al al 0 of the solar n i a -m s cai cv3 chondrites …grossman/ghg04lps.pdf(26al/27al) 0 of the...

2
( 26 AL/ 27 A L ) 0 OF THE SOLAR N EBULA INFERRED FROM AL-MG S YSTEMATIC IN BULK CAI S FROM CV3 CHONDRITES. A. Galy 1 , I. D.Hutcheon 2 , and L. Grossman 3,4 . 1 Department of Earth Sciences, University of Cam- bridge, Downing Street, CB2 3EQ, UK; 2 Lawrence Livermore Nat. Lab., Livermore, CA 94551-0808; 3 Dept. of the Geophys. Sci., 5734 S. Ellis Ave; 4 Enrico Fermi Inst., 5640 S. Ellis Ave., Univ. of Chicago, Chicago, IL 60637. ([email protected]). Introduction: 26 Al decays to 26 Mg with a short half-life of 0.73 Ma; an 26 Al/ 27 Al canonical value of 5×10 -5 has been inferred by studies of CAIs among many different meteorites [1-3]. This canonical value is, however, determined by internal isochron in CAIs and relies on a) relatively few data bulk data [4] and b) the average of punctual analyses [5]. On that basis, the evidence for 1) possible heterogeneity in the isotopic composition of Mg of solar system material, and 2) the dating of the segregation of the CAI precursor material from the solar nebula has been elusive. Because of isotopic and elemental diffusion, the internal isochron and inferred ( 26 Al/ 27 Al) 0 corresponds to the last thermal event affecting each individual CAI. This interpreta- tion has led to the determination of the timing of multi- stage formation events of some CAI [6], and also im- plies that ( 26 Al/ 27 Al) 0 values of > 5×10 -5 are artifacts resulting from the local redistribution of 26 Mg ex- cesses. The aim of this study is to investigate the Mg isotope composition in bulk CAIs and determine when the CAI precursor material has been segregated from the rest of the solar nebula. Material & Method: 5 CAIs from Efremovka (4 compact type A and 1 type B), 5 from Allende (1 com- pact type A and 3 type B) and one from Leoville (type B) were ground into a homogeneous powder and di- vided into aliquots [7]. A forsterite-bearing inclusion (E60) already studied for Al-Mg isotopic composition of individual mineral [8] has also been studied. 2 to 10 mg of the CAI samples were dissolved in an HNO 3 HF – HClO4 acid solution at ~150ºC in sealed Teflon vials, taken to dryness and then digested a second time in an HCl – HNO 3 acid solution. The samples were converted to chlorate with HCl. No insoluble residues were observed after centrifugation. Mg was purified from the dissolved fraction on AG50W-X12 resin col- umns with quantitative recovery. High-precision Mg isotopic abundances were ob- tained by multicollector inductively coupled mass spectrometry (MC-ICPMS) [9-10]. The excess of 26 Mg, quoted 26 Mg*, is the permil deviation from the terrestrial fractionation curve and calculated by the relationship: 26 Mg*= δ 26 Mg – (1/0.5189) ×δ 25 Mg, where 0.5189 is the slope of the terrestrial fractionation curve, when δ 26 Mg and δ 25 Mg are expressed against the reference DSM3 [10-12]. The bulk composition of AG178, a bulk CAI previously measured [11] has been recalculated according to [12]. The lack of Al, Ca, Fe and alkaline elements in the Mg fractions and the con- stancy of the value of the Cambridge 1 standard mixed with Ca, Al and Fe and thereafter processed through the chemistry implies that the results are free of any matrix effect and/or interference. The Al/Mg has been measured by MC-ICPMS and the external uncertainty is less than 2% relative. 0 2 8 10 26 Mg* () Terrestrial 24 Mg 27 Al 7 / Bulk CAI [4] Bulk CV [10-11] Bulk CAI Type CTA 10 -5 6.78 ± 0.85 MSWD = 8.3 4 0 1 2 3 -1 6 4 10 -5 5 Bulk CAI Type B B31 B32 B29 B30 E60 Fig. 1 -0.10 ± 0.21 Results: The measurements of 12 bulk CAIs, bulk Allende and Orgueil meteorites and data from [4] are presented in Fig. 1. The error bars correspond to 95% confidence level. A conservative estimate of the Al/Mg uncertainties from [4] has been set to 25 % relative. The range of 26 Mg* is 2.05‰. If we exclude B30 from [4], All CAIs lie on or above the isochron defined by the canonical ( 26 Al/ 27 Al) 0 . This is very similar to previous data [4,11,13]. The bulk 26 Mg*of a type B CAI from Allende (F2) has been previously reported to be 0.68 ± 0.36 ‰ [13]. Our aliquot of F2 gives a 26 Mg* of 1.08 ± 0.06 ‰. The corresponding LLNL value is 1.12 ± 0.11 ‰. At 95% confidence the TIMS value [12] and the two MC-ICPMS values are indistin- guishable. In addition, the 26 Mg* and Al/Mg ratio of the bulk E60 (Fig. 2) lies on the previous isochron de- fined by mineral separate [8]. The 26 Mg* is strongly correlated to the 27 Al/ 24 Mg ratio (Fig 1) and independent from the δ 25 Mg (Fig. 3). In the Al-Mg evolution diagram (Fig. 1), the data-set obtained by MC-ICPMS defines an errorchron with a ( 26 Al/ 27 Al) 0 value much higher ((6.78 ± 0.85) × 10 -5 ) than the canonical value. The 26 Mg/ 24 Mg initial is not statistically different from the terrestrial/chondritic value (Fig. 1). Since the CAIs are of different types Lunar and Planetary Science XXXV (2004) 1790.pdf

Upload: others

Post on 01-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AL AL 0 OF THE SOLAR N I A -M S CAI CV3 CHONDRITES …grossman/GHG04LPS.pdf(26AL/27AL) 0 OF THE SOLAR NEBULA INFERRED FROM AL-MG SYSTEMATIC IN BULK CAIS FROM CV3 CHONDRITES. A. Galy

(26AL/27A L)0  OF  THE  SOLAR  NEBULA  INFERRED  FROM  AL-MG  S YSTEMATIC  IN  BULK  CAIS  FROM C V 3CHONDRITES.  A. Galy1, I. D.Hutcheon2, and L. Grossman3,4. 1 Department of Earth Sciences, University of Cam-bridge, Downing Street, CB2 3EQ, UK; 2Lawrence Livermore Nat. Lab., Livermore, CA 94551-0808; 3Dept. of theGeophys. Sci., 5734 S. Ellis Ave; 4Enrico Fermi Inst., 5640 S. Ellis Ave., Univ. of Chicago, Chicago, IL 60637.([email protected]).

Introduction: 26Al  decays  to  26Mg  with  a  shorthalf-life  of  0.73 Ma;  an  26Al/27Al canonical value of5×10-5  has  been  inferred  by  studies  of CAIs  amongmany different meteorites [1-3].  This canonical valueis, however, determined by  internal  isochron  in CAIsand relies on a) relatively few data bulk data [4] and b)the average of punctual analyses [5].  On that basis, theevidence  for 1) possible heterogeneity  in  the  isotopiccomposition of Mg of solar system material, and 2) thedating of the segregation of the CAI precursor materialfrom  the  solar  nebula  has  been  elusive. Because  ofisotopic and elemental diffusion, the internal isochronand inferred (26Al/27Al)0 corresponds to the last thermalevent affecting each  individual CAI.   This  interpreta-tion has led to the determination of the timing of multi-stage formation events of some CAI [6], and also im-plies  that (26Al/27Al)0 values of > 5×10-5 are artifactsresulting  from  the  local  redistribution  of    26Mg  ex-cesses. The aim of  this study  is  to  investigate  the Mgisotope composition in bulk CAIs and determine whenthe CAI precursor material has been segregated  fromthe rest of the solar nebula.

Material & Method: 5 CAIs from Efremovka (4compact type A and 1 type B), 5 from Allende (1 com-pact type A and 3 type B) and one from Leoville (typeB) were ground  into a homogeneous powder and di-vided  into  aliquots  [7]. A forsterite-bearing inclusion(E60) already studied for Al-Mg isotopic compositionof individual mineral [8] has also been studied.  2 to 10mg of  the CAI samples were dissolved  in an HNO3 –HF – HClO4 acid solution at ~150ºC in sealed Teflonvials, taken to dryness and then digested a second timein  an  HCl – HNO3  acid  solution. The  samples wereconverted to chlorate with HCl.  No insoluble residueswere observed  after  centrifugation. Mg was purifiedfrom the dissolved fraction on AG50W-X12 resin col-umns with quantitative recovery.

High-precision Mg  isotopic  abundances were ob-tained  by  multicollector  inductively  coupled  massspectrometry  (MC-ICPMS)  [9-10].  The  excess  of26Mg, quoted ∆26Mg*, is the permil deviation from theterrestrial  fractionation  curve  and  calculated  by  therelationship: ∆26Mg*= δ26Mg  –  (1/0.5189)  ×  δ25Mg,where 0.5189 is the slope of the terrestrial fractionationcurve, when  δ26Mg  and δ25Mg are expressed againstthe reference DSM3 [10-12].  The bulk composition ofAG178, a bulk CAI previously measured [11] has beenrecalculated according to [12]. The lack of Al, Ca, Fe

and alkaline elements in the Mg fractions and the con-stancy of the value of the Cambridge 1 standard mixedwith Ca, Al and Fe and  thereafter processed  throughthe chemistry  implies  that  the  results are  free of anymatrix effect and/or interference. The Al/Mg has beenmeasured by MC-ICPMS and the external uncertaintyis less than 2% relative.

0 2 8 10

∆26M

g*

(‰)

Terr

estri

al

24Mg27Al7 /

Bulk CAI [4]Bulk CV [10-11]Bulk CAI Type CTA

10-56.78 ± 0.85MSWD = 8.3

4

0

1

2

3

-164

10-5

5

Bulk CAI Type B

B31 B32

B29B30

E60

Fig. 1

-0.10 ± 0.21

Results: The measurements of 12 bulk CAIs, bulkAllende and Orgueil meteorites and data from [4] arepresented in Fig. 1. The error bars correspond to 95%confidence level. A conservative estimate of the Al/Mguncertainties from [4] has been set to 25 % relative.The range of ∆26Mg* is 2.05‰. If we exclude B30from [4], All CAIs lie on or above the isochron definedby the canonical (26Al/27Al)0. This is very similar toprevious data [4,11,13]. The bulk ∆26Mg*of a type BCAI from Allende (F2) has been previously reported tobe 0.68 ± 0.36 ‰ [13]. Our aliquot of F2 gives a∆26Mg* of 1.08 ± 0.06 ‰. The corresponding LLNLvalue is 1.12 ± 0.11 ‰. At 95% confidence the TIMSvalue [12] and the two MC-ICPMS values are indistin-guishable. In addition, the ∆26Mg* and Al/Mg ratio ofthe bulk E60 (Fig. 2) lies on the previous isochron de-fined by mineral separate [8].

The ∆26Mg* is strongly correlated to the 27Al/24Mgratio (Fig 1) and independent from the δ25Mg (Fig. 3).In the Al-Mg evolution diagram (Fig. 1), the data-setobtained by MC-ICPMS defines an errorchron with a(26Al/27Al)0 value much higher ((6.78 ± 0.85) × 10-5)than the canonical value. The 26Mg/24Mginitial is notstatistically different from the terrestrial/chondriticvalue (Fig. 1). Since the CAIs are of different types

Lunar and Planetary Science XXXV (2004) 1790.pdf

Page 2: AL AL 0 OF THE SOLAR N I A -M S CAI CV3 CHONDRITES …grossman/GHG04LPS.pdf(26AL/27AL) 0 OF THE SOLAR NEBULA INFERRED FROM AL-MG SYSTEMATIC IN BULK CAIS FROM CV3 CHONDRITES. A. Galy

from 3 meteorites,  the  lack of a  true  isochron  is notastonishing. Assuming an homogeneous  26Mg/24Mginitial

for  the  Solar  Nebula,  we  have  also  calculated  the(26Al/27Al)0 of each CAI. As shown on the Fig 1, noneof  the  (26Al/27Al)0 are  lower  than  the canonical valueand the highest value is (7.4 ± 0.4) × 10-5.

0 0.5 2 2.5 3

∆26M

g*

(‰)

Terr

estri

al

24Mg27Al7 /

BulkPyroxene [8]Spinel [8]

10-54.63 ± 0.44

3.5

-0.5

0.5

1.5

2.5

-1.5

-2.5

-3.51.51

Fig. 2

Discussion: This difference between the(26Al/2 7A l ) 0 inferred from bulk CAIs and the(26Al/27Al)0 defined by internal isochron can be inter-preted in 2 different ways.

The first explanation is that the 26Mg/24Mginitial wasvariable (from 0 to + 0.64‰) while the (26Al/27Al)0 washomogeneous and equal to 5×10-5. A Mg-isotopic het-erogeneity is rather unlikely, given the lack of ∆26Mg*in bulk chondrites, and achondrites [14]. In addition,this inheritance of excess of 26Mg and/or excess of24Mg would have had to occur only in CAIs and wouldhave to be opposite to the nucleosynthetic effects re-corded by the Mg carried by FUN inclusions. The O-isotopic compositions of the CAIs examined in thisstudy should be determined before ruling out this ex-planation.

The second explanation comes from a direct anal-ogy with isotopic chronology in metamorphic terres-trial rocks. The age defined by the bulk CAIs can beattributed to the closure of a CAIs reservoir within thesolar nebula with respect to Al-Mg isotopes, while thecanonical (26Al/27Al)0, determined by mineral separatesrecords the youngest resetting of the Al-Mg clock by athermal event. In that case, the CAIs reservoir hasbeen segregated ~ 0.4 Ma before the youngest meltingresponsible for the definition of the canonical(26Al/27Al)0 value of 5×10-5. This interpretation is sup-ported by the bulk composition of E60 (Fig. 2) butseems to disagree with the extreme paucity of materi-als such as single hibonite and corundum crystals,which show little evidence of igneous processing with(26Al/27Al)0 values of >5 x 10-5 in CM chondrites [2]. Ifthe initial solar system value was ~7 x 10-5, we would

expect to find some unmelted grains carrying this sig-nature only in the case that CAIs from CVs and un-melted grains from CM have been extracted from themain reservoir of the solar Nebula in a single event.Lower (26Al/27Al)0 in CAIs from CM has already beenpointed out [2]. High precision Mg-Al data from bulkfluffy type A from CVs are clearly needed.

-2 0 6 8∆26

Mg*

(‰

) Te

rres

trial

Bulk CV [10-11]Bulk CAI Type CTA

4

0

1

2

3

-142

Bulk CAI Type BFig. 3

δ25Mg (‰)DSM3

Conclusion: The solar nebula may have had a(26Al/27Al)0 as high as 7×10-5, in which case the precur-sor material of CAIs carried by CV chondrites hasbeen segregated from the rest of the solar nebula. ~ 0.4Ma before its last melting.

References: [1] Lee T. et al. (1976). GRL, 3, 109-112. [2] MacPherson G. J. et al. (1995) Meteoritics, 30,365-386. [3] Russel S. S. et al. (1996). Science, 273,757-762. [4] Lee T. and Papanastassiou D. A. (1974)GRL, 1, 225-228. [5] Clayton R. N. et al. (1988) Phil.Trans. R. Soc. Lond., A 325, 483-501. [6] Hsu W. et al.(2000) Earth Planet. Sc. Lett. 182, 15-29. [7] Simon S.B (2004) LPS XXXV, Abstract #xxxx. [8] Amelin Y. etal. (2002). Science, 297, 1678-1683. [9] Galy A. et al.(2001) Int. J. Mass Spectrom. 208, 89-98. [10] Galy A.et al. (2003) J. Anal. At. Spectrom. 18, 1352-1356. [11]Galy, A. et al. (2000) Science,  290, 1751-1753. [12]Young Y. D. and Galy, A. (In  Press) Rev. Mineral.Geochem. [13] Prombo C. and Lugmair G. W. (1986)LPS XVII, 685–686. [14] Schramm D. N. et al. (1970)Earth Planet. Sc. Lett. 10, 44-59.

Lunar and Planetary Science XXXV (2004) 1790.pdf