumatic vortex generation is

utilized

 to provide stable/contro lled flight in lieu of/in

addition to conventional

 fins

 and

 "static

 margin"

 (e.g.,

reference 163), i.e., application of the NASA/USAF

HARV forebody  vortex

 control

 technology for

 fighter

aircraft  and the

 X-29

 (unstable

 vehicle)

 control

approaches)

 to the

 (unstable)

 rocket control problem.

Optimization of the

 base

 ejector approach suggests a

"different"

  configuration-an

 annular/hollow cylindrical

geometry

 with

  extremely (structural/cost)

 efficient

torroidal  fuel/oxidizer tanks

 and both

 "internal"

 and

external

 air

 entrainment into

 the

 ejector propulsion

stream.

Considering next the m ilitary -specific space-access

requirements,

 the

 suggested airbreathing

cycles/technologies for the TA V/space warfare mission

have as th eir

  core

(up to March=10) the

"conventional"

 NAS P approach of

 (with increasing

Mach number) low

 speed system/RA MJET/diffusive-

burning

 scramjet  A key

 finding from

  th e

 NASP effort

was

 the criticality of the

 high

 Mach number (M>10)

propulsive

 performance.

  In

 particular,

 the internal

losses/penalties

 (friction,

 heat transfer, shock, mixing,

weight,

 disassociation)

 of the diffusive

  burning

scramjet in the high

 Mach

 number regime are not

consistent  with a viable m achine.

Therefore,

 two new

 cycles

 are suggested for this

 M>10

speed

 regime.

  For 10<M< =15 Langley has begun

working

 a

  PMSIC

(premixed shock induced

combustion)

 approach w hich features forebody

 fuel

injection/mixing, greatly reduced com bustor

length/losses/weight  and an Isp

 increase

 the

 order

 of 25

percent (e.g., references

 164-168).

  For the "pullup"

into orbit portion

 of the

 flight path,

 a

 lox-augmented

scramjet, essentially a

 high

 Mach number RBCC is

suggested which

 utilizes

 flow-path em bedded linear

rocket motors

 to

 pressurize

 the combustor/allow

airbreathing to higher altitudes (reference

 149)

 and

provide shear fo r

 enhanced

 m ixing and species for

nozzle catalysis.  The key to a viable PMSIC engine is

the avo idance of "pre-ignition" upstream of the

combustor in the forebody

 premixing

 region along

with simultaneous

 forebody injection/mixing

optimization

 fo r

 penetration,

 fuel

 addition thrust,

injection-induced com pression and forebody skin

friction/heat tr ansfer reduction.

In addition to

 these basic cycles, other

 technolog ies

could

 be employed to

 enhance

 airbreathing prop ulsive

performance at

 high

 Mach n umber-thrust vectoring for

trim  and

 drag

 reduction, m ultiple shock inlet, nozzle

flow  catalysis to reduce the thrust

 loss associated with

species

 "freezing,"

  fuel

  thrust via (highly)

 heated

 fuel

injection

 and forebody boundary layer transition delay

fo r

  flow  path friction/heat transfer  loss

 reduction.

With the

 exception

 of

 limited application

 of

 fuel

heating and tran sition

 delay

 these

 techno logies/cycles

were not employed in the various

 NASP design

 cycles.

Their utilization should

 enable development of a

viable/affordable

  "warfighting" space plane.  An

additional requirement fo r such a development is a

 T&E

engine test

 facility

 in the Mach 10 to 16

 range

with th e

 requisite

 large size/long run time needed for

hypervelocity engine "certification" in terms of the

interacting

 system

 elements-combustion,

 aero-

integration,

 aero-thermal, aero-thermal

 elasticity,

materials/  structures, coatings, seals, controls,

operability,

 etc. Promising

 fa cility  research f o r this

requirement is underway at Princeton

 University

 and

MSB, Inc.

  in

 Butte, Montana.

  The current

  best bet

approach

 is a combination o f

  cold very high

 pressure

air

  storage/supersonic flow establishment

 with

subsequent (serial) energy addition to a m oving stream

via  e-beams

 (or

 MW/lasers)

 and

 subsequent

 MHD

acceleration

 (reference 69).  The R&D

 engine

 test

requirements

 can be met

 viable

 a

 detonation driver

upgrade to the NAS A H ypulse facility  (reference

 170).

The

 design

 driver for

 both

 of

 these

 facilities

 is the high

total

 pressure required to simulate the forebody

  (post

bow  shock) flow  for the PMSIC

 class

 of

 engines

 (e.g.,

simulation

 o f

 "combustor

 entrance"

 conditions

 is not

sufficient).

Our problem in space access is emp hatically n ot a

dearth o f

 prom ising technological possibilities,

 there

are

 many

 more

 than

 m entioned herein.  We are

emphatically not up

 against physical/physics barriers

in terms of major

 performance

  improvement

approaches fo r

 system w eight

reduction/affordability/flexibility,   etc.

CONCLUSIONS

Advanced configuration and "fro ntier" aeronautics is

admittedly long term and high risk (by

 definition)

 but

constitutes, in the opinion of the author, the only

approach available which

 can

 seriously address

 the

12

American

 Institute

 of Aeronautics and

 A stronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 13/20

Co p y r i g h t ©

 1997

Am erican Insti tu te  o f Aeronaut ics   and  Ast ronaut ics

Inc.

productivity, cost,

 safety and environmental

 m etrics

 in

a

  truly

 meaningful

 m anner.

1.

  Contained

 within the discussion herein are

several relatively novel general approaches/concepts.

These

 include, for

 examp le, transport

 aircraft

 designed

and optimized in an open  thermodynamic system

(utilization of

 extensive pro pulsive/ aerodynamic/

structural synergisms) and utilization of

 flow

 control at

cruise

 and otherw ise to accrue full

  iiiviscid

 performance

benefits.

2. A  suggestion is made fo r developm ent of

automatic personal

 aircraft

 operation (via

 GPS,

 corns

satellite

 constellations and RPV/AAV/UCAV, etc.

technology)

 enabling a

 large vehicle production

 run and

an affo rdable revolution in

 personal

 mobility (VTOL

"converticar") and

 many

 aspects of our culture/econom y

($.5T/year

 to $lT/year

 market).

3. A multitude of

 updated/modified

 alternative

configurations

 a re suggested fo r both subsonic and

supersonic long haul which have

 revolutionary

potential.   The

 wealth

 o f available possibilities/

approaches  greatly increases

 the

 probab ility

 that one or

more

 of these

 could "work"

 in the

 "real wor ld."

  The

resource

 level

 currently expended in the area of

 advanced

concepts/configurations

 is, and has long

 been,

"subcritical"

 in

 terms

 of p roviding adequate evaluations

even of the potential of the ideas

 currently

 extant.

4.  Suggestions are m ade for advanced (in

some

 cases revolutionary)

 appro aches to space

 access-

for both

 the

 "pounds-to-orbit"

 and

 space w arfighting

missions.

5. In the opinion of the present

 author,

 we

should

 return t o the invention/development and

utilization o f advanced

 concepts

 as a method of

working

 affordability  (along with

 the

 current design

cycle and manufacturability/"process"

 approaches).

  CKNOWLEDGEMENT Th e

  author

 is, and

 will

forever be greatly indebted to the many in and out of

aeronautics who

 have

 had the courage,

 foresight,

knowledge and creativity to seriously consider the

farther

  term

 possibilities

 in aviation.  Their work is

absolutely crucial to the health and

competitiveness of our industry and national defense

and, increasingly, to the enrichment of the human

experience.

REFERENCES

1. Feldman,

 Joan

 M., "Bane of B usiness

Travel?

A ir

 Transport W orld,

 V . 30, No. 9

 (Sept.

1993), pp.

 44-51.

2.   Arvai, Ernest S., "Telecommunications

and

 Business Travel:

  The

 Revolution

 Has Begun,"

Transportation

 Research

 C ircular,

 Issue

 No. 425,1994,

pp .

 28-31.

3.

  Hughes, Dav id, "Videoconferencing

 Ma y

Cut

 A ir

 Travel,"

 Aviation

 W eek

 and

 Space

Technology,

  ISSN:0005-2175, V. 138, pp .

 31-33,

February

 8,

 1993.

4.

  Kaye,

 Ira, "A ir Transportation and

Telecommunications: Some Future Prospects,

Proceedings

 of the 4th National Conference o n Rural

Public Transportation, held June

 1979,

 Vail,

 Colorado,

pp.

  126-129.

5. Raphael, David E., and Starry ,

 C laire,

 The Future of B usiness Air T ravel,"

 Transportation

Research  Record 1506,

 pp.

 1-7.

6. Conn er, D. William, "Outlook  fo r

Advanced

 Concepts in

 Transport Aircraft,"

 NASA

Technical

 Memorandum

 81810, April

 1980.

7. Hearings

 before

  the Com mittee on

Aeronautical and Space Sciences, United States Senate,

Ninety-Third  Con gress, Second Session, July

 16 and

18,1984, Advanced

 Aeronautical

 Concepts.

8.   Sterk, F. J., and

 Torenbeck,

 E ., eds.,

Unconventional  Aircraft Concepts, papers presented at

a

 sympo sium

 organized by the Netherlands

 Association

of  Aeronautical Eng ineers (NVvL)

 and the

 Students

Society  "Leonardo da Vinci" on A pril

 24,1987,

 at the

Delft

 University

 of Technology.

9.

  Lange,

 Roy H., "A

 Review

 of

Unconventional  A ircraft Design Concepts, ICAS

Proceedings 1986,

 September 7-12,1986, London,

United Kingdom.

10.

  Welge,

 H .

 Robert,

 and

 Antani,

 D. L.,

"HSCT  Aerodynamic Technology for Enhanced

Economic Viability," SAE Technical Paper Series

901924, A erospace

 Technology Conference and

Exposition,

 Long Beach, California,

 O ctober

 1-4,

1990.

11 .  Wolf ,

 John

 D., and

 W arren, Dale

 S .,

  Air

Transports in the

 21st

 C entury," Aerospace

Engineering, September 1992, pp. 29-34.

12.  U.S.

 House

 o f Representatives,

 Report

 of

the Com mittee on the

 Budget— Concurrent

 R esolution

on

  the

 Budget, Fiscal Year 1997,

 p.

 221.

13

American Institute of Aeronautics and Astronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 14/20

Co p y r i g h t ©

  1997

Amer ican

  Ins t itu te of Ae ronau t ics and Ast ronau t ics Inc.

13 .  2025 Ex ecutive Summary, A ir

University,

 Maxwell

 A ir Force Base, Alabama, August

1996.

14. New Wo rld Vistas Air and Space Power

for

  the

 21st

 Century, Summary Volume,

 D ecember

  15 ,

1995.

15. Moxon, Julian, "Fo recast  II: Art of the

Possible, Flight International, October 11,  1986, pp.

20-24.

16.

  Jarrett, Philip,

  So

 W hat 's New?"

FLIGHT International, January

 21, 1984, pp.

 213-216.

17.  'Transportation

 Beyond 2000:

Technologies

 Needed for Eng ineering Design,"

 NASA

Conference

 Publivation

 10184

 Part I and II, Wo rkshop

held

 at Langley Research Center, September

 26-28,

1995,

 February

 1996.

18.

  Noor,

 Ahmed K ., and Venneri, Samuel

L.,

 Eds.,

 Future

 A eronautical

 and Space

 Systems,

Progress

 in

 A stronautics

 and

 A eronautics, V olume

172,

  1997.

19.

  Research

 in

 Natural

 Lam inar

 Flow

 and

Laminar-Flow  C ontrol," NA SA Conference

Publication

 2487,

 Parts 1 through 3, Sym posium held

at  Langley

 R esearch Center,

 March 16-19,1987,

December 31,1989.

20. Bushnell, D. M., "Hypervelocity

Scramjet

 Mixing Enhancement,"

 AIAA Journal

 o f

Propulsion

 and Power, V. 11, N. 5, pp.

 1088-1090.

21.

  Chang,

 P. K.,

  "Control

 of

 Flow

Separation,"

 Hemisphere Publishing Corporation,

Washington,  1976.

22.

  Gad-el-Hak, Mohamed,

 and

 B ushnell,

Dennis M., "Separation  Control: Review," Journal of

Fluids

 Engineering,

 March

 1991, Vol. 113,

 pp .

 5-30.

23. Bushnell, D. M., "Longitudinal Vortex

Control-Techniques and Applications," The

 32nd

Lanchester Lecture, Royal Aeronautical

 Society,

London, May

 12,1992,

 Paper

 No. 1904,

 A eronautical

Journal, October 1992, pp. 293-312.

24 .

  Bushnell,

 D. M., and

 McGinley,

 C. B.,

"Turbulence Control in Wall

 Hows,

Ann . Rev.

 Fluid

Mechanics, 1989,

 pp.

 1-20.

25.

  Bushnell,

 D. M., "Supersonic

 Aircraft

Drag  Reduction,"

 presented

 at the AIAA 21st

 Fluid

Dynam ics, Plasmadynamics,

 and Lasers C onference,

Seattle, Washington,

 June

 18-20,1990,

 AIAA

 Paper

90-1596.

26.

  Henderson,

 W illiam P., and Holmes,

Bruce J., "Induced D rag-Historical Perspective," S

 AE

Technical Paper

 Series,

 SAE A erotech  '89 Conference,

Anaheim, California, September 25-28,

  1989.

27. Yates, John E., and

 duP.

 D onaldson,

Coleman, "A Fundamental

 Study

 o f Drag and an

Assessment of Conv entional Drag-Due-to-Lift

Reduction

 Devices,

N A S A

 Co ntractor Report 400,

Contract

 NA S1-18065,

 September

 1986.

28. Kroo, Ilan,

 McMasters,

 John, and

 Smith,

Stephen C., "Highly Nonplanar  Lifting  Systems,"

Transportation

 Beyond 2000:  Technologies

 N eeded

 for

Engineering D esign, September 26-28,1995, Langley

Research

 Center, NAS A Conference Publication

10184,

 Part

 1.

29. "Flying  Hoops—Aviation

 Partners'

Spiroid

 W inglets," Discover,

 O ctober

 1994.

30. W u, J. M.,

 Vakili,

 A. D., and Gilliam ,

F. T ., "Aerodynam ic Interactions of W ingtip Flow

with Discrete W ingtip

 Jets,

AIAA-84-2206, AIAA

2nd

 Applied Aerodynamics

 Conference, August

 21-23,

1984, Seattle,

 W ashington.

31 .  Heyson, Harry H., Riebe, Gregory D .,

and Fulton, Cynthia

 L.,

 'Theoretical Param etric Study

of

  the

 Relative

 Advantages of

 Winglets

 and

 W ing-Tip

Extensions," NASA Technical Paper

 1020,

 September

1977.

32. Ma,

 En-Chun, "Effect

  of

 Wing

 T ip

Strakes on W ing Lift-Drag Ratio," J.

 Aircraft,

  Vol. 26,

No. 5, pp.

 410-416.

33 .

  Spillman,

 J. J.,

 "Wing

 Tip Sailes,

Progress

 to

 Date

 and

 Future

 Developm ents,"

Aeronautical Journal,

 December 1987, pp . 445-453.

34 .

  Cone, Clarence

 D., "The

 Theory

 of

Induced

 Lift

 and

 Minimum

 Induced

 Drag

 o f Nonplanar

Lifting  Systems," NASA Technical R eport,

 R-139,

1962.

35 .

 Bushnell, Dennis

 M .,

 Heftier, Jerry

 N .,

eds.,

 Seebass, A .

 R ichard, editor-in-chief, "V iscous

Drag

 Reduction in Boundary Lay ers,"

 Progress

 in

Astronautics

 and

 A eronautics. Volume

 123.

36.

  Bushnell, Dennis

 M., "Viscous

 Drag

Reduction

 in Aero nautics,"

 ICAS

  '94

  Guggenheim

Lecture, ICAS

 Paper

 94.-0.1, pp. 1-24.

37 .  Pfenninger, W ., "Laminar

 Flow Control,

Laminarization,"

 North Atlantic

 Treaty O rganization

Advisory Group for

 Aerospace Research

 and

Development, AGARD-R-654,

 Special

 Course

 on

Concepts for

 Drag R eduction,

  1977.

38 .

  Bacon,

 John W ., "WADC 10-Foot

Transonic Wind Tunnel

 Tests

 on Strut-Braced

 Boundary

Layer  Airplane," NAI-57-826, Report

 N o.

 BLC-99,

Northrop A ircraft, Inc., H awtho rne, California, June

14

American Institute of Aeronautics and

 Astronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 15/20

Copy r igh t©

 1997

Amer ican   Inst i tute of

 A eronau t ics

  and Ast ronaut ics

Inc.

1957.

39. Smith, Paul M., DeY oung, John,

Lovell, W illiam A., Price, Jack E., and

 Washburn,

 G .

Fred,

 "A

 Study

 of High-Altitude Manned Research

Aircraft

 Em ploying Strut-Braced W ings of High-

Aspect-Ratio,"

 NASA

 Contractor Report 159262,

Contract  NA S1-16000, Kentron

  International, Inc.,

February 1981.

40. Ford, Daniel, "A nglo-French A spects--

Cross

 Channel

 High

 Aspect

 Wing

 Development," Air

Enthusiast,  May/June

 1996,

 No. 63, pp.

 33-37.

41. Turriziani, R. V.,

 Lo vell,

 W. A ., Martin,

G. L.,

 Price,

 J. E.,  Swanson, E. E ., and

 Washburn,

 G .

F., "Preliminary Design

 Char acteristics

 of a Subsonic

Business

 Jet C oncept

 Employing

 an

 Aspect Ratio

 25

Strut-Braced Wing, NASA  C ontractor Report 159361,

NASA

 Contract N AS1-16000,

 Kentron

  International,

Inc., O ctober

 1980.

42 .

 Boeing

 C omm ercial

 A irplane

 Company,

"Whig

 Planform Geometry Effects on Large Subsonic

Military  Airplanes, Final Technical Report AFFDL-

TR-78-16

 for Period March

 1976

 through February

1977.

  A D A

 056124.

43 . Jobe, C . E., Kulfan,  R. M., and Vachal,

J. D.,

 "Wing Planforms

  fo r

 Large Military

Transports," 78-1470,

 AIAA

 Aircraft

 Systems

 and

Technology

 Conference, Los Angeles, August

 21-23,

1978.

44 .  Park, P. H.,

 'The

  Effect on Block Fuel

Consumption of a Strutted

 versus

 Cantilever Wing f or

a Short

 Haul

 Transport

 Including Strut

 A eroelastic

Considerations," 78-1454,

 AIAA

 Aircraft Sy stems and

Technology

 Co nference,

 L os A ngeles, California,

August

 21-23,1978.

45 .

  Lighthill,

 S ir

 James,

 Private

Communication,

 1989,

 Hampton,

 Virginia.

46.   Whitcomb, R. T., "Methods for

Reducing Subsonic

 Drag D ue to Lift," Special Co urse

on  Concepts for Drag Reduction, AGARD

 Report

 No .

654,

 presented as an

 AGARD

 Special Course at the

vo n

 Karman

 Institute, Rhode-St-Genese, Belgium,

March 28-April 1,1977, pp. 2-1 - 2-17.

47. Snyder,

 Melvin

 H .,

 "Effects

  of a

Wingtip-Mounted Propeller on

 Wing

 Lift, Induced

Drag,

 and Shed Vortex Pattern," submitted to the

Faculty of the

 Graduate C ollege

 of the

 Oklahoma State

University in partial

 fulfillment

 of the requirements for

the  Degree of Doctor of Philosoophy, May

 1967.

48. Snyder, Melvin H.,

 "Effects

  of W ingtip-

Mounted Propellers

 on Wing

 Lift

 and

 Induced Drag,"

 J.

Aircraft, Vol.

 6, No . 5, September-October

 1969,

 pp.

392-397.

49 .

  Patterson, James

 C., and Flechner,

 Stuart

G., "An Exploratory

 Wind

 Tunnel Investigation of the

Wake

 Effect

 of a Panel T ip-Mounted Fan -Jet Engine on

the Lift-Induced  Vortex," NASA Technical Note NASA

TN  D-5729, May 1970.

50 .

 Johnston,

 R. T.,

  Witkowski,

 D.,

Sullivan,

 J. P.,

 "Propeller

 Wakes and

 their Interaction

with Wings, International Society for Airbreathing

Engines, Ninth

 International

 S ymposium on

Airbreathing Engines,

 September

 3-8,1989, Athens,

Greece,

 Vol.

 2, pp.  1070-1077.

51 .  Miranda, Luis R., and

 Brennan,

 James E.,

"Aerodynamic Effects of Wingtip-Mounted Propellers

and

 Turbines, AIAA 86-1802, 1986, pp.

 221-228.

52. Patterson, James C., and Bar tlett, Glynn

R.,

 "Evaluation of Installed Performance of a

 Wing-

Tip-Mounted Pusher Turboprop on a

 Sem ispan

 W ing,"

N A S A  Technical

 Paper

 2739, 1987.

53.  Witkowski, Dave P.,

 Lee,

 Alex K. H.,

and Sullivan, John P., "Aerodynamic Interaction

between

 Propellers and W ings," J. Aircraft,

 Vol.

 26,

No.

 9,

 September

 1989,

 pp .

 829-836.

54. Kroo, I., "Propeller-Wing Integration for

Minimum

 Induced Loss, AIAA-84-2470,

AIAA/AHS /ASEE Aircraft Design S ystems and

Operations Meeting, October 31-November

 2,1984,

San Diego, C alifornia.

55.

 Bow ers,

 Peter M., Unconventional

Aircraft,

 second

 edition,

 3

 1176 01337 7990,

 Tab

Books, Blue

 Ridge

 Summit, PA.

56. Proceedings of the Circulation-Co ntrol

Workshop 1986, NASA Co nference Publication

 2432,

Workshop

 held

 at NASA Ames Research Center,

Moffett Field, California,  February

  19-21,1986.

57 .  Smith,

 Leroy

 H., "Wake Ingestion

Propulsion  Benefit," Journal of Propulsion and Power,

Vol.

 9, No. 1,

 January-February

 1993, pp. 74-82.

58.  Keith, Theo G., and DeW itt, Kenneth J.,

"Analysis

 and

 Evaluation

 of an

 Integrated

 Laminar

Row Control Propulsion System, NASA

 Grant

NAG3-937,

 Final T echnical

 Report,

 NASA-CR-

192162, February

 1993

 .

59. Farb ridge, J. E.,  The Development of

Very Thick Multi-Foil W ings fo r

 High

 Speed, Powered

Lift Transport

 Aircraft

 Applications, Progress

 in

Military

 A irlift,

 AGARD Conference

 Proceedings

 NO.

495.

60.

  Goldstein,

 Sydney,  Low

 Drag

 an d

15

American

 Institute

 of

 Aeronautics

 and A stronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 16/20

C opy r i gh t ©

  1997

Amer ican Ins t i tute of Aeronaut ics and Ast ronaut ics

Inc.

Suction

 A irfoils,"

 Journal

 of the

 Aeronautical

Sciences,

 Volume 15, No. 4,

 April

  1948,  pp. 189-220.

61. Goldschmied,

 Fabio

 and Neumann,

Benjamin

  J.,  "Spherical

 Submersibles with

 Static-

Pressure

 Hull

 Thrust

  An Optimum Com bination of

Structural

 and

 Propulsion E fficiences,"

 Intersociety

Advanced

 Marine Vehicles

 Conference, Arlington,

Virginia, June

  5-7, 1989,  89-1462-CP,

 pp.

 131-140.

62.

  Goldschmied,

 Fabio, "T hick Wing

Spanloader A ll F reighter  A

 Design

 Concept for

Tomorrow's

 Air C argo," AIAA 90-3198.

63. Goldschmied, Fabio,

 "Fuselage

 Self-

Propulsion

 by Static-Pressure Thurst  Wind Tunnel

Verification,"  AIAA 87-2935.

64. Goldschmied, Fabio, "Airfoil Static

Pressure Thrust  Flight Test

 V erification,"

 AIAA 90-

3286.

65.  Goldschmied, Fabio,

 "Aerodynamic

Design of Low Speed Aircraft with a NASA

Fuselage/Wake

 Propeller Configuration," AIAA-86-

2693, AIAA/AHS/ASEE Aircraft S ystems, Design and

Technology  Meeting, October 20-22,1986, Dayton,

Ohio.

66. Houbolt, John,

 "Why

  Twin Fuselage

Aircraft?" Astronautics

 and

 Aeronautics, April 1982,

pp. 26-35.

67. Lange, R. H., and

 Moore,

 J. W.,

"Application of Composite Materials and New Design

Concepts

 fo r

 Future

 Transport

 Aircraft," ICA S

Proceedings 1982,13th

 C ongress of the

 International

Council of the A eronautical Sciences/AIA A

 Aircraft

Systems and

 Technology Con ference, Seattle, USA,

August 22-27,

  1982,

  ICAS-82-2.7.3, pp. 1173-1181.

68.   Shkadov, L. M.,

 Denisov,

 V . E.,

Mavritsky,  V. L,

 "Air

 Tr ansportation

 System

 f or

Shipping Outsized Cargoes,

ICAS-92-1.10.2,

 pp .

1973-1978.

69. Moo re, J. W ., Craven, E. P., Farmer, B .

T.,

  Honrath,

 J. F., Stephens, R. E., and Meyer, R . T.,

"Multibody

 Aircraft Study, Volume 1," NASA

Contractor

 Report 165829,

 Contract

 No.

 NAS1-15927,

July

  1982.

70 .

  Moore,

 J. W.,

 Craven,

 E. P., Farmer, B.

T.,

  Honrath,

 J. F.,  Stephens, R . E., and

 Meyer,

 R . T.,

"Multibody  Aircraft Study, Volume 11,"  NASA

Contractor Report

 165829,

 Contract No.

 NAS1-15927,

July

  1982.

71. Kelly-W ickemeyer, Robert H.,

 Private

Communication,

  1996.

72. Zyako wski, Michael K., "Incorporat ing

Biplane Wing Theory into

 a

 Large, Subsonic, All-

Cargo

 Transport," T echfest

 X X, Paper 21 , N 95-26956,

July

  1993.

73 .  Olson, E. Carl, and Selberg, B. P.,

"Experimental Determination

 of

 Improved

Aerodynamic  Characteristics Utilizing Biplane Wing

Configurations, J. Aircraft,

  Vol.

  13, No. 4, April

1976,

  pp. 256-261.

74 .  Gall,

 Peter

 D., and

 Smith, Hubert

 C .,

"Aerodynamic Characteristics of B iplanes with

Winglets,

J. A ircraft ,  Vol. 24, No. 8, A ugust  1987,

pp . 518-522.

75 .

  "Ring Wing Prom ises Less

 Drag,

 Lower

Weight,"

 Machine

 Design, O ctober 7,1982.

76.   "Lockheed

 Etudie

 Un Transport

Commercial

 A Aile Ann ulaire," Aviation International,

Avions

 D 'Affaires:

  LaGuerre De Recession, pp. 38-

39 .

77. Arcara, P. C., Bartlett, Dennis W .,

McGraw, M. E., and G eiselhart, K. A., "Technology

Benefits

 fo r Very

 Large

 Subsonic Transports, AIAA-

93-1178, AIAA/AHS/ASEE Aerospace

 Design

Conference, February 16-19,1993, Irvine, California.

78.

  Ziegler, Bernard,

  Airbus

 Lessons

Learned," A erospace, D ecember 1996, pp.

 14-17.

79. Arata,

 Winfield

 H ., "Very Large Vehicles

To Be Or......? Astronautics  and Aeronautics, April

1979,  pp . 20-33.

80. Pope, Gregory T., "Titans of T ransport,"

Popular

 Mechanics,

 March 1995, pp . 52-55.

81. Lange, Roy H.,

 "Future Large

 Cargo

Aircraft

 Technology," Lo ckheed

 Horizons,

 pp.

 17-24.

82 .  Liebeck,

 Robert

 H .,

 Page, Mark

 A .,

Rawdon,

 Blaine

 K ., Scott,

 Paul

 W., and Wright,

Robert A ., "Concepts for Advanced Subsonic

Transports,"

 NASA Contractor Report 4624, Contract

NAS1-18763, September 1994.

83 .  McMasters, John H.,

 Kroo,

 Ilan, Bofah,

Kwasi L,

 S ullivan, John

 P., and Drela, Mark,

"Advanced C onfigurations f or

 Very

 Larg e Subsonic

Transport

 A irplanes,"

 NASA C ontractor

 Report

198351, Contract NAS 1-20269, October  1996.

84 .

  Callaghan,

 Jerry

 T., and

 Liebeck,

 Robert

H., "Some

 Thoughts

 on the Design of Subsonic

Transport

 Aircraft

  for the

 21st

  Century,"

 Cockpit,

October,

 November,

 D ecember 1990,  pp. 5-13.

85.

  Callaghan,

 Jerry T., and Liebeck,

 Robert

H.,

 "Some Thoughts

 on the

 Design

  of Subsonic

Transport

 Aircraft for the 21st

  Century,"

 SA E

Technical Paper Series, 901987, Aerospace Technology

16

American

 Institute

 of

 Aeron autics

 and

 Astronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 17/20

Copy r igh t©  1997 Amer ican   Institute   o f

 A eronau t ics

  and Ast ronaut ics Inc.

Conference and

 Expo sition,

 Long

 Beach,

 California,

October 1-4,1990.

86. The Bo eing Com mercial Airplane

Company, 'Technical and Economic Assessment of

Swept-Whig  S pan-Distributed Load Concepts for C ivil

and Military Air Cargo T ransports," NASA Contractor

Report 145229,

 N AS A

 Contract NAS1-14667,

October 1977.

87.

  Chaplin, Harvey

 R.,

  "Application

 of

Very

 Thick BLC Airfoils  to a Flying

 Wing

 Type

Transport Aircraft," SA E Technical Paper Series,

901992, Aerospace Technology

 Co nference

 and

Exposition,

 Long

 Beach, California, October 1-4,

1990.

88. Dawson, D orothy, "Saucerful of

 Secrets,

Flight International,  June

 29-July

 5,

 1994,

 pp.

 30-31.

89 .  Gunston, Bill, The O sprey Encyclopedia

of

 Russian

 Aircraft~1875-1995,

  published

 1995,

 p. 37.

90 .

  Anderston,

 Dav id A., "How Good is the

Custer

 Channel

 W ing?" Aviation W eek, June 15,

1953,  pp. 28-32.

91 .

  Anderton, D avid

 A .,  Vertical

 Lift

  is

Claimed for Channel W ing," Aviation W eek,

December

 17,1951, p. 17.

92.

  Fischer,  Hanno, "Erfahrungen

  Mit

 Einem

Mantelschraubenantrieb Bei Der Flugerprobung Eines

STOL-Versuchsflugzeuges,"  Sonderdruck Aus,

Luftfahrttechnik

  Raumfahrttechnik" Band 10

 (1964),

 NR .

4 Seite 115.121, pp.

 21-27.

93 .

  Hudson,

 Edward,

 "Channel

 Wing

 Plane

Gets

 Its Tryout at

 Teterboro,

The New  York Times,

Tuesday,

 March 17,1970.

94 .  Blick, E. F.,  The

 Channel Wing~A n

Answer to the STOL

 Problem?"

 Shell A viation

 News,

No.

 392, 1971.

95 .  Army A ir Forces Technical Report Number

5142,

 'Test

 of 1/3 Scale Powered Model of Custer

Channel Shaped W ing, Five Foot Wind T unnel Test No.

487, Army A ir Forces,

 Materiel Comm and,

 Wright

Field,

 Dayton, O hio, September 5,1944.

96.   Army A ir Fo rces,  Test of Two Custer

Channel W higs Having a Diameter of 37.2 Inches and

Lengths

 of 43 and

 17.5

 Inches, Five-Foo t

 Wind Tunnel

Test No . 545, AAF

 Technical

 Report 5568,

 Army

 A ir

Forces,

 Air Materiel Com mand,

 W right

 Field,

 Dayton,

Ohio,

 O ctober

 27,1947.

97 .  Pasaman ick, Jerom e, "Lang ley Full-Scale-

Tunnel Tests of the Custer Channel

 Wing

 A irplane,"

NACA  Research Memorandum L53A09, April

 7,1953.

98 .

  Blick,

 Edward F., and Homer, Vincent,

"Power-On  Channel Wing Aerodynamics," J. Aircraft,

Vol.

 8, N o. 4, April

 1971,

 pp . 234-238.

99. W elge, H. Robert, and A ntani, D. L.,

"HSCT  A erodynamic Technology fo r Enhanced

Economic V iability," S AE T echnical Paper

 Series,

901924, Aerospace Technology Con ference and

Exposition,  Long Beach, California,

  October

 1-4,

1990.

100. Boyd,

 J. A.,  Optimal U tilization of

Supersonic Favorable Interference to Obtain High Lift-

Drag

 Ratios,

AIAA/RAeS/JSASS Aircraft

 Design

 and

Technology  Meeting, N ovember 15-18,

 1965,

 Los

Angeles, CA, AIAA

 Paper

 N o.

 65-752.

101.

  Kulfan,  Robert M.,  Application  of

Favorable Aerodynamic

 In terference t o Supersonic

Airplane

 D esign," SAE T echnical Paper Series,

901988, A erospace Technology

 Conf erence

 and

Exposition,

 Long

  Beach,

 California,

 October

 1-4,

1990.

102.

  Kulfan,

 R. M.,

 "A pplication

 of

Hypersonic Favorable Aerodynamic Interference

Con cepts to Supersonic

 Aircraft," 78-1458,

AIAA

 A ircraft

 Systems and Technology

Conference, Los A ngeles, California, August

21-23,

 1978.

103.  Pfenninger, W., and Vemuru, C. S.,

"Design  A spects of Long Range Supersonic

LF C   Airplanes

 with Highly

 Swept Wings,"

Aerospace Technology

 Co nference

 and

Exposition,

 A naheim,

 C A, October 3-6, 1988, SA E

Technical Paper

 Series 881397.

104.  Pfenninger, Wemer, and Vemuru, Chandra

S.,  "Suction Lam inarization of Highly Swept

Supersonic Laminar Flow Control Wings," AIAA-88-

4471,

 AIAA/AHS/ASEE

 Aircraft Design, Systems and

Operations

 Meeting, September

 7-9,1988,

 A tlanta,

Georgia

105.

  Gibson,

 B. T., and Gerhardt, H. A .,

"Development

 of an Innovative Natural Lam inar

 Flow

Wing

 Concept

 fo r

 High-Speed Civil T ransports,"

 AIAA-

93-3466-CP.

106.  Fuhrmann,

 Henri

 D .,  "Application o f

Natural Laminar

 Flow to a

 Supersonic Transport

Concept,"

 AIAA-93-3467-CP,

 A

 C ollection

 of

 Technical

Papers, Part 1, AIAA Applied

 A erodynamics

 Co nference,

August

 9-11,1993, Monterey, C alifornia.

107. Roskam, Jan and R ogers, Da n, "Study o f

the

 Econom ic Feasibility of Composite (=Staged) SST

Configurations," SAE Technical Paper Series, 901989,

Aerospace Technology Conference and Expo sition, Long

17

American

 Institute

 of Aeronautics and A stronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 18/20

Co p y r i g h t ©   1997 Amer ican   Institute

 o f

 Aerona ut ics

  and

 As t ronaut ics Inc.

Beach, California, October

 1-4,1990.

108.  Jones, R. T., "The Flying Wing

Supersonic Tr ansport," Aeronautical Journal,

 March

1991, pp. 103-106.

109.

  Elliott,

 D. W .,

 Hoskins,

 P. D., and

Miller, R . F., "A

 Variable Geometry HSCT ," AIAA

 91-

3101, AIAA Aircraft Design

 Systems

 and

 Operations

Meeting,

 September 23-25,1991, Baltimore,

 MD .

110.

  Galloway,

 T ., Gelhausen, P.,

 Moore,

 M.,

and W aters, M., "Oblique W ing Supersonic Tran sport

Concepts," AIAA-92-4230, AIAA

 Aircraft

 Design

Systems

 Meeting, A ugust 2 4-26,1992,

 Hilton Head,

South

 Carolina.

111.  Strangeway, R. J., and

 Crawford,

 G . K.,

"VLF

 W aves in the Foreshock, 0273-1177(94)00082-4,

Adv. Space Res.,

 Vol.

 15, No. 8/9, pp. (8/9)29-42.

112.  Parks, George

 K., Physics of

 Space

Plasmas-An

 Introduction,

 1991,

 pp. 405

113.  Mishin, G. I., "Sonic and Shock Wave

Propagation  in

 W eakly

 Ionized Plasma," Gas Dy namics,

1992, pp. 81-96.

114.

  Ganguly,

 B. N., and

 Bletzinger,

 P.,

"Shock Wave Dispersion

 in Nonequilibrium

 Plasmas,"

AIAA  96-4607.

115.  Jaffrin,  Michel Y .,

 "Shock

 Structure in a

Partially

 Ionized

 Gas, The

 Physics

 of

 Fluids,

 Volume

8,  Number 4, April 1965, pp. 606-625.

116.

  Froning, H. D., and Roach, R. L., "Drag

Reduction, and

 Possibly

 Impulsion, by Perturbing Fluid

and Vacuum  Fields, AIAA

 95-2368,

 31st

AIAA/ASME/SAE/ASEE

 Joint

 Prouplsion

 Conference

and  Ex hibit,

 July

 10-12, 1995,

 S an

 Diego,

 C A.

117.

  Roach,

 Robert

 L., and

 Froning,

 H . D.,

"Drag Reduction o f

 Transonic

 Airfoils by

 Freestream

Perturbations and Heat A ddition," AIAA

 96-3413, AIAA

Atmospheric Flight Mechanics

 Conference,

 July 29-31,

1996,

 San

 Diego,

 C A.

118.

  Kar imabadi, H., Omidi, N., and Quest, K.

B.,

 'Two

 Dimensional Simulations of the

 Ion/Ion

Acoustic  Instability an d E lectrostatic Shocks,"

Geophysical Research Letters,

 Vol. 18, No. 10,

 pages

1813-1815,

 October 1991.

119.

  Studt,

 T., "Smart Vehicles,

 Smart

Highways-Roaring

 Down the Pike," pp. 14-18, R&D,

October

 25,1993.

120.

  Smelt,

 R.,

  Looking

 Ahead in

Aero nautics and

 Astronautics— A

 U .S. View," pp.

 501-

529, "The

 Future of Aeronautics," J. E. Alien and J.

Bruce,

 Ed.,

 S t.

 Martins Press,

 New York,

 1970.

121.  Crow,

 S. C., "Starcar

 Design

 and GPS

Control,"  AM E Research Report

 92-18,1992,

University of A rizona Departm ent of

 Aerospace

 and

Mechanical Engineering.

122.  Kaufman, D . N.,

 "Helicopter

 Precision

Approach C apability

 Using the Global

 Positioning

System,

NASA

 CR-194037, 1992.

123.  Kobayashi, T .,

  "Automatic

 Flight

Management System for

 Helicopters,"

 15th

 European

Rotorcraft

 Forum,

 1989, Amsterdam, Paper No. 24.

124.

  Flynn, B .,

  They're

 Giving it a W hirl,"

Daily  Press, Newport N ews, Virginia, p. B4,

 December

13, 1993.

125.  Smith, L. K., "Everyman's Plane at Last

The UltraSport 254, Vertiflite, p. 10,

September/October  1993.

126.  Head, Robert E., "Roadable Helicopter,"

presented at the 1st World Aviation Con gress, October

1996.

127. Lambert,

 M., "Personal H elicopters,"

Flight International,

 May 12,

 1979,

 pp. 1572-1582.

128.

  Parrish,

 R . L.,  Once Bitten, Forever

Sold, Business and Comm ercial A viation,  March 1989,

pp . H6-H10.

129. Lert, P., "A Helicopter in Every Garage?

Air  Progress,

 V. 40, No. 11,

 No vember 1978,

 pp. 40-

45,

 65.

130.

  Kelley, B ., "Helicopter E volution,"

Journal of the American Helicopter Society, V. 28, N o.

1, January 1983, pp.

 3-9.

131.  Drees,

 J. M., "Prepare for the 21st

Century~The

 1987

 Alexander A. Nikolsky

 Lecture,"

Journal of the

 Am erican

 H elicopter Society, V. 32, N o.

3,

 July 1987, p p.

 3-14.

132.

  Hamshaw-Thomas, C.,  The Helicopter

as an Element of Air Transport Systems," Part 2 ,

Proceedings

 of the

 14th International Helicopter Forum,

1983.

133.  Hooper, W. E.,  Technology for

Advanced

 Helicopters,"

 SAE Paper N o.

 87-2370,1987.

134.

  Frommlet,

 H., and Schick, C., "Modem

Technologies

 fo r Future Light

 Helicopters," Paper

 No.

37 , llth

 European

 Rotorcraft

 Forum, 1985.

135.

  Friedman, H. W .,

 "Design

 and

Fabrication

 of an

 Advanced

 Light

 Ro tor," Proc.

 44th

Annual Forum,

 A merican

 Helicopter S ociety, 1988,

 pp .

347-354.

136.  Brahney, J. H.,

 "Rotor

 System Design:

An  Adventure

 in

 Compromise," Aerospace

 En gineering,

V.

  5,

 July  1985,

 p p. 8-21.

137.  Logan, A. H., Light Helicopter

18

Am erican Institute

 of

 Aeron autics

 and

 Astron autics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 19/20

Co pyr igh t© 1997 Am er ican Ins ti tu te  o f A e ronau t ics   and  Ast rona ut ics Inc.

Technology for the Year 2000, Paper No . 3-6,13th

European

 Rotor Craft Forum, September 8-11, 1987.

138.

  Carter, E. S.,

 "Research-Technology

Needs fo r Civil Helicopters, SAE Paper No. 83-1557,

1983.

139.  Lachere, G. B.,

 Lam berti,

 R., and

Berthier, J. M, "Composite Helicopters,"

 Aerospace,

December

 1990, pp.

 14-18.

140.

  Amer,

 K. B., "A New Philosophy of

Structural

 R eliability,

 Fail Safe Versus

 Safe

 Life,"

 Paper

No.

 99,14th

 European

 Rotorcraft Forum, Milano,  Italy,

1988.

141.

  Brown, D. A ., "Firm D esigns Aircraft

that

 Drives Like

 Car," A viation Week

 and

 Space

Technology,  N ovember 1,1993, pp .

 67-69.

142. Shapiro, J., "The Helicopter, The

MacMillian

 C ompany, New

 York,

 1960.

143.

  Powell,

 G. M., and

 W agner,

 F. J., "A

Design-Support

 Team

 Views Forty Years

 of

 Commercial

Helicopter Value," 42nd Annual Forum Proceedings,

American

 H elicopter Society,

 1986,

 V. 1, pp.

 375-388.

144.  Knepp, J. E., and Mullen, R . L.,

"Conversion o f

 Production

 A utomotive Engines for

Aviation

 U se,"

 SA E Paper No.

 93-2606.

145.  Prouty, R. W.,

 "H elicopter

Aerodynamics," Rotor and

 Wing

 International (Text),

PJS Publications, Peoria,  ELL,  1985.

146.

  Cohen, E. E., "W hat Small Turbine

Engine Does the

 Small

 Helicopter N eed, or the Road to

Hell

 is Paved with Good Intentions,"

 AIAA

 Paper No.

79-1324,

  1979.

147.

  An ders, S. G.,

 A sbury,

 S. C., Brentner,

K.  S ., Bushnell, D. M., Glass, C. E., Hodges, W . T.,

Mor ris, S. J., and Scott, M. A ., "The Personal Aircraf t-

Status and

 Issues,

NASA  Technical Memo randum

109174, December

  1994.

148.

  Stiles, Palmer,

 ed., Readable

 Aircraft-

From Wheels to Wings—A Flying Auto and Readable

Aircraft

 Patent Search,

 1994.

149. Martin, J.,

  Kabis,

  H., Hunt, J., "The

Necessity

 of On-Board Oxygen for

 A irbreathing Single-

Stage-to-Orbit

 Vehicles," AIA A-91-5016, AIAA Third

International

 A erospace

 Planes Conference,

 December

 3-

5,1991,

 O rlando,

 Florida.

150.  Hunt, James L., "A irbreathing/Rocket

Single-Stage-to-Orbit Design

 Matrix," AIAA

 95-6011,

Sixth International A erospace Planes and H ypersonics

Technologies

 C onference,

 April

 3-7,1995, C hattanooga,

Tennessee.

151.

  Freeman, Delma

 C.,

 Talay, Theodore

 A.,

Stanley, Douglas

 0.,

  Wilhite, Alan,

 "Design

 Options

for  A dvanced Manned

 Launch

 Systems (AMLS)," AIAA-

90-3816,  AIAA

 Space

 Programs and Technolog ies

Conference, September 25-28,

  1990,

  Huntsville, A L.

152.  Krieger, R. J., "A

 Summary

 of Features

and Design Issues

 fo r

 Single-Stage-to-Orbit V ehicles,"

AI AA 90-1932,

 A IAA/SAE/ASME/ASEE 26th Joint

Propulsion

 Conference, July 16-18,1990,

 Orlando,

Florida.

153.

  Bratkovich,

 T. E., and

 Bussing,

 T. R. A.,

"Practical  Implementation o f Pulse D etonation

 E ngines,"

1996

 JANNAF Prop ulsion

 and

 Joint Subcomm ittee

Meetings, Albuquerque, NM,

 D ecember 9-13,1996.

154.  Bussing, T., and

 Pappas,

 G., "An

Introduction to Pulse Deton ation Engines, AIAA-94-

0263,

 32nd

 A erospace Sciences

 Meeting

 and Exh ibit,

January 10-13, 1994, Reno, NV.

155.

  Eidelman , S., and Gro ssman, W., "Pulsed

Detonation  Engine Experimental and Theoretical

Review,"

 AIAA-92-3168,

 AIAA/SAE/ASME/ASEE

28th Joint

 Propulsion

 Conference and

 Exhibit, July

 6-8,

1992,

 Nashville,

 Tennessee.

156.  Stanley,

 S .,

  Burge,

 K., and

 W ilson,

 D .,

"Experimental Investigation of Pulse Detonation Wave

Phenomenon

 as Related to

 Propulsion

  Application,"

AIAA-95-2580,

 31st

 AIAA /ASME/SAE/ASEE Joint

Propulsion C onference and

 E xhibit, July 10-12,1995,

San  Diego, C A .

157.  Edelman, Raymond, Dr., Pulse

Detonation W ave

 Engine,"

 Chapter 4,

  Propulsion

 an d

Energy

 Issues

 for the

 21st

 Century, AGARD

 Report

824,

 March  1997.

158.  Skifstad, J. G., "Air-Augmented Rockets-

-A

 Survey of the Literature (U)," Final Report, Report

Number F-67-3, JPC 433, AD 381402,

 Contract DA-01-

021-AMC-15096(z),

 U.S.

 Army Missile

 Command,

Redstone Arsenal, Alabama, February 1967.

159.  Farhangi, Shahram,

 "Operationally

Efficient Propulsion System  Study (OEPSS) Data

Book,

Volume

 X Air

 A ugmented

 Rocket Afterburning,

October 30,

  1992,

  NAS10-11568

 (Mod.

 8).

160. Fisher, S. A., "Thrust  Augmenting

Ejectors fo r

 High

 Pressure

 R atio Propulsive

 Jets,"

 7th

Australasian

 Conference on Hydraulics and Fluid

Mechanics,

 Brisbane, August

 18-22,1980, The

Institution o f Engineers,

 A ustralia, National

 Conference

Publication

 No. 80/4, pp. 246-249.

161.  Bloomer, Harry E., R enas, Paul E., and

Antl,

 Robert J.,  "Experimental Investigation in an

Altitude

 Test

 Facility of

 Burning

 of Excess

19

American

 In stitute of

 Aeronautics

 and Astronautics

8/20/2019 AIAA-1998-1-921 FRONTIERS OF THE "RESPONSIBLY IMAGINABLE" IN (CIVILIAN) AERONAUTICS

http://slidepdf.com/reader/full/aiaa-1998-1-921-frontiers-of-the-responsibly-imaginable-in-civilian-aeronautics 20/20

Co p y r i g h t ©   1997 Amer ican   Ins ti tu te of Aerona ut ics and A st ronaut ics

Inc.

Com bustibles in a Rocket Engine Exhaust," NASA

Technical Note

 D-200,

 January

  1960.

162.

  Carrick, Patrick G., and Tarn,

 Simon,

eds., "Proceedings of the

 High

 Energy

 D ensity Matter

(HEDM)

 Co ntractors'

 C onference held June

 4-7,1995

 in

the  Woods

 Hole MA ," PL-TR-95-3039, January 1996,

Phillips laboratory, Propulsion D irectorate, A ir Force

Materiel Comm and, Edwards

 Air Force

 Base,

 CA.

163.

  Smith, B rooke C., Suarez, Carlos J. ,

Porada, W illiam M., and

 Malcolm,

 Gerald

 N .,

"Aerodynamic C ontrol

 of

 NA SP-Type V ehicles Through

Vortex

 Manipulation," Volume IV, Simulation, NASA

Contractor Report 177626,

 Contract NA S2-13196,

September 1993.

164.

  Cbinitz,

 Wallace, "On the Use of Shock-

Induced Co mbustion

 in

 Hypersonic

 Engines," AIAA-96-

4536,7th International

 Space

 Planes

 and

 Hypersonic

Systems and

 T echnologies

 Conference,

 November

 18-22,

1996,

 Norfolk,  Virginia.

165.

  Atamanchuk,

 T., Sislian, J., and

Dudebout, "D etonation

 Wave

 Ram jet/Airframe  Integrated

W averider," AIAA -92-5022, AIAA

 Fourth International

Aerospace

 Planes Con ference, December 1-4,1992,

Orlando, Florida.

166.

  Morrison,

 R. B ., "Oblique

 D etonation

Wave Ramjet," NASA

 Contractor

 Report No.

 159192,

1980.

167.

  Adelman, H. G., C ambier, J. L., Menees,

G. P., and

 Balboni,

 J. A., "Analytical and Experimental

Validation

 of the

 O blique Detonation

 Wave

 Engine

Concept,"  AIAA Paper 88-0063,1988.

168.

  Chevalier, Alain, L evine, Vadim,

Bouchez, Marc, and

 Davidenko,

 Dm itri,

 "French-R ussian

Partnership

 on

 Hypersonic

 W ide

 Range Ram jets,"

AIAA-96-4554-CP,

 Am erican Institute of Aeronautics

and

 Astronautics, pp. 1-8.

169.  Miles, R. B., Brown, G. L.,

 Lemp ert,

 W.

R.,

 Yetter,

 R., Williams, G. J.,

 Bogdonoff,

 S. M.,

Natelson,

 D., and Guest, J. R ., "Radiau'vely

 Driven

Hypersonic

 Wind

 Tunnel,"

 AIAA

 Journal, Vol.

 33,

Number 8, August

 1995,

 pp.

 1463-1470.

170.

  Bakos, R . J.,

 C astrogiovanni,

 A .,

Calleja, J. F.,

 Nucci,

 L., and Erdos, J. I.,

 "Expansion

 of

the

 Scramjet Ground Test Envelope

 of the

 HYPULSE

Facility, AIAA

 96-4506, 7th

 International

 Space Planes

and

 Hypersonic

 Systems

 and Technologies

 C onference,

November 18-22,  1996, Norfolk,

  Virginia.

20

American

 Institute of Aero nautics and Astrona utics